Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.671
Filter
1.
Mol Biol Rep ; 51(1): 716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824237

ABSTRACT

BACKGROUND: Post kala-azar dermal leishmaniasis (PKDL) is a consequential dermal manifestation of visceral leishmaniasis (VL), serving as a parasite reservoir. The traditional diagnostic approach, which requires an invasive skin biopsy is associated with inherent risks and necessitates skilled healthcare practitioners in sterile settings. There is a critical need for a rapid, less invasive method for Leishmania detection. The main objective of this study was to evaluate and compare the diagnostic efficacy of PCR and qPCR in detecting PKDL, utilizing both skin and blood samples and to assess the utility of blood samples for molecular diagnosis. METHODS AND RESULTS: 73 individuals exhibiting clinical symptoms of PKDL and who had tested positive for rK39 rapid diagnostic test (RDT) were enrolled in this study. For the diagnosis of PKDL, both PCR and real-time quantitative PCR (qPCR), employing SYBR Green and TaqMan assays, were performed on blood and skin matched samples. qPCR results using both TaqMan and SYBR Green assay, indicated higher parasite loads in the skin compared to blood, as evident by the Ct values. Importantly, when blood samples were used for PKDL diagnosis by qPCR, an encouraging sensitivity of 69.35% (TaqMan assay) and 79.36% (SYBR Green) were obtained, compared to 8.2% with conventional PCR. CONCLUSION: The findings of the study suggest the potential utility of blood for molecular diagnosis by qPCR, offering a less invasive alternative to skin biopsies in field setting for the early detection of parasitaemia in PKDL patients and effective management and control of the disease.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Real-Time Polymerase Chain Reaction , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/genetics , Real-Time Polymerase Chain Reaction/methods , Male , Female , Adult , Adolescent , Skin/parasitology , Skin/pathology , Sensitivity and Specificity , Middle Aged , Parasite Load/methods , Molecular Diagnostic Techniques/methods , Young Adult , Child , DNA, Protozoan/genetics , DNA, Protozoan/blood
2.
Methods Cell Biol ; 186: 233-247, 2024.
Article in English | MEDLINE | ID: mdl-38705601

ABSTRACT

Multiple technologies have been used to monitor response to therapy in acute myeloid leukemia (AML) to improve detection of leukemia over the standard of practice, morphologic counting of blasts. The two techniques most frequently used in a routine clinical setting, flow cytometry and RQ-PCR, differ in their targets, sensitivity, and ability to detect residual disease. Both flow cytometry and RQ-PCR detect the expression of abnormal gene products, at the protein level or RNA level, respectively. Flow cytometry can be applied to a broad range of AML cases while RQ-PCR is limited to specific genetic abnormalities identified in subsets of AML. This article compares the results when both techniques were used in a reference laboratory to monitor AML over the course of treatment, comparing quantitative and qualitative results.


Subject(s)
Flow Cytometry , Leukemia, Myeloid, Acute , Flow Cytometry/methods , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Real-Time Polymerase Chain Reaction/methods , Neoplasm, Residual/genetics
3.
Gene ; 920: 148522, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38703865

ABSTRACT

Trichomonas gallinae, a globally distributed protozoan parasite, significantly affects the pigeon-breeding industry. T. gallinae infection mainly causes yellow ulcerative nodules on the upper respiratory tract and crop mucosa of pigeons, impeding normal breathing and feeding and ultimately causing death. Real-time quantitative PCR (qPCR) is a crucial technique for gene-expression analysis in molecular biology. Reference-gene selection for normalization is critical for ensuring this technique's accuracy. However, no systematic screening or validation of T. gallinae reference genes has been reported. This study quantified the transcript levels of ten candidate reference genes in T. gallinae isolates with different genotypes and culture conditions using qPCR. Using the geNorm, NormFinder, and BestKeeper algorithms, we assessed these reference genes' stabilities and ranked them using RankAggreg analysis. The most stable reference gene was tubulin beta chain (TUBB), while the widely used reference genes TUBG and GAPDH demonstrated poor stability. Additionally, we evaluated these candidate reference genes' stabilities using the T. gallinae TgaAtg8 gene. On using TUBB as a reference gene, TgaAtg8's expression profiles in T. gallinae isolates with different genotypes remained relatively consistent under various culture conditions. Conversely, using ACTB as a reference gene distorted the data. These findings provide valuable reference-gene-selection guidance for functional gene research and gene-expression analysis in T. gallinae.


