Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.350
Filter
1.
Biochemistry (Mosc) ; 89(4): 711-725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831507

ABSTRACT

Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.


Subject(s)
Cognitive Dysfunction , Hippocampus , Rats, Inbred SHR , Animals , Hippocampus/metabolism , Hippocampus/pathology , Rats , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Hypertension/metabolism , Disease Models, Animal , Oxidative Stress , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Dementia, Vascular/physiopathology , Humans , Neurogenesis
2.
Food Funct ; 15(10): 5527-5538, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38700280

ABSTRACT

The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.


Subject(s)
Antihypertensive Agents , Molecular Dynamics Simulation , Oligopeptides , Animals , Oligopeptides/pharmacology , Oligopeptides/chemistry , Oligopeptides/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Rats , Male , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Agaricales/chemistry , Agaricales/metabolism , Mice , Hypertension/drug therapy , Hypertension/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Binding , Blood Pressure/drug effects , Rats, Inbred SHR
3.
Food Funct ; 15(10): 5579-5595, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38713055

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Dopamine , Memory, Short-Term , Rats, Inbred SHR , Rats, Inbred WKY , Theobromine , Animals , Male , Rats , Theobromine/pharmacology , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/metabolism , Memory, Short-Term/drug effects , Dopamine/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Frontal Lobe/metabolism , Frontal Lobe/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Disease Models, Animal , Synaptosomal-Associated Protein 25/metabolism
4.
Food Funct ; 15(10): 5627-5640, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38722076

ABSTRACT

Hawthorn fruits have a sweet and sour taste, besides having beneficial therapeutic effects on hyperlipidemia, hypertension, and coronary heart disease, making them widely used in food and clinical medicine. However, their hypotensive effects and potential mechanisms of anti-hypertension still need to be elucidated. This study aims to explore the antihypertensive effect of hawthorn and its monomer hyperoside on spontaneously hypertensive rats through pharmacodynamics, serum metabolomics, and in vivo mechanism studies. After 7 weeks of intervention with hawthorn extract and hyperoside, the blood pressure was significantly reduced. Aortic vascular staining results showed that the injury was significantly improved after intervention with hawthorn extract and hyperoside. According to the serum metabolomics study, the main metabolic pathway regulating blood pressure in hawthorn extract and hyperoside groups was the primary bile acid biosynthesis pathway. Quantitative experiments confirmed that the level of bile acid in the model group was significantly different from that in the normal group, while that in the hawthorn group and the hyperoside group was close to that in the normal group. Based on the prediction of bile acid-hypertension related targets and the literature, nine genes involved in bile acid metabolism and inflammatory pathways were selected for further study. The FXR, TGR5, ET-1, NOS3, Akt1, TNF-α, Ptgs2, ACE2 and Kdr mRNA expression levels in the hawthorn extract and hyperoside groups were significantly different from those in the model groups. In summary, hawthorn extract and hyperoside have a hypotensive effect on spontaneously hypertensive rats through bile acid and inflammation related targets. Hence, hawthorn extract has the potential to become a functional food or an alternative therapy for hypertension.


Subject(s)
Antihypertensive Agents , Blood Pressure , Crataegus , Fruit , Hypertension , Plant Extracts , Quercetin , Rats, Inbred SHR , Animals , Crataegus/chemistry , Rats , Male , Antihypertensive Agents/pharmacology , Fruit/chemistry , Hypertension/drug therapy , Hypertension/metabolism , Plant Extracts/pharmacology , Blood Pressure/drug effects , Quercetin/pharmacology , Quercetin/analogs & derivatives , Humans
5.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Article in English | MEDLINE | ID: mdl-38780511

ABSTRACT

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Subject(s)
Adrenal Glands , Hypertension , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Male , Hypertension/metabolism , Hypertension/genetics , Adrenal Glands/metabolism , Adrenal Glands/pathology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Rats , Rats, Inbred SHR , Rats, Wistar , Immunohistochemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/genetics , Hypertension, Renovascular/pathology
6.
J Hypertens ; 42(7): 1184-1196, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38690916

