Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278.933
Filter
1.
Acta Vet Scand ; 66(1): 23, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822394

ABSTRACT

BACKGROUND: Alpha2-adrenoceptor agonists (α2-agonists) are widely used in animals as sedatives and for pre-anaesthetic medication. Medetomidine has often been given subcutaneously (SC) to rats, although its absorption rate is slow and the individual variation in serum drug concentrations is high via this route. In addition, α2-agonists have various effects on metabolic and endocrine functions such as hypoinsulinaemia, hyperglycaemia and diuresis. Vatinoxan is a peripherally acting α2-adrenoceptor antagonist that, as a hydrophilic molecule, does not cross the blood-brain barrier in significant quantities and thus alleviates peripheral cardiovascular effects and adverse metabolic effects of α2-agonists. Aim of this study was to evaluate the effects of vatinoxan on sedation, blood glucose concentration, voiding and heart and respiratory rates and arterial oxygen saturation in rats sedated with subcutaneous medetomidine, midazolam and fentanyl. RESULTS: Onset of sedation and loss of righting reflex occurred significantly faster with vatinoxan [5.35 ± 1.08 (mean ± SD) versus 12.97 ± 6.18 min and 6.53 ± 2.18 versus 14.47 ± 7.28 min, respectively]. No significant differences were detected in heart and respiratory rates and arterial oxygen saturation between treatments. Blood glucose concentration (18.3 ± 3.6 versus 11.8 ± 1.2 mmol/L) and spontaneous urinary voiding [35.9 (15.1-41.6), range (median) versus 0.9 (0-8.0) mL /kg/min] were significantly higher without vatinoxan. CONCLUSIONS: Acceleration of induction of sedation, alleviation of hyperglycaemia and prevention of profuse diuresis by vatinoxan may be beneficial when sedating rats for clinical and experimental purposes with subcutaneous medetomidine, midazolam and fentanyl.


Subject(s)
Fentanyl , Hypnotics and Sedatives , Medetomidine , Midazolam , Animals , Medetomidine/pharmacology , Medetomidine/administration & dosage , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Fentanyl/pharmacology , Fentanyl/administration & dosage , Rats , Male , Midazolam/pharmacology , Midazolam/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , Blood Glucose/drug effects , Heart Rate/drug effects , Rats, Sprague-Dawley , Rats, Wistar
2.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822942

ABSTRACT

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Subject(s)
Bone Regeneration , Graphite , Osteoprotegerin , RANK Ligand , Rats, Wistar , Graphite/pharmacology , Animals , Bone Regeneration/drug effects , Rats , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Humans , Biocompatible Materials/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Signal Transduction/drug effects
3.
Med Sci Monit ; 30: e942485, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814863

ABSTRACT

BACKGROUND The healing of bone defects is a serious challenge worldwide. One branch of dentistry deals with bone defects. Capsaicin has anti-inflammatory, anti-oxidative, and cholesterol-reducing effects. The aim of this study was to evaluate the effects of systemic capsaicin administered at different doses on bone healing. MATERIAL AND METHODS A total of 32 male wistar rats was used, their weight varying between 250 and 300 g. The rats were randomly divided into 4 groups of 8 rats each. The analyses served to evaluate the effect on healing of different doses of capsaicin and grafts. A significant increase was observed in the number of osteoblasts in the capsaicin-applied groups, compared with the control group. RESULTS The analyses served to evaluate the effect on healing of different doses of capsaicin and grafts. A significant increase was observed in the number of osteoblasts in the capsaicin-applied groups, compared with that of the control group. The inflammation scores showed a significant difference only in the control group and in the group administered with 50 mg/kg capsaicin (P=0.010). The osteoclast counts were significantly different between all groups. CONCLUSIONS As a result of the analyses, positive effects on bone healing were observed when capsaicin 0.25 mg/kg and 0.50 mg/kg was administered intraperitoneally. However, more studies are needed for more accurate information.