Subject(s)
Columbidae , Reference Standards , Stress, Physiological , Trichomonas , Trichomonas/genetics , Animals , Columbidae/genetics , Columbidae/parasitology , Stress, Physiological/genetics , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction/methods , Tubulin/genetics , Trichomonas Infections/parasitology , Trichomonas Infections/veterinary , Genes, Protozoan , Genotype
4.
J Virol Methods ; 327: 114948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718900

ABSTRACT

Rabies, a fatal zoonotic viral disease affecting mammals, including humans, remains a significant global health concern, particularly in low-income countries. The disease, primarily transmitted through infected animal saliva, prompts urgent diagnosis for timely post-exposure prophylaxis (PEP). The gold standard diagnostic test, direct fluorescent antibody test (dFAT), while sensitive, suffers from limitations such as subjective interpretation and high costs. As a confirmatory technique, the LN34 Pan-Lyssavirus RT-qPCR assay has emerged as a promising tool for universal Lyssavirus detection. This study evaluated its performance using 130 rabies virus isolates representing eleven Brazilian variants and 303 clinical samples from surveillance operations. The LN34 assay demonstrated 100% sensitivity and 98% specificity compared to dFAT. Additionally, it detected all samples, including those missed by dFAT, indicating superior sensitivity. The assay's specificity was confirmed through Sanger nucleotide sequencing, with only a minimal false-positive rate. Comparative analysis revealed higher accuracy and concordance with dFAT than traditional rabies tissue culture infection tests (RTCIT). False-negative RTCIT results were attributed to low viral load or suboptimal sampling. These findings underscore the LN34 assay's utility as a confirmatory technique, enhancing rabies surveillance and control in Brazil. Its widespread adoption could significantly improve diagnostic sensitivity, crucial for effective PEP and public health interventions.


Subject(s)
Rabies virus , Rabies , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Rabies/diagnosis , Rabies/veterinary , Rabies/virology , Brazil , Rabies virus/genetics , Rabies virus/isolation & purification , Rabies virus/classification , Humans , Animals , Real-Time Polymerase Chain Reaction/methods , Lyssavirus/genetics , Lyssavirus/isolation & purification , Lyssavirus/classification , RNA, Viral/genetics , Viral Load
5.
J Virol Methods ; 327: 114950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735398

ABSTRACT

The major citrus species include several economically important fruits, such as orange, mandarin, lemon, limes, grapefruit and pomelos. Since the 1980 s, total production and consumption of citrus has grown strongly with the current annual worldwide production at over 105 million tonnes. New Zealand's citrus exports, for instance, had an estimated worth of NZ$ 11.6 million (approx. US$ 7 million) in 2020. Citrus plants are prone to viral diseases, which can lead to substantial economic losses. In New Zealand, the citrus Import Health Standard (IHS) has identified 22 viruses and viroids that are subject to regulation and requires citrus nursery stock to be free of these pathogens. As such, there is a need for reliable, sensitive, and rapid detection methods to screen for these viruses and viroids during post entry quarantine. In this study, we developed TaqMan RT-qPCR assays for the detection of nine of these regulated viruses and viroids, namely citrus leaf rugose virus (CiLRV), citrus leprosis virus C (CiLV-C), citrus leprosis virus C2 (CiLV-C2), citrus leprosis virus N (CiLV-N), citrus psorosis virus (CPsV), citrus yellow mosaic virus (CYMV), citrus bent leaf viroid (CBLVd), citrus viroid V (CVd-V), and citrus viroid VI (CVd-VI). These assays have been validated and found to be highly sensitive, specific, and reliable. The implementation of these assays will facilitate the safe importation of citrus nursery stock, thus safeguarding the country's horticultural and economic interests.