ABSTRACT

PURPOSE: Compared with monotherapy, combination therapy with multiple antihypertensive drugs has demonstrated superior efficacy in the management of hypertension. The aim of this study was to explore the efficacy of multitarget combined vaccines in achieving simultaneous antihypertensive and target organ protection effects. METHODS: Our team has developed ATRQß-001 and ADRQß-004 vaccines targeting Ang II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR), respectively. In NG-nitroarginine methyl ester ( l -NAME) + abilities spontaneously hypertensive rats (SHRs) model, SHRs were simultaneously inoculated with ATRQß-001 and ADRQß-004 vaccines. Histological and biochemical analyses were performed to evaluate the antihypertensive effects and target organ protection of the ATRQß-001 and ADRQß-004 combined vaccines in comparison with those of the single vaccine. RESULTS: Both ATRQß-001 and ADRQß-004 vaccines induced robust antibody production, resulting in persistent high antibody titers in rats. Notably, the combined administration of both vaccines significantly decreased SBP in SHRs compared with treatment with a single vaccine, both before and after l -NAME administration. Furthermore, the combined vaccine regimen demonstrated superior efficacy in protecting against vascular remodeling, myocardial hypertrophy and fibrosis, and kidney injury in SHRs. Mechanistically, the combined vaccines exhibited significantly downregulated the expression of angiotensin II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR). Importantly, no apparent immune-related adverse effects were observed in animals immunized with the combined vaccines. CONCLUSION: Preliminary findings from this investigation suggest that co-administration of the novel ATRQß-001 and ADRQß-004 vaccines holds potential as a groundbreaking therapeutic strategy for managing hypertension.


Subject(s)
Hypertension , Rats, Inbred SHR , Receptor, Angiotensin, Type 1 , Receptors, Adrenergic, alpha-1 , Animals , Receptor, Angiotensin, Type 1/immunology , Rats , Male , Vaccines, Combined/immunology , NG-Nitroarginine Methyl Ester/pharmacology , Blood Pressure/drug effects
7.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Article in English | MEDLINE | ID: mdl-38715976

ABSTRACT

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Subject(s)
Macrophages , Receptors, Calcium-Sensing , Ventricular Remodeling , Animals , Male , Mice , Rats , Blood Pressure , Fibrosis/metabolism , Hypertension/metabolism , Hypertension/pathology , Macrophages/metabolism , Myocardium/pathology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Inbred SHR , Receptors, Calcium-Sensing/metabolism , Ventricular Remodeling/physiology
8.
FASEB J ; 38(9): e23654, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38717442

ABSTRACT

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Subject(s)
Heat Shock Transcription Factors , Metformin , Myocytes, Cardiac , Unfolded Protein Response , Animals , Male , Rats , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Heat Shock Transcription Factors/drug effects , Heat Shock Transcription Factors/metabolism , Hypertension/metabolism , Hypertension/drug therapy , Metformin/pharmacology , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Transcription Factors/metabolism , Transcription Factors/genetics , Unfolded Protein Response/drug effects , Ventricular Remodeling/drug effects
9.
Bull Exp Biol Med ; 176(5): 543-547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38717566

ABSTRACT

We studied the dynamics of the main hemodynamic parameters in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats with visceral obesity and chemically induced colitis (CIC) against the background of probiotic therapy. Systolic BP, HR, and body temperature were recorded over 36 days using a wireless telemetry system. During 8 days (3 days before CIC induction and until the end of the experiment) the animals were intragastrically administered a probiotic based on Lactobacillus delbrueckii D5 strain. At baseline, systolic BP was significantly higher in the SHR group, while HR and body temperature did not differ in SHR and WKY rats. On day 8 after CIC induction, systolic BP, HR, and body temperature in SHR were significantly increased in comparison with the initial values. In the group of WKY rats, all indices at the end of the experiment remained at the initial levels. Probiotic therapy in SHR, in contrast to WKY rats, did not lead to normalization of body temperature and hemodynamic disorders resulting from CIC.


