Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.252
Filter
1.
Nat Commun ; 15(1): 4485, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802355

ABSTRACT

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors , Receptor, Anaphylatoxin C5a , Tumor-Associated Macrophages , Animals , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects
2.
J Med Chem ; 67(5): 4100-4119, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482828

ABSTRACT

C5a is an anaphylatoxin protein produced by the cleavage of the complement system's component C5 protein. It signals through the G-protein-coupled receptor C5a receptor 1 (C5aR1) to induce the chemotaxis of primarily neutrophils and monocytes and the release of inflammatory molecules. A large body of evidence linking C5aR1 signaling to acute and chronic inflammatory disorders has triggered interest in developing potent C5aR antagonists. Herein we report the discovery of new C5aR1 antagonistic chemical classes. Many representatives showed low nanomolar IC50 values in a C5aR1 ß-arrestin-2 recruitment assay, inhibiting the migration of human neutrophils toward C5a and the internalization of the receptor in human whole blood. Two leading compounds were characterized further in vivo. Target engagement of the receptor by these two C5aR1 antagonists was demonstrated in vivo. In particular, the inhibition of migration in vitro with the two compounds further translated in a dose-dependent efficacy in a rat model of C5a-induced neutrophilia.


Subject(s)
Complement C5a , Receptor, Anaphylatoxin C5a , Humans , Rats , Animals , Complement C5a/metabolism , Chemotaxis , Monocytes/metabolism , Neutrophils/metabolism
3.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38449312

ABSTRACT

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Subject(s)
Complement C5a , Dynamins , Lupus Nephritis , Mitochondrial Dynamics , Podocytes , Receptor, Anaphylatoxin C5a , Podocytes/metabolism , Podocytes/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/etiology , Animals , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Mice , Dynamins/metabolism , Dynamins/genetics , Complement C5a/metabolism , Humans , Phosphorylation , Disease Models, Animal , Mitochondria/metabolism , Signal Transduction , Female
4.
Eur J Pharmacol ; 969: 176425, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387717

ABSTRACT

Acute kidney injury (AKI) is a critical condition often associated with systemic inflammation and dysregulated gut microbiota. This study aimed to investigate the effects of the C5a receptor antagonist W54011 on lipopolysaccharide (LPS)-induced AKI, focusing on the colon's C5a/C5a receptor pathway, intestinal barrier integrity, and gut microbiota. Our findings demonstrate that W54011 effectively ameliorated kidney injury in the LPS-induced AKI model by selectively inhibiting the colon's C5a/C5a receptor signalling pathway. Additionally, C5a receptor blockade resulted in the inhibition of colonic inflammation and the reconstruction of the intestinal mucosal barrier. Furthermore, W54011 administration significantly impacted the composition and stability of the gut microbiota, restoring the abundance of dominant bacteria to levels observed in the normal state of the intestinal flora and reducing the abundance of potentially harmful bacterial groups. In conclusion, W54011 alleviates LPS-induced AKI by modulating the interplay between the colon, gut microbiota, and kidneys. It preserves the integrity of the intestinal barrier and reinstates gut microbiota, thereby mitigating AKI symptoms. These findings suggest that targeting the colon and gut microbiota could be a promising therapeutic strategy for AKI treatment.


Subject(s)
Acute Kidney Injury , Aniline Compounds , Gastrointestinal Microbiome , Tetrahydronaphthalenes , Humans , Lipopolysaccharides , Receptor, Anaphylatoxin C5a , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Kidney , Inflammation , Colon
5.
Sci Rep ; 14(1): 3105, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326494

ABSTRACT

Recent studies have indicated the involvement of neutrophil-mediated inflammatory responses in the process leading to intracranial aneurysm (IA) rupture. Receptors mediating neutrophil recruitment could thus be therapeutic targets of unruptured IAs. In this study, complement C5a receptor 1 (C5AR1) was picked up as a candidate that may cause neutrophil-dependent inflammation in IA lesions from comprehensive gene expression profile data acquired from rat and human samples. The induction of C5AR1 in IA lesions was confirmed by immunohistochemistry; the up-regulations of C5AR1/C5ar1 stemmed from infiltrated neutrophils, which physiologically express C5AR1/C5ar1, and adventitial fibroblasts that induce C5AR1/C5ar1 in human/rat IA lesions. In in vitro experiments using NIH/3T3, a mouse fibroblast-like cell line, induction of C5ar1 was demonstrated by starvation or pharmacological inhibition of mTOR signaling by Torin1. Immunohistochemistry and an experiment in a cell-free system using recombinant C5 protein and recombinant Plasmin indicated that the ligand of C5AR1, C5a, could be produced through the enzymatic digestion by Plasmin in IA lesions. In conclusion, we have identified a potential contribution of the C5a-C5AR1 axis to neutrophil infiltration as well as inflammatory responses in inflammatory cells and fibroblasts of IA lesions. This cascade may become a therapeutic target to prevent the rupture of IAs.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Animals , Humans , Mice , Rats , Complement C5a/metabolism , Fibrinolysin/metabolism , Inflammation , Receptor, Anaphylatoxin C5a/genetics , Signal Transduction
6.
Hypertension ; 81(1): 138-150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37909169