Subject(s)
Capsaicin , Osteoblasts , Rats, Wistar , Animals , Capsaicin/pharmacology , Male , Rats , Osteoblasts/drug effects , Osteoblasts/metabolism , Wound Healing/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Bone and Bones/drug effects , Bone Regeneration/drug effects
4.
Narra J ; 4(1): e621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798873

ABSTRACT

Second-degree burn, the most common among burn degrees, underscores the importance of timely and proper treatment in influencing prognosis. Nutmeg (Myristica fragrans), renowned for its potent antibacterial and antifungal properties, also serves as an effective antiseptic for open wounds. The aim of this study was to identify the phytochemical constituents of nutmeg essential oil and analyze the wound healing effect of nutmeg cream on second-degree burns in an animal model. An experimental study with a completed randomized design was conducted on Rattus norvegicus strain Wistar rats with second-degree burn. This study had four groups and each group consisting of four rats: B (burn-treated base cream), B+N (burn-treated 3% nutmeg cream), B+SSD (burn-treated silver sulfadiazine (BSS)), and B+N+SSD (burn-treated 3% nutmeg cream and SSD in a 1:1 ratio). The phytochemical analysis of nutmeg essential oil was conducted by gas chromatography and mass spectroscopy (GC-MS). The burn diameter and burn wound healing percentage were measured from day 0 to 18. One-way ANOVA followed by post hoc analysis using the least significant difference (LSD) was employed to analysis the effect. The phytochemical analysis of nutmeg essential oil found that myristicin, terpinene-4-ol, terpinene, safrole and terpinolene were the most abundant putative compounds in nutmeg essential oil. On day 0, the average burn wound diameters were 1.4 cm in all groups and increases were observed in all groups on day 3. The wound diameter decreased until day 18 with the smallest burn wound diameter was found in the B+N group (0.86±0.37 cm), followed by B+SSD (0.93±0.29 cm). The B+SSD group exhibited the highest percentage of burn wound healing (56.80±14.05%), which was significantly different from the base cream (p<0.05). The percentage of burn wound healing in rats given 3% nutmeg cream was 41.88±13.81%, suggesting that nutmeg cream could promote burn wound healing in rats induced by second-degree burns.


Subject(s)
Burns , Disease Models, Animal , Myristica , Rats, Wistar , Wound Healing , Animals , Myristica/chemistry , Wound Healing/drug effects , Burns/drug therapy , Burns/pathology , Rats , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Skin Cream , Male , Gas Chromatography-Mass Spectrometry , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Silver Sulfadiazine/therapeutic use
5.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38808737

ABSTRACT

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Subject(s)
Plant Extracts , Rats, Wistar , Plant Extracts/toxicity , Plant Extracts/chemistry , Animals , Humans , Rats , Cell Line, Tumor , Male , Comet Assay , Micronucleus Tests , Female , Cell Survival/drug effects , Phytochemicals/toxicity , Phytochemicals/analysis , Mice , Plant Bark/chemistry , Mutagens/toxicity , Mutagenicity Tests , Ethanol/chemistry
6.
Rev Peru Med Exp Salud Publica ; 41(1): 28-36, 2024 May 27.
Article in Spanish, English | MEDLINE | ID: mdl-38808841

ABSTRACT

OBJECTIVE.: Motivation for the study. Most research supports a negative association between metabolic syndrome and bone health, although there is an overall lack of consensus. Therefore, there is a need for research in this area to develop a better understanding. Main findings. Metabolic syndrome induced by a fructose-rich diet increases the adipogenic predisposition of bone marrow progenitor cells and femoral medullary adiposity in rats. Furthermore, this can be partially prevented by co-treatment with metformin. Implications. Experimental metabolic syndrome has negative effects on bone tissue and can be prevented by oral treatment with metformin as a normoglycemic drug. To determine the effect of metformin (MET) treatment on adipogenic predisposition of bone marrow progenitor cells (BMPC), bone marrow adiposity and bone biomechanical properties. MATERIALS AND METHODS.: 20 young adult male Wistar rats were sorted into four groups. Each of the groups received the following in drinking water: 100% water (C); 20% fructose (F); metformin 100 mg/kg wt/day (M); or fructose plus metformin (FM). After five weeks the animals were sacrificed. Both humeri were dissected to obtain BMPC, and both femurs were dissected to evaluate medullary adiposity (histomorphometry) and biomechanical properties (3-point bending). BMPC were cultured in vitro in adipogenic medium to evaluate RUNX2, PPAR-γ and RAGE expression by RT-PCR, lipase activity and triglyceride accumulation. RESULTS.: The fructose-rich diet (group F) caused an increase in both triglycerides in vitro, and medullary adiposity in vivo; being partially or totally prevented by co-treatment with metformin (group FM). No differences were found in femoral biomechanical tests in vivo, nor in lipase activity and RUNX2/PPAR-γ ratio in vitro. DRF increased RAGE expression in BMPC, being prevented by co-treatment with MET. CONCLUSIONS.: Metabolic syndrome induced by a fructose-rich diet increases femoral medullary adiposity and, in part, the adipogenic predisposition of BMPC. In turn, this can be totally or partially prevented by oral co-treatment with MET.