Subject(s)
Body Temperature , Colitis , Hemodynamics , Probiotics , Rats, Inbred SHR , Rats, Inbred WKY , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Rats , Male , Colitis/chemically induced , Colitis/physiopathology , Colitis/microbiology , Hemodynamics/drug effects , Body Temperature/drug effects , Blood Pressure/drug effects , Blood Pressure/physiology , Heart Rate/drug effects , Lactobacillus delbrueckii , Obesity/physiopathology , Obesity, Abdominal/physiopathology , Obesity, Abdominal/chemically induced
10.
Biomed Khim ; 70(2): 89-98, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711408

ABSTRACT

Comparative proteomic analysis of kidney tissue from normotensive (WKY) and spontaneously hypertensive (SHR) rats revealed quantitative and qualitative changes in renal proteins. The number of renal proteins specific for WKY rats (blood pressure 110-120 mm Hg) was 13-16. There were 20-24 renal proteins specific for SHR (blood pressure 180 mm Hg and more). The total number of identified renal proteins common for both rat strains included 972-975 proteins. A pairwise comparison of all possible (SHR-WKY) variants identified 8 proteins specific only for normotensive (WKY) animals, and 7 proteins specific only for hypertensive ones (SHR). Taking into consideration their biological roles, the lack of some enzyme proteins in hypertensive rats (for example, biliverdin reductase A) reduces the production of molecules exhibiting antihypertensive properties, while the appearance of others (e.g. betaine-homocysteine S-methyltransferase 2, septin 2, etc.) can be interpreted as a compensatory reaction. Renal proteins with altered relative content (with more than 2.5-fold change) accounted for no more than 5% of all identified proteins. Among the proteins with an increased relative content in hypertensive animals, the largest group consisted of proteins involved in the processes of energy generation and carbohydrate metabolism, as well as antioxidant and protective proteins. In the context of the development of hypertension, the identified relative changes can apparently be considered compensatory. Among the proteins with the most pronounced decrease in the relative content in hypertensive rats, the dramatic reduction in acyl-CoA medium-chain synthetase-3 (ACSM3) appears to make an important contribution to the development of renal pathology in these animals.


Subject(s)
Hypertension , Kidney , Proteomics , Rats, Inbred SHR , Animals , Rats , Hypertension/metabolism , Kidney/metabolism , Proteomics/methods , Male , Rats, Inbred WKY , Proteome/metabolism , Proteome/analysis , Blood Pressure
11.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690903

ABSTRACT

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Subject(s)
Hypertension , Muscle, Smooth, Vascular , NADPH Oxidase 1 , Protein Disulfide-Isomerases , Rats, Inbred SHR , Up-Regulation , Animals , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 1/genetics , Hypertension/physiopathology , Hypertension/genetics , Hypertension/metabolism , Rats , Muscle, Smooth, Vascular/metabolism , Male , Myocytes, Smooth Muscle/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Rats, Wistar , Transcription, Genetic
12.
Arq Bras Cardiol ; 121(2): e20230405, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38597541

ABSTRACT

BACKGROUND: Systemic arterial hypertension is a risk factor for cardiac, renal, and metabolic dysfunction. The search for new strategies to prevent and treat cardiovascular diseases led to the synthesis of new N-acylhydrazones to produce antihypertensive effect. Adenosine receptors are an alternative target to reduce blood pressure because of their vasodilatory action and antioxidant properties, which may reduce oxidative stress characteristic of systemic arterial hypertension. OBJECTIVE: To evaluate the antihypertensive profile of novel selenium-containing compounds designed to improve their interaction with adenosine receptors. METHODS: Vascular reactivity was evaluated by recording the isometric tension of pre-contracted thoracic aorta of male Wistar rats after exposure to increasing concentrations of each derivative (0.1 to 100 µM). To investigate the antihypertensive effect in spontaneously hypertensive rats, systolic, diastolic, and mean arterial pressure and heart rate were determined after intravenous administration of 10 and 30 µmol/kg of the selected compound LASSBio-2062. RESULTS: Compounds named LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092, and LASSBio-2093 promoted vasodilation with mean effective concentrations of 15.5 ± 6.5; 14.6 ± 2.9; 18.7 ± 9.6; 6.7 ± 4.1; > 100; 6.0 ± 3.6; 37.8 ± 11.8; and 15.9 ± 5.7 µM, respectively. LASSBio-2062 (30 µmol/kg) reduced mean arterial pressure in spontaneously hypertensive rats from 124.6 ± 8.6 to 72.0 ± 12.3 mmHg (p < 0.05). Activation of adenosine receptor subtype A3 and potassium channels seem to be involved in the antihypertensive effect of LASSBio-2062. CONCLUSIONS: The new agonist of adenosine receptor and activator of potassium channels is a potential therapeutic agent to treat systemic arterial hypertension.