Subject(s)
Citrus , Plant Diseases , Plant Viruses , Real-Time Polymerase Chain Reaction , Viroids , Citrus/virology , New Zealand , Plant Diseases/virology , Viroids/genetics , Viroids/isolation & purification , Plant Viruses/genetics , Plant Viruses/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
6.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793646

ABSTRACT

(1) Goose astrovirus (GAstV) is a novel emerging pathogen that causes significant economic losses in waterfowl farming. A convenient, sensitive, and specific detection method for GAstV in field samples is important in order to effectively control GAstV. Droplet digital polymerase chain reaction (ddPCR) is a novel, sensitive, good-precision, and absolute quantitation PCR technology which does not require calibration curves. (2) In this study, we developed a ddPCR system for the sensitive and accurate quantification of GAstV using the conserved region of the ORF2 gene. (3) The detection limit of ddPCR was 10 copies/µL, ~28 times greater sensitivity than quantitative real-time PCR (qPCR). The specificity of the test was determined by the failure of amplification of other avian viruses. Both ddPCR and qPCR tests showed good repeatability and linearity, and the established ddPCR method had high sensitivity and good specificity to GAstV. Clinical sample test results showed that the positive rate of ddPCR (88.89%) was higher than that of qPCR (58.33%). (4) As a result, our results suggest that the newly developed ddPCR method might offer improved analytical sensitivity and specificity in its GAstV measurements. The ddPCR could be widely applied in clinical tests for GAstV infections.


Subject(s)
Astroviridae Infections , Avastrovirus , Geese , Sensitivity and Specificity , Animals , Astroviridae Infections/veterinary , Astroviridae Infections/diagnosis , Astroviridae Infections/virology , Geese/virology , Avastrovirus/genetics , Avastrovirus/isolation & purification , Poultry Diseases/virology , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction/methods , Polymerase Chain Reaction/methods , Reproducibility of Results , Astroviridae/genetics , Astroviridae/isolation & purification , Limit of Detection
7.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793687

ABSTRACT

Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.


Subject(s)
Mites , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Animals , Mites/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , Fruit/virology , Crops, Agricultural/virology , High-Throughput Nucleotide Sequencing/methods , Real-Time Polymerase Chain Reaction/methods
8.
BMC Infect Dis ; 24(1): 492, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745114

ABSTRACT

BACKGROUND: Malaria in pregnancy remains a major public health problem in the globe, especially in sub-Saharan Africa. In malaria endemic areas, most pregnant women remain asymptomatic, but malaria could still cause complications on the mother and her offspring; as well as serve as reservoirs to transmit infection. Despite these effects, no attention is given to the diagnosis of asymptomatic Plasmodium infections (APIs) using highly sensitive and specific laboratory diagnostic tools in Ethiopia. Therefore, the goal of this study was to compare the performance of Rapid Diagnostic Test (RDT), microscopy and real-time polymerase chain reaction (RT-PCR) to detect APIs among pregnant women. METHODS: A health facility based cross -sectional study was conducted among pregnant women attending antenatal care at Fendeka town health facilities Jawi district, northwest Ethiopia from February to March, 2019. A total of 166 participants were enrolled by using convenient sampling technique. Socio-demographic features were collected using a semi structured questionnaire. Dried blood spot (DBS) samples were collected for molecular analysis. Asymptomatic Plasmodium infection on pregnant women was diagnosed using RDT, microscopy and RT-PCR. Descriptive statistics were used to determine the prevalence of APIs. Method comparison was performed, and Cohen's kappa coefficient (k) was used to determine the degree of agreement among the diagnostic methods. Parasite densities were also calculated. RESULTS: The prevalence of API was 9.6%, 11.4% and 18.7% using RDT, microscopy and RT-PCR, respectively. The overall proportion of API was 19.3%. Sensitivity of the RDT was 83.3% as compared with microscopy. Rapid Diagnostic Test and microscopy also showed sensitivity of 50% and 60%, respectively, as compared with RT-PCR. The mean parasite density was 3213 parasites/µl for P falciparum and 1140 parasites/µl of blood for P. vivax. CONCLUSION: Prevalence of API in the study area was high. Both RDT and microscopy had lower sensitivity when compared with RT-PCR. Therefore, routine laboratory diagnosis of API among pregnant women should be given attention and done with better sensitive and specific laboratory diagnostic tools.