OBJETIVO.: Motivación para realizar el estudio. La mayoría de las investigaciones respaldan una asociación negativa entre el síndrome metabólico y la salud ósea, aunque existe una falta de consenso general. Por lo tanto, es necesario realizar investigaciones en esta área que permitan desarrollar un mejor conocimiento. Principales hallazgos. El síndrome metabólico inducido por una dieta rica en fructosa incrementa la predisposición adipogénica de células progenitoras de médula ósea y la adiposidad medular femoral en ratas. Además, esto puede prevenirse parcialmente mediante un co-tratamiento con metformina. Implicancias. El síndrome metabólico experimental posee efectos negativos sobre el tejido óseo, pudiendo ser prevenidos mediante un tratamiento oral de metformina como fármaco normoglucemiante. Determinar el efecto de un tratamiento con metformina (MET) sobre la predisposición adipogénica de células progenitoras de médula ósea (CPMO), adiposidad de la médula ósea y propiedades biomecánicas óseas. MATERIALES Y MÉTODOS.: 20 ratas Wistar machos adultos jóvenes fueron separados en cuatro grupos, recibiendo en agua de bebida: 100% agua (C); 20% de fructosa (F); metformina 100 mg/kg peso/día (M); o fructosa más metformina (FM). Tras cinco semanas se sacrificaron los animales, se diseccionaron ambos húmeros para obtener CPMO, y ambos fémures para evaluar adiposidad medular (histomorfometría) y propiedades biomecánicas (flexión a 3 puntos). Las CPMO se cultivaron in vitro en medio adipogénico para evaluar expresión de RUNX2, PPAR-γ y RAGE por RT-PCR, actividad de lipasa y acumulación de triglicéridos. RESULTADOS.: La dieta rica en fructosa (grupo F) produjo un aumento tanto de triglicéridos in vitro, como de la adiposidad medular in vivo; siendo parcial o totalmente prevenido por un co-tratamiento con metformina (grupo FM). No se observaron diferencias en las pruebas biomecánicas femorales in vivo, ni en actividad de lipasa y relación RUNX2/PPAR-γ in vitro. La DRF aumentó la expresión de RAGE en CPMO, siendo prevenido por co-tratamiento con MET. CONCLUSIONES.: El síndrome metabólico inducido por una dieta rica en fructosa aumenta la adiposidad medular femoral y, en parte, la predisposición adipogénica de las CPMO. A su vez, esto puede ser prevenido total o parcialmente por un co-tratamiento oral con MET.


Subject(s)
Adiposity , Femur , Metabolic Syndrome , Metformin , Rats, Wistar , Animals , Metformin/pharmacology , Metabolic Syndrome/etiology , Male , Rats , Adiposity/drug effects , Femur/drug effects , Bone Marrow/drug effects , Hypoglycemic Agents/pharmacology
7.
Mol Metab ; 84: 101955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704026

ABSTRACT

OBJECTIVE: The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS: We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS: Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic ß-cells. CONCLUSIONS: Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.