FUNDAMENTO: A hipertensão arterial sistêmica é um fator de risco para disfunções cardíacas, renais e metabólicas. A busca por novas estratégias para prevenir e tratar doenças cardiovasculares levou à síntese de novas N-acilidrazonas para produzir efeito anti-hipertensivo. Os receptores de adenosina são um alvo alternativo para reduzir a pressão arterial devido à sua ação vasodilatadora e propriedades antioxidantes, que podem reduzir o estresse oxidativo característico da hipertensão arterial sistêmica. OBJETIVO: Avaliar o perfil anti-hipertensivo de novos compostos contendo selênio desenvolvidos para melhorar sua interação com os receptores de adenosina. MÉTODOS: Foi avaliada a reatividade vascular, registrando-se a tensão isométrica da aorta torácica pré-contraída de ratos Wistar machos após exposição a concentrações crescentes de cada derivado (0,1 a 100 µM). Para investigar o efeito anti-hipertensivo em ratos espontaneamente hipertensos, foram determinadas a pressão arterial sistólica, pressão arterial diastólica, pressão arterial média e a frequência cardíaca após administração intravenosa de 10 e 30 µmol/kg do composto selecionado LASSBio-2062. RESULTADOS: Os compostos denominados LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092 e LASSBio-2093 promoveram vasodilatação com concentrações efetivas médias de 15,5 ± 6,5; 14,6 ± 2,9; 18,7 ± 9,6; 6,7 ± 4,1; > 100; 6,0 ± 3,6; 37,8 ± 11,8; e 15,9 ± 5,7 µM, respectivamente. O LASSBio-2062 (30 µmol/kg) reduziu a pressão arterial média em ratos espontaneamente hipertensos de 124,6 ± 8,6 para 72,0 ± 12,3 mmHg (p < 0,05). A ativação do receptor de adenosina subtipo A3 e dos canais de potássio parece estar envolvida no efeito anti-hipertensivo do LASSBio-2062. CONCLUSÕES: O novo agonista do receptor de adenosina e ativador dos canais de potássio é um potencial agente terapêutico para o tratamento da hipertensão arterial sistêmica.


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Rats, Inbred SHR , Rats, Wistar , Hypertension/drug therapy , Blood Pressure , Potassium Channels
13.
J Physiol Pharmacol ; 75(1)2024 02.
Article in English | MEDLINE | ID: mdl-38583435

ABSTRACT

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.67 mg kg-1 BW h-1) or D3-R antagonist, GR103691 (0.2 mg kg-1 BW h-1). Arterial pressure (MAP), renal artery blood flow (RBF, transonic probe) and renal medullary blood flow (MBF, laser-Doppler) were measured along with sodium, water and total solute excretion (UNaV, V, UosmV). Experiments with ETB-R blockade confirmed their tonic vasodilator action in the whole kidney (RBF) and medulla (MBF) in both hypertension models. In SHR only, the first evidence was provided that ETB-R specifically increases transtubular backflux of non-electrolyte solutes. In DOCA-salt rats ETB-R blockade caused an early decrease in water and salt transport whereas an increase was often reported from many previous studies. The most striking effect of D3-R blockade in SHR was a selective increase in MBF, which strongly suggested tonic vasoconstrictor action of these receptors in the renal medulla; this speaks against prevailing opinion that D3 receptors are virtually inactive in SHR. In our model variant of DOCA-salt rats of D3-R blockade clearly caused a rapid major increase in MAP in parallel with depression of renal haemodynamics.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Receptors, Dopamine D3 , Desoxycorticosterone Acetate/pharmacology , Endothelin Receptor Antagonists/pharmacology , Rats, Inbred SHR , Hypertension/chemically induced , Endothelins/pharmacology , Water , Acetates/pharmacology , Blood Pressure , Endothelin-1
14.
Wei Sheng Yan Jiu ; 53(2): 300-309, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604968