Subject(s)
Asymptomatic Infections , Diagnostic Tests, Routine , Microscopy , Humans , Female , Pregnancy , Ethiopia/epidemiology , Adult , Cross-Sectional Studies , Young Adult , Asymptomatic Infections/epidemiology , Microscopy/methods , Diagnostic Tests, Routine/methods , Sensitivity and Specificity , Adolescent , Pregnancy Complications, Parasitic/diagnosis , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/parasitology , Malaria/diagnosis , Malaria/epidemiology , Malaria/parasitology , Real-Time Polymerase Chain Reaction/methods , Prevalence , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology
9.
Microb Ecol ; 87(1): 71, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748252

ABSTRACT

The high prevalence of antibiotic resistant bacteria (ARB) in several environments is a great concern threatening human health. Particularly, wastewater treatment plants (WWTP) become important contributors to the dissemination of ARB to receiving water bodies, due to the inefficient management or treatment of highly antibiotic-concentrated wastewaters. Hence, it is vital to develop molecular tools that allow proper monitoring of the genes encoding resistances to these important therapeutic compounds (antibiotic resistant genes, ARGs). For an accurate quantification of ARGs, there is a need for sensitive and robust qPCR assays supported by a good design of primers and validated protocols. In this study, eleven relevant ARGs were selected as targets, including aadA and aadB (conferring resistance to aminoglycosides); ampC, blaTEM, blaSHV, and mecA (resistance to beta-lactams); dfrA1 (resistance to trimethoprim); ermB (resistance to macrolides); fosA (resistance to fosfomycin); qnrS (resistance to quinolones); and tetA(A) (resistance to tetracyclines). The in silico design of the new primer sets was performed based on the alignment of all the sequences of the target ARGs (orthology grade > 70%) deposited in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, allowing higher coverages of the ARGs' biodiversity than those of several primers described to date. The adequate design and performance of the new molecular tools were validated in six samples, retrieved from both natural and engineered environments related to wastewater treatment. The hallmarks of the optimized qPCR assays were high amplification efficiency (> 90%), good linearity of the standard curve (R2 > 0.980), repeatability and reproducibility across experiments, and a wide linear dynamic range. The new primer sets and methodology described here are valuable tools to upgrade the monitorization of the abundance and emergence of the targeted ARGs by qPCR in WWTPs and related environments.


Subject(s)
Anti-Bacterial Agents , DNA Primers , Genes, Bacterial , Real-Time Polymerase Chain Reaction , Wastewater , DNA Primers/genetics , Real-Time Polymerase Chain Reaction/methods , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification
10.
Sci Rep ; 14(1): 11522, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38769102

ABSTRACT

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/µL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.


Subject(s)
DNA , Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , DNA/analysis , DNA/genetics , Centrifugation/methods , Limit of Detection
11.
Hum Genomics ; 18(1): 48, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769549

ABSTRACT

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Subject(s)
Influenza A virus , Influenza B virus , Multiplex Polymerase Chain Reaction , Wastewater , Wastewater/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Humans , Influenza B virus/genetics , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Reproducibility of Results , Influenza, Human/diagnosis , Influenza, Human/virology , Influenza, Human/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
12.
J Agric Food Chem ; 72(20): 11640-11651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725129

ABSTRACT

Milk and dairy products represent important sources of nutrition in our daily lives. The identification of species within dairy products holds importance for monitoring food adulteration and ensuring traceability. This study presented a method that integrated double-tube and duplex real-time polymerase chain reaction (PCR) with multiplex TaqMan probes to enable the high-throughput detection of animal-derived ingredients in milk and dairy products. The detection system utilized one pair of universal primers, two pairs of specific primers, and eight animal-derived specific probes for cow, buffalo, goat, sheep, camel, yak, horse, and donkey. These components were optimized within a double-tube and four-probe PCR multiplex system. The developed double-tube detection system could simultaneously identify the above eight targets with a detection limit of 10-0.1 pg/µL. Validation using simulated adulterated milk samples demonstrated a detection limit of 0.1%. The primary advantage of this method lies in the simplification of the multiplex quantitative real-time PCR (qPCR) system through the use of universal primers. This method provides an efficient approach for detecting ingredients in dairy products, providing powerful technical support for market supervision.