ABSTRACT

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Subject(s)
Complement C3a , Hypertension , Animals , Humans , Mice , Anaphylatoxins , Angiotensin II , Complement C3a/metabolism , Complement C5a/metabolism , Forkhead Transcription Factors , Hypertension/genetics , Mice, Knockout , Receptor, Anaphylatoxin C5a/genetics , Receptors, Complement/genetics , Receptors, Complement/metabolism
7.
Clin Immunol ; 259: 109871, 2024 02.
Article in English | MEDLINE | ID: mdl-38101498

ABSTRACT

To clarify the role of the C5a/C5aR (C5a receptor) and C5b-9 pathways in macrovascular thrombosis (MAT) and renal microthrombosis (MIT), 73 renal biopsy-proven complement-mediated thrombotic microangiopathy (C-TMA) patients were enrolled; 9 patients with pure MAT and 13 patients with pure MIT were selected for further study. Twenty-five external C-TMA patients were selected as the validation cohort. Plasma C5a and sC5b-9 (soluble C5b-9) levels were significantly higher in patients with MAT than in those with MIT (P = 0.008, P = 0.041, respectively). The mean optical density of C5aR1 in the kidney was significantly higher in MAT patients than in those with MIT (P < 0.001). Both urinary sC5b-9 levels (MIT: P < 0.001, MAT: P = 0.004) and renal deposition of C5b-9 (MIT: P < 0.001, MAT: P = 0.001) were significantly higher in C-TMA patients compared to normal control, but were similar between MAT and MIT groups. In the correlation analysis within 22C-TMA patients, urinary sC5b-9 levels and renal deposition of C5b-9 were positively correlated to renal MIT formation (P = 0.009 and P = 0.031, respectively). Furthermore, the renal citrullinated histone H3 (CitH3)- and neutrophil elastase (NE)-positive area ratios were both significantly higher in the MAT group than in the MIT group (P = 0.006 and P = 0.020, respectively). Therefore, the local C5b-9 and C5a/C5aR1 pathways might have differential contributions to MIT and MAT formation in the disease.


Subject(s)
Thrombosis , Thrombotic Microangiopathies , Humans , Complement Activation , Complement Membrane Attack Complex/metabolism , Complement System Proteins , Receptor, Anaphylatoxin C5a , Complement C5b
8.
Cell Signal ; 113: 110944, 2024 01.
Article in English | MEDLINE | ID: mdl-37890688

ABSTRACT

The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.


Subject(s)
Immunologic Factors , Insulin , Receptor, Anaphylatoxin C5a , Humans , Immunologic Factors/metabolism , Insulin/physiology , Muscle, Skeletal/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Signal Transduction
9.
Mol Ther ; 32(2): 469-489, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38098230

ABSTRACT

Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Chemokine CXCL9/genetics , Immunity , Neoplasms/pathology , Receptor, Anaphylatoxin C5a/genetics , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , Female
10.
Cells ; 12(23)2023 11 25.
Article in English | MEDLINE | ID: mdl-38067135

ABSTRACT

The complement system mediates diverse regulatory immunological functions. C5aR2, an enigmatic receptor for anaphylatoxin C5a, has been shown to modulate PRR-dependent pro-inflammatory cytokine secretion in human macrophages. However, the specific downstream targets and underlying molecular mechanisms are less clear. In this study, CRISPR-Cas9 was used to generate macrophage models lacking C5aR2, which were used to probe the role of C5aR2 in the context of PRR stimulation. cGAS and STING-induced IFN-ß secretion was significantly increased in C5aR2 KO THP-1 cells and C5aR2-edited primary human monocyte-derived macrophages, and STING and IRF3 expression were increased, albeit not significantly, in C5aR2 KO cell lines implicating C5aR2 as a regulator of the IFN-ß response to cGAS-STING pathway activation. Transcriptomic analysis by RNAseq revealed that nucleic acid sensing and antiviral signalling pathways were significantly up-regulated in C5aR2 KO THP-1 cells. Altogether, these data suggest a link between C5aR2 and nucleic acid sensing in human macrophages. With further characterisation, this relationship may yield therapeutic options in interferon-related pathologies.


Subject(s)
Interferon-beta , Macrophages , Membrane Proteins , Nucleic Acids , Receptor, Anaphylatoxin C5a , Humans , Interferon-beta/metabolism , Macrophages/metabolism , Nucleic Acids/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Receptor, Anaphylatoxin C5a/metabolism , Membrane Proteins/metabolism
11.
J Innate Immun ; 15(1): 836-849, 2023.
Article in English | MEDLINE | ID: mdl-37952515

ABSTRACT

INTRODUCTION: The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS: Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS: The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION: Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.