ABSTRACT

OBJECTIVE: To investigate the effects and possible mechanisms of negative air ions(NAIs) on blood pressure, oxidative stress, and inflammatory status in spontaneous hypertension rats(SHR). METHODS: A total of 60 SHR(half male and half female) were randomly divided into one-month and three-month groups, 30 rats per groups, based on the duration of the intervention. Each group was further randomized into three groups based on the daily intervention time: SHR control group, 2 h NAIs-SHR group, and 6 h NAIs-SHR group, 10 rats per groups. In addition, 20 Wistar Kyoto(WKY)(half male and half female), were randomized into one-month WKY group and three-month WKY group, 10 rats per groups, based on the intervention time. The 2 h NAIs-SHR group and 6 h NAIs-SHR group were exposed to an environment with NAIs concentrations of 4.5×10~4-5×10~4 cm~3 per day for 2 h and 6 h. The WKY group and SHR group were exposed to normal air on a daily basis. Blood pressure of rats in each group was measured every three days, while weight was measured once a week. After sacrificing the rats in the first month and the third month of rearing, wet weight of the organs was weighed. The enzyme linked immunosorbent assay(ELISA) was used to detect 8-hydroxylated deoxyguanosine(8-OHdG), interleukin-6(IL-6), interleukin-8(IL-8), tumor necrosis factor-α(TNF-α), nitric oxide(NO) and endothelin-1(ET-1) levels. Reactive oxygen species(ROS) detection kit was used to detect ROS level. Malondialdehyde(MDA) and superoxide dismutase(SOD), glutathione(GSH) and glutathione disulfide(GSSG) were measured by colorimetric analysis. HE staining was conducted to observe the histopathological morphological changes of the thoracic aorta in each group, and Western blot was conducted to detect the thoracic aortap38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated kinases(ERK), c-Jun n-terminal kinase(JNK), c-fos proteins, c-jun proteins and their phosphorylated proteins level. RESULTS: The weight of WKY male mice in the same week age group was higher than that of SHR control group, and there was no significant difference in the weight between the other groups. The coefficient of heart in SHR control group(4.66±0.48) was higher than that in WKY group(3.73±0.15)(P<0.05), while there were no significant differences in the coefficients of brain, kidney, liver and spleen among the groups. Blood pressure in WKY group at the same age was lower than that in SHR group, and blood pressure in SHR control group at 2-5 and 8-11 weeks was higher than that in 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). HE staining showed that the internal, middle and external membranes of thoracic aorta in 2 h NAIs-SHR group and 6 h NAIs-SHR group were improved to varying degrees compared with those in SHR control group, including disordered internal membrane structure, thickened middle membrane and broken external membrane. In terms of oxidative stress levels, compared with the SHR control group, the ROS(0.66%±0.17%, 0.49%±0.32%) and 8-OHdG((48.29±8.00) ng/mL, (33.13±14.67)ng/mL) levels were lower in the 6 h NAIs-SHR group(P<0.05), while the GSH/GSSG ratio was higher in the one-month 6 h NAIs-SHR group(10.08±4.93). Compared with the 2 h NAIs-SHR group, the ROS level(0.99%±0.19%) was lower in the 6 h NAIs-SHR group(P<0.05). In terms of inflammatory factor levels, compared with the SHR control group, the IL-8 levels((160.44±56.54) ng/L, (145.77±38.39) ng/L) were lower in the 6 h NAIs-SHR group(P<0.05), while the ET-1 level((249.55±16.98) ng/L) was higher in the one-month WKY group. There was no significant difference in NO levels among the groups. The relative expression of p-p38 protein in the thoracic aorta of rats in the one-month SHR control group was lower than that in the WKY group(P<0.05). The relative expression of p-p38 and p-c-fos proteins in the thoracic aorta of rats at three-months was higher in the SHR control group than in the 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). CONCLUSION: The intervention of NAIs at a concentration of 4.5×10~4-5×10~4/cm~3 may regulate the partial oxidation and inflammatory state of SHR rats through the ROS/MAPK/AP1 signaling pathway, thereby reducing their blood pressure level.


Subject(s)
Hypertension , Interleukin-8 , Female , Rats , Male , Mice , Animals , Rats, Inbred SHR , Blood Pressure , Rats, Inbred WKY , Interleukin-8/metabolism , Interleukin-8/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/pharmacology , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Reactive Oxygen Species , Oxidative Stress , Inflammation
15.
BMC Cardiovasc Disord ; 24(1): 211, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627621

ABSTRACT

BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.