Subject(s)
Dairy Products , Food Contamination , Goats , Milk , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Animals , Milk/chemistry , Real-Time Polymerase Chain Reaction/methods , Cattle/genetics , Food Contamination/analysis , Dairy Products/analysis , Multiplex Polymerase Chain Reaction/methods , Sheep/genetics , Goats/genetics , Horses/genetics , Buffaloes/genetics , Camelus/genetics , Equidae/genetics , DNA Primers/genetics
13.
Biosensors (Basel) ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785719

ABSTRACT

Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria for detecting RNA viruses, which requires reverse transcriptase to reverse transcribe viral RNA into cDNA, and fluorescence quantitative PCR detection was subsequently performed. The frequently used reverse transcriptase is thermolabile; the detection process is composed of two steps: the reverse transcription reaction at a relatively low temperature, and the qPCR performed at a relatively high temperature, moreover, the RNA to be detected needs to pretreated if they had advanced structure. Here, we develop a fast and sensitive one-tube SARS-CoV-2 detection platform based on Ultra-fast RTX-PCR and Pyrococcus furiosus Argonaute-mediated Nucleic acid Detection (PAND) technology (URPAND). URPAND was achieved ultra-fast RTX-PCR process based on a thermostable RTX (exo-) with both reverse transcriptase and DNA polymerase activity. The URPAND can be completed RT-PCR and PAND to detect nucleic acid in one tube within 30 min. This method can specifically detect SARS-CoV-2 with a low detection limit of 100 copies/mL. The diagnostic results of clinical samples with one-tube URPAND displayed 100% consistence with RT-qPCR test. Moreover, URPAND was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The URPAND platform is rapid, accurate, tube closed, one-tube, easy-to-operate and free of large instruments, which provides a new strategy to the detection of SARS-CoV-2 and other RNA viruses.


Subject(s)
Argonaute Proteins , COVID-19 , Pyrococcus furiosus , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19/virology , Humans , Real-Time Polymerase Chain Reaction/methods , Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/methods
14.
Sci Rep ; 14(1): 10857, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740848

ABSTRACT

The qRT-PCR technique has been regarded as an important tool for assessing gene expression diversity. Selection of appropriate reference genes is essential for validating deviation and obtaining reliable and accurate results. Lotus (Nelumbo nucifera Gaertn) is a common aquatic plant with important aesthetic, commercial, and cultural values. Twelve candidate genes, which are typically used as reference genes for qRT-PCR in other plants, were selected for this study. These candidate reference genes were cloned with, specific primers designed based on published sequences. In particular, the expression level of each gene was examined in different tissues and growth stages of Lotus. Notably, the expression stability of these candidate genes was assessed using the software programs geNorm and NormFinder. As a result, the most efficient reference genes for rootstock expansion were TBP and UBQ. In addition, TBP and EF-1α were the most efficient reference genes in various floral tissues, while ACT and GAPDH were the most stable genes at all developmental stages of the seed. CYP and GAPDH were the best reference genes at different stages of leaf development, but TUA was the least stable. Meanwhile, the gene expression profile of NnEXPA was analyzed to confirm the validity of the findings. It was concluded that, TBP and GAPDH were identified as the best reference genes. The results of this study may help researchers to select appropriate reference genes and thus obtain credible results for further quantitative RT-qPCR gene expression analyses in Lotus.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Nelumbo , Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction/methods , Nelumbo/genetics , Reference Standards , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Lotus/genetics , Lotus/growth & development
15.
Sci Rep ; 14(1): 10923, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740976