Subject(s)
Insulin Secretion , Insulin-Secreting Cells , Mitochondria , Animals , Rats , Humans , Mitochondria/metabolism , Insulin-Secreting Cells/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Male , Insulin/metabolism , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 2/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Mice , Rats, Wistar , Electron Transport
8.
BMC Oral Health ; 24(1): 624, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807094

ABSTRACT

OBJECTIVE: This study assessed the effect of cevimeline and different concentrations of gum arabic on the parotid gland of rats being given xerostomia-inducing methotrexate. METHODS: One hundred twenty-five rats were divided into five equal groups of twenty-five each. The rats in Group I received basic diets, while those in Groups II, III, IV, and V received 20 mg/kg MTX as a single intraperitoneal dose on day one. Group III received 10 mg/kg CVM dissolved in saline orally and daily, and the other two groups received a 10% W/V aqueous suspension of GA. Therefore, Group IV received 2 ml/kg suspension orally and daily, while Group V received 3 ml/kg suspension orally and daily. After 9 days, the parotid glands were dissected carefully and prepared for hematoxylin and eosin (H&E) staining as a routine histological stain and caspase-3 and Ki67 immunohistochemical staining. Quantitative data from α-Caspase-3 staining and Ki67 staining were statistically analysed using one-way ANOVA followed by Tukey's multiple comparisons post hoc test. RESULTS: Regarding caspase-3 and Ki67 immunohistochemical staining, one-way ANOVA revealed a significant difference among the five groups. For Caspase-3, the highest mean value was for group II (54.21 ± 6.90), and the lowest mean value was for group I (15.75 ± 3.67). The other three groups had mean values of 31.09 ± 5.90, 30.76 ± 5.82, and 20.65 ± 3.47 for groups III, IV, and V, respectively. For Ki67, the highest mean value was for group I (61.70 ± 6.58), and the lowest value was for group II (18.14a ± 5.16). The other three groups had mean values of 34.4 ± 9.27, 48.03 ± 8.40, and 50.63 ± 8.27 for groups III, IV, and V, respectively. CONCLUSION: GA, rather than the normally used drug CVM, had a desirable effect on the salivary glands of patients with xerostomia.


Subject(s)
Gum Arabic , Ki-67 Antigen , Methotrexate , Parotid Gland , Thiophenes , Xerostomia , Animals , Rats , Xerostomia/chemically induced , Parotid Gland/drug effects , Parotid Gland/pathology , Ki-67 Antigen/analysis , Ki-67 Antigen/metabolism , Gum Arabic/pharmacology , Thiophenes/pharmacology , Caspase 3/metabolism , Male , Rats, Wistar , Quinuclidines
9.
Front Endocrinol (Lausanne) ; 15: 1399256, 2024.
Article in English | MEDLINE | ID: mdl-38818504

ABSTRACT

Background: It is well known that metabolic disorders, including type 1 diabetes (T1D), are often associated with reduced male fertility, mainly increasing oxidative stress and impairing the hypothalamus-pituitary-testis (HPT) axis, with consequently altered spermatogenesis and reduced sperm parameters. Herein, using a rat model of T1D obtained by treatment with streptozotocin (STZ), we analyzed several parameters of testicular activity. Methods: A total of 10 adult male Wistar rats were divided into two groups of five: control and T1D, obtained with a single intraperitoneal injection of STZ. After 3 months, the rats were anesthetized and sacrificed; one testis was stored at -80°C for biochemical analysis, and the other was fixed for histological and immunofluorescence analysis. Results: The data confirmed that T1D induced oxidative stress and, consequently, alterations in both testicular somatic and germ cells. This aspect was highlighted by enhanced apoptosis, altered steroidogenesis and Leydig cell maturity, and impaired spermatogenesis. In addition, the blood-testis barrier integrity was compromised, as shown by the reduced levels of structural proteins (N-cadherin, ZO-1, occludin, connexin 43, and VANGL2) and the phosphorylation status of regulative kinases (Src and FAK). Mechanistically, the dysregulation of the SIRT1/NRF2/MAPKs signaling pathways was proven, particularly the reduced nuclear translocation of NRF2, affecting its ability to induce the transcription of genes encoding for antioxidant enzymes. Finally, the stimulation of testicular inflammation and pyroptosis was also confirmed, as highlighted by the increased levels of some markers, such as NF-κB and NLRP3. Conclusion: The combined data allowed us to confirm that T1D has detrimental effects on rat testicular activity. Moreover, a better comprehension of the molecular mechanisms underlying the association between metabolic disorders and male fertility could help to identify novel targets to prevent and treat fertility disorders related to T1D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rats, Wistar , Testis , Animals , Male , Rats , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Testis/metabolism , Testis/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Spermatogenesis , Signal Transduction , Germ Cells/metabolism , Spermatozoa/metabolism
10.
PLoS One ; 19(5): e0304608, 2024.
Article in English | MEDLINE | ID: mdl-38820365