Subject(s)
Hypertension , Insulins , Metabolic Syndrome , Animals , Humans , Male , Rats , Adiponectin , Aorta , Biomarkers/metabolism , C-Reactive Protein/metabolism , Chemokine CCL2 , Inflammation , Insulins/metabolism , Metabolic Syndrome/diagnosis , Metabolic Syndrome/genetics , Oxidative Stress , Rats, Inbred SHR
16.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632579

ABSTRACT

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Subject(s)
Hypertension , Microbiota , Humans , Rats , Animals , Rats, Inbred SHR , Neuroinflammatory Diseases , Hypertension/metabolism , Blood Pressure , Medulla Oblongata/metabolism , Acetates/pharmacology
17.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581395

ABSTRACT

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Rats , Animals , Rats, Inbred SHR , Angiotensin-Converting Enzyme 2/metabolism , Biological Availability , Kynurenine/metabolism , Kynurenine/pharmacology , Tryptophan/metabolism , Peptides/metabolism , Antihypertensive Agents/pharmacology , Blood Pressure , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673809

ABSTRACT

Cnidium monnieri (L.) Cusson, a member of the Apiaceae family, is rich in coumarins, such as imperatorin and osthole. Cnidium monnieri fruit (CM) has a broad range of therapeutic potential that can be used in anti-bacterial, anti-cancer, and sexual dysfunction treatments. However, its efficacy in lowering blood pressure through vasodilation remains unknown. This study aimed to assess the potential therapeutic effect of CM 50% ethanol extract (CME) on hypertension and the mechanism of its vasorelaxant effect. CME (1-30 µg/mL) showed a concentration-dependent vasorelaxation on constricted aortic rings in Sprague Dawley rats induced by phenylephrine via an endothelium-independent mechanism. The vasorelaxant effect of CME was inhibited by blockers of voltage-dependent and Ca2+-activated K+ channels. Additionally, CME inhibited the vascular contraction induced by angiotensin II and CaCl2. The main active compounds of CM, i.e., imperatorin (3-300 µM) and osthole (1-100 µM), showed a concentration-dependent vasorelaxation effect, with half-maximal effective concentration values of 9.14 ± 0.06 and 5.98 ± 0.06 µM, respectively. Orally administered CME significantly reduced the blood pressure of spontaneously hypertensive rats. Our research shows that CME is a promising treatment option for hypertension. However, further studies are required to fully elucidate its therapeutic potential.


Subject(s)
Antihypertensive Agents , Blood Pressure , Cnidium , Ethanol , Fruit , Furocoumarins , Hypertension , Plant Extracts , Rats, Inbred SHR , Rats, Sprague-Dawley , Vasodilator Agents , Animals , Cnidium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Blood Pressure/drug effects , Rats , Fruit/chemistry , Vasodilator Agents/pharmacology , Male , Antihypertensive Agents/pharmacology , Ethanol/chemistry , Furocoumarins/pharmacology , Hypertension/drug therapy , Hypertension/physiopathology , Vasodilation/drug effects , Coumarins/pharmacology , Coumarins/chemistry
19.
J Ethnopharmacol ; 330: 118193, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636578

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.


Subject(s)
Antihypertensive Agents , Hypertension , Medicine, Chinese Traditional , Metabolomics , Network Pharmacology , Rats, Inbred SHR , Animals , Hypertension/drug therapy , Hypertension/physiopathology , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Rats , Medicine, Chinese Traditional/methods , Blood Pressure/drug effects , Antelopes , Liver/drug effects , Liver/metabolism , Liver/pathology , Horns , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Disease Models, Animal
20.
Biomed Pharmacother ; 174: 116520, 2024 May.
Article in English | MEDLINE | ID: mdl-38581924

ABSTRACT

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Subject(s)
Benzhydryl Compounds , Diet, High-Fat , Glucosides , Liver , Rats, Inbred SHR , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Male , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cardiotonic Agents/pharmacology , Blood Pressure/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Fatty Liver/prevention & control , Fatty Liver/drug therapy , Blood Glucose/metabolism , Blood Glucose/drug effects , Protective Agents/pharmacology , Hypertension/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...