ABSTRACT

Though pooling samples for SARS-CoV-2 detection has effectively met the need for rapid diagnostic and screening tests, many factors can influence the sensitivity of a pooled test. In this study, we conducted a simulation experiment to evaluate modes of pooling specimens and aimed at formulating an optimal pooling strategy. We focussed on the type of swab, their solvent adsorption ability, pool size, pooling volume, and different factors affecting the quality of preserving RNA by different virus solutions. Both quantitative PCR and digital PCR were used to evaluate the sampling performance. In addition, we determined the detection limit by sampling which is simulated from the virus of different titers and evaluated the effect of sample-storage conditions by determining the viral load after storage. We found that flocked swabs were better than fibre swabs. The RNA-preserving ability of the non-inactivating virus solution was slightly better than that of the inactivating virus solution. The optimal pooling strategy was a pool size of 10 samples in a total volume of 9 mL. Storing the collected samples at 4 °C or 25 °C for up to 48 h had little effect on the detection sensitivity. Further, we observed that our optimal pooling strategy performed equally well as the single-tube test did. In clinical applications, we recommend adopting this pooling strategy for low-risk populations to improve screening efficiency and shape future strategies for detecting and managing other respiratory pathogens, thus contributing to preparedness for future public health challenges.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Specimen Handling , Humans , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Specimen Handling/methods , RNA, Viral/genetics , COVID-19 Nucleic Acid Testing/methods , Viral Load/methods , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , COVID-19 Testing/methods
16.
Fungal Biol ; 128(3): 1771-1779, 2024 May.
Article in English | MEDLINE | ID: mdl-38796261

ABSTRACT

Phaseolus vulgaris L., commonly known as the common bean, is a highly nutritious crop often called the "poor man's meat". However, it is susceptible to various diseases throughout the cropping season, with anthracnose caused by Colletotrichum lindemuthianum being a significant threat that leads to substantial losses. There is still a lack of understanding about the molecular basis of C. lindemuthianum pathogenicity. The first step in understanding this is to identify pathogenicity genes that express more during infection of common beans. A reverse transcription quantitative real-time PCR (qPCR) method can be used for virulence gene expression. However, this approach requires selecting appropriate reference genes to normalize relative gene expression data. Currently, there is no reference gene available for C. lindemuthianum. In this study, we selected eight candidate reference genes from the available genome of C. lindemuthianum to bridge the gap. These genes were ACT (Actin), ß-tub (ß-tubulin), EF (Elongation Factor), Cyt C (Cytochrome C), His H3 (Histone H3), CHS1 (Chitin synthetase), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and abfA (Alpha-l-Arabinofuranosidase A). The primers for these candidate reference genes were able to amplify cDNA only from the pathogen, demonstrating their specificity. The qPCR efficiency of the primers ranged from 80% to 103%. We analyzed the stability of gene expression in C. lindemuthianum by exposing the mycelium to nine different stress conditions. We employed algorithms, such as GeNorm, NormFinder, BestKeeper, and RefFinder tools, to identify the most stable gene. The analysis using these tools revealed that EF, GAPDH, and ß-tub most stable genes, while ACT and CHS1 showed relatively low expression stability. A large number of potential effector genes have been identified through bioinformatics analysis in C. lindemuthianum. The stable genes for qPCR (EF and GAPDH) discovered in this study will aid the scientific community in determining the relative expression of C. lindemuthianum effector genes.


Subject(s)
Colletotrichum , Phaseolus , Plant Diseases , Real-Time Polymerase Chain Reaction , Reference Standards , Colletotrichum/genetics , Phaseolus/microbiology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Plant Diseases/microbiology , Gene Expression Profiling , Genes, Fungal
17.
Int J Exp Pathol ; 105(3): 90-99, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717047

ABSTRACT

Management of lung cancer today obligates a mutational analysis of the epidermal growth factor receptor (EGFR) gene particularly when Tyrosine Kinase Inhibitor (TKI) therapy is being considered as part of prognostic stratification. This study evaluates the performance of automated microfluidics-based EGFR mutation detection and its significance in clinical diagnostic settings. Formalin-fixed, paraffin-embedded (FFPE) samples from NSCLC patients (n = 174) were included in a two-phase study. Phase I: Validation of the platform by comparing the results with conventional real-time PCR and next-generation sequencing (NGS) platform. Phase II: EGFR mutation detection on microfluidics-based platform as part of routine diagnostics workup. The microfluidics-based platform demonstrates 96.5% and 89.2% concordance with conventional real-time PCR and NGS, respectively. The system efficiently detects mutations across the EGFR gene with 88.23% sensitivity and 100% specificity. Out of 144 samples analysed in phase II, the platform generated valid results in 94% with mutation detected in 41% of samples. This microfluidics-based platform can detect as low as 5% mutant allele fractions from the FFPE samples. Therefore the microfluidics-based platform is a rapid, complete walkaway, with minimum tissue requirement (two sections of 5 µ thickness) and technical skill requirement. The method can detect clinically actionable EGFR mutations efficiently and can be considered a reliable diagnostic platform in resource-limited settings. From receiving samples to reporting the results this platform provides accurate data without much manual intervention. The study helped to devise an algorithm that emphasizes effective screening of the NSCLC cases for EGFR mutations with varying tumour content. Thus it helps in triaging the cases judiciously before proceeding with multigene testing.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Mutation , Humans , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Microfluidics/methods , Real-Time Polymerase Chain Reaction/methods , Microfluidic Analytical Techniques/methods , Paraffin Embedding
18.
BMC Bioinformatics ; 25(1): 195, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760692