ABSTRACT

We report two studies that tested the effects of caffeine, the world's most widely used psychoactive drug, on temporal perception. We trained Wistar rats using the Bisection Procedure (Experiment 1) or the Stubbs' Procedure (Experiment 2) to discriminate between short and long light stimuli. Once training finished, we administered caffeine orally (0, 9.6, and 96.0 mg/kg for Experiment 1 and 0, 9.6, 19.2, and 38.4 mg/kg for Experiment 2) 15 minutes prior to testing. Relative to the control condition, the 9.6 mg/kg condition (Experiments 1 and 2) and the 19.2 mg/kg condition (Experiment 2) resulted in an increase in proportion of choosing the long response. Meanwhile, overall accuracy was not affected by any condition in both experiments. Taken together, these results are consistent with the notion that caffeine, at some doses, speeds up temporal perception. However, it is not clear why the effect disappears at higher doses.


Subject(s)
Caffeine , Rats, Wistar , Time Perception , Caffeine/pharmacology , Animals , Rats , Time Perception/drug effects , Male , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Dose-Response Relationship, Drug
11.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
12.
Neurochem Res ; 49(7): 1863-1878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753259

ABSTRACT

The study aimed to assess 𝛾-Terpinene's (𝛾-TER) neuroprotective potential in acute cerebral ischemia, characterized by reduced cerebral blood flow in rats. Middle cerebral artery occlusion (MCAO), a standard method for inducing cerebral ischemia, was employed in male Wistar rats. 𝛾-TER at varying doses (5, 10, and 15 mg/kg) were intraperitoneally administered during reperfusion onset. Neurological outcomes, cerebral infarct size, edema, and enzymatic activities (SOD, GPx, and catalase) in the brain were evaluated using diverse techniques. The study examined gene expression and pathways associated with neuroinflammation and apoptosis using Cytoscape software, identifying the top 10 genes involved. Pro-inflammatory and pro-apoptotic factors were assessed through real-time PCR and ELISA, while apoptotic cell rates were measured using the TUNEL and Flow cytometry assay. Immunohistochemistry assessed apoptosis-related proteins like Bax and bcl-2 in the ischemic area. 𝛾-TER, particularly at doses of 10 and 15 mg/kg, significantly reduced neurological deficits and cerebral infarction size. The 15 mg/kg dose mitigated TNF-α, IL-1ß, Bax, and caspase-3 gene and protein levels in the cortex, hippocampus, and striatum compared to controls. Furthermore, Bcl-2 levels increased in these regions. 𝛾-TER show cased neuroprotective effects by suppressing inflammation, apoptosis, and oxidation. In conclusion, 𝛾-TER, possessing natural anti-inflammatory and anti-apoptotic properties, shields the brain against ischemic damage by reducing infarction, edema, oxidative stress, and inflammation. It modulates the expression of crucial genes and proteins associated with apoptosis in diverse brain regions. These findings position 𝛾-TER as a potential therapeutic agent for ischemic stroke.


Subject(s)
Apoptosis , Neuroprotective Agents , Rats, Wistar , Animals , Male , Apoptosis/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Oxidative Stress/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Cyclohexane Monoterpenes/therapeutic use , Cyclohexane Monoterpenes/pharmacology , Oxidation-Reduction/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
13.
Sci Total Environ ; 934: 173081, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754514

ABSTRACT

Fluoride is unnecessary in the human body. Long-term fluoride exposure may lead to immune system abnormalities. However, the mechanism remains unclear. This study aim to explore the mechanism of fluoride interference in the immune system and also identify the key indicators of fluoride-induced immune damage. Questionnaires were used to collect basic information. Multiple linear analyses and other statistical methods were used in order to process the data. Flow cytometry was used to detect relevant immunomarkers and analyze immune damage. Simultaneously, Wistar rats and cell models exposed to fluoride were established to detect the effects of fluoride on immune homeostasis. The results showed that sex, residence time, smoking, and Corona Virus Disease 2019 (COVID-19) infection may indirectly influence fluoride-induced immune damage. In residents of fluoride-exposed areas, there was a significant decrease in CD3+ T lymphocytes and CD4+ and CD8+ cells and a downward trend in the CD4+/CD8+ cell ratio. CD4+CD8+/CD4+, regulatory T cells (Tregs), and Tregs/effector T cells (Teffs) ratios showed opposite changes. Fluoride inhibits T cell activation by inhibiting the expression and phosphorylation of Protein Kinase C-θ (PKC-θ), hinders the internalization of T cell receptors, and affects NF-kB and c-Jun protein expression, leading to homeostatic Treg/Teff imbalance in vivo and in vitro experiments. This study represents the first evidence suggesting that PKC-θ may be the key to immune imbalance in the body under fluoride exposure. It is possible that Tregs/Teffs cell ratio provide a reference point for the diagnosis and treatment of fluoride-induced immune damage.