ABSTRACT

BACKGROUND: Pathogenic infections pose a significant threat to global health, affecting millions of people every year and presenting substantial challenges to healthcare systems worldwide. Efficient and timely testing plays a critical role in disease control and transmission prevention. Group testing is a well-established method for reducing the number of tests needed to screen large populations when the disease prevalence is low. However, it does not fully utilize the quantitative information provided by qPCR methods, nor is it able to accommodate a wide range of pathogen loads. RESULTS: To address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to efficiently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (Ct) values into multiple bins, leveraging the information from the first stage of screening to improve the detection sensitivity. Dynamic Ct threshold adjustments mitigate dilution effects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 24% on the only complete real-world qPCR group testing dataset from Israel, while maintaining a negligible false negative rate. CONCLUSION: In conclusion, our adaptive SQGT approach, utilizing qPCR data and dynamic threshold adjustments, offers a promising solution for efficient population screening. With a reduction in the number of tests and minimal false negatives, SQGT holds potential to enhance disease control and testing strategies on a global scale.


Subject(s)
Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , Humans
19.
Sci Rep ; 14(1): 12438, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816439

ABSTRACT

Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is the most economically important viral disease of cassava. As cassava is a vegetatively propagated crop, the development of rapid and sensitive diagnostics would aid in the identification of virus-free planting material and development of effective management strategies. In this study, a rapid, specific and sensitive real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for real-time detection of CBSV and UCBSV. The RT-RPA was able to detect as little as 2 pg/µl of purified RNA obtained from infected cassava leaves, a sensitivity equivalent to that obtained by quantitative real-time reverse transcription PCR (qRT-PCR), within 20 min at 37 °C. Further, the RT-RPA detected each target virus directly from crude leaf and stem extracts, avoiding the tedious and costly isolation of high-quality RNA. The developed RT-RPA assay provides a valuable diagnostic tool that can be adopted by cassava seed certification and virus resistance breeding programs to ensure distribution of virus-free cassava planting materials to farmers. This is the first report on the development and validation of crude sap-based RT-RPA assay for the detection of cassava brown streak viruses (UCBSV and CBSV) infection in cassava plants.


Subject(s)
Manihot , Plant Diseases , Potyviridae , Recombinases , Manihot/virology , Plant Diseases/virology , Potyviridae/genetics , Potyviridae/isolation & purification , Recombinases/metabolism , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Plant Leaves/virology , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction/methods
20.
Sci Rep ; 14(1): 12482, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816525

ABSTRACT

Wastewater surveillance is an effective tool for monitoring community spread of COVID-19 and other diseases. Quantitative PCR (qPCR) analysis for wastewater surveillance is more susceptible to mutations in target genome regions than binary PCR analysis for clinical surveillance. The SARS-CoV-2 concentrations in wastewater estimated by N1 and N2 qPCR assays started to diverge around July 2022 in data from different sampling sites, analytical methods, and analytical laboratories in Japan. On the basis of clinical genomic surveillance data and experimental data, we demonstrate that the divergence is due to two mutations in the N1 probe region, which can cause underestimation of viral concentrations. We further show that this inaccuracy can be alleviated if the qPCR data are analyzed with the second derivative method or the Cy0 method instead of the crossing point method.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , Wastewater , Wastewater/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , COVID-19/epidemiology , Japan/epidemiology , Real-Time Polymerase Chain Reaction/methods , RNA, Viral/genetics , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...