Subject(s)
Fluorides , Protein Kinase C-theta , Rats, Wistar , T-Lymphocytes, Regulatory , Fluorides/toxicity , Animals , Rats , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Male , Humans , Female , COVID-19
14.
Life Sci ; 349: 122721, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754813

ABSTRACT

AIMS: Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS: Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS: CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1ß in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE: The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.


Subject(s)
Ischemic Stroke , Rats, Wistar , Sepsis , Sex Characteristics , Animals , Male , Female , Sepsis/complications , Sepsis/metabolism , Rats , Ischemic Stroke/metabolism , Ischemic Stroke/complications , Ischemic Stroke/pathology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Oxidative Stress , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Recovery of Function , Sex Factors , Brain Ischemia/metabolism , Brain Ischemia/complications , Peroxidase/metabolism
15.
J Dev Orig Health Dis ; 15: e9, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721989

ABSTRACT

Sodium overload during childhood impairs baroreflex sensitivity and increases arterial blood pressure and heart rate in adulthood; these effects persist even after high-salt diet (HSD) withdrawal. However, the literature lacks details on the effects of HSD during postnatal phases on cardiac ischemia/reperfusion responses in adulthood. The current study aimed to elucidate the impact of HSD during infancy adolescence on isolated heart function and cardiac ischemia/reperfusion responses in adulthood. Male 21-day-old Wistar rats were treated for 60 days with hypertonic saline solution (NaCl; 0.3M; experimental group) or tap water (control group). Subsequently, both groups were maintained on a normal sodium diet for 30 days. Subsequently, the rats were euthanized, and their hearts were isolated and perfused according to the Langendorff technique. After 30 min of the basal period, the hearts were subjected to 20 min of anoxia, followed by 20 min of reperfusion. The basal contractile function was unaffected by HSD. However, HSD elevated the left ventricular end-diastolic pressure during reperfusion (23.1 ± 5.2 mmHg vs. 11.6 ± 1.4 mmHg; p < 0.05) and increased ectopic incidence period during reperfusion (208.8 ± 32.9s vs. 75.0 ± 7.8s; p < 0.05). In conclusion, sodium overload compromises cardiac function after reperfusion events, diminishes ventricular relaxation, and increases the severity of arrhythmias, suggesting a possible arrhythmogenic effect of HSD in the postnatal phases.


Subject(s)
Arrhythmias, Cardiac , Myocardial Reperfusion Injury , Rats, Wistar , Animals , Rats , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Male , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/physiopathology , Diastole/physiology , Sodium Chloride, Dietary/adverse effects , Heart Rate/physiology
16.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724836

ABSTRACT

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
18.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710921

ABSTRACT

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
19.
Biomed Khim ; 70(2): 83-88, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711407

ABSTRACT

The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.


Subject(s)
Cerebral Cortex , Ethanol , Fatty Acids, Omega-3 , Nitric Oxide , Rats, Wistar , Superoxide Dismutase , Animals , Male , Rats , Fatty Acids, Omega-3/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Nitric Oxide/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Antioxidants/pharmacology , Malondialdehyde/metabolism
20.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711406

ABSTRACT

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Subject(s)
Antioxidants , Fungicides, Industrial , Glutathione , Rats, Wistar , Reactive Oxygen Species , Thiram , Animals , Male , Rats , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Fungicides, Industrial/toxicity , Thiram/toxicity , Antioxidants/pharmacology , Mouth/metabolism , Mouth/drug effects , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Glutathione Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...