Subject(s)
Antibodies, Monoclonal , Calcium , Cricetinae , Animals , Mice , Humans , Cricetulus , Complement C5a/metabolism , Signal Transduction , Receptor, Anaphylatoxin C5a
12.
Int Immunopharmacol ; 125(Pt B): 111112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948857

ABSTRACT

Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.


Subject(s)
HMGB1 Protein , Nanoparticles , Pulmonary Fibrosis , Humans , Animals , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , HMGB1 Protein/metabolism , Silicon Dioxide/toxicity , Epithelial Cells/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Complement C5a/metabolism
13.
J Immunol ; 211(9): 1359-1366, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37756526

ABSTRACT

Demethylation of the T regulatory cell (Treg)-specific demethylation region (TSDR) of the Foxp3 gene is the hallmark of Foxp3+ Treg stability, but the cellular signaling that programs this epigenetic state remains undefined. In this article, we show that suppressed C3a and C5a receptor (C3ar1/C5ar1) signaling in murine Tregs plays an obligate role. Murine C3ar1-/-C5ar1-/- Foxp3+ cells showed increased suppressor of cytokine signaling 1/2/3 expression, vitamin C stabilization, and ten-eleven translocation (TET) 1, TET2, and TET3 expression, all of which are linked to Treg stability. C3ar1-/-C5ar1-/- Foxp3+ cells additionally were devoid of BRD4 signaling that primes Th17 cell lineage commitment. Orally induced OVA-specific C3ar1-/-C5ar1-/- Foxp3+ OT-II Tregs transferred to OVA-immunized wild-type recipients remained >90% Foxp3+ out to 4 mo, whereas identically generated CD55-/- (DAF-/-) Foxp3+ OT-II Tregs (in which C3ar1/C5ar1 signaling is potentiated) lost >75% of Foxp3 expression by 14 d. After 4 mo in vivo, the C3ar1-/-C5ar1-/- Foxp3+ OT-II Tregs fully retained Foxp3 expression even with OVA challenge and produced copious TGF-ß and IL-10. Their TSDR was demethylated comparably with that of thymic Tregs. They exhibited nuclear translocation of NFAT and NF-κB reported to stabilize thymic Tregs by inducing hairpin looping of the TSDR to the Foxp3 promoter. Thus, disabled CD4+ cell C3ar1/C5ar1 signaling triggers the sequential cellular events that lead to demethylation of the Foxp3 TSDR.


Subject(s)
DNA Methylation , T-Lymphocytes, Regulatory , Mice , Animals , Transcription Factors/metabolism , Gene Expression Regulation , Receptor, Anaphylatoxin C5a/metabolism , Nuclear Proteins/genetics , Demethylation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
14.
Immunobiology ; 228(5): 152413, 2023 09.
Article in English | MEDLINE | ID: mdl-37598588

ABSTRACT

The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Humans , Autoimmunity , Receptor, Anaphylatoxin C5a , Inflammation
15.
Clin Drug Investig ; 43(8): 595-603, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37596445

ABSTRACT

Avacopan is a relatively novel drug with complement antagonizing properties, and it has demonstrated promising outcomes in treating antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis. This review article seeks to investigate the current standard of care for ANCA vasculitis with the combination of avacopan. The current standard therapy involves the usage of daily corticosteroids in addition to either cyclophosphamide or rituximab; however, prolonged use of corticosteroids is known to be associated with various adverse effects. Avacopan was introduced as a possible substitution to alleviate high-corticosteroid dosages. It functions through competitive inhibition of the C5a receptor in the complement system and results in the reduction of neutrophil activation and migration to sites of inflammation. Clinical trials have observed the efficacy of avacopan both in conjunction with standard therapy with corticosteroids and without corticosteroids. The use of avacopan was able to achieve disease remission and improve renal function in patients with ANCA-associated vasculitis. Additionally, the novel treatment did not increase the risk of adverse events during treatment, while also lowering the toxic effects associated with corticosteroid usage. In summary, current evidence supports the success and safety of administering avacopan to treat patients with ANCA-associated vasculitis. Additional clinical trials are warranted to identify optimal dosage and method in using avacopan in the clinical setting.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Humans , Receptor, Anaphylatoxin C5a , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Inflammation
16.
Biochem Biophys Res Commun ; 675: 78-84, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37454400

ABSTRACT

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder characterized by amyloid plaques, neurofibrillary tangles, and cerebral amyloid angiopathy (CAA). CAA is a condition manifesting as amyloid deposits in the cerebral vasculature, eventually leading to microhemorrhage. Here, we have treated the CRND8 mouse model with the C5a agonist (EP67) in order to observe the effects on cerebral amyloidosis, CAA, and hyperphosphorylated tau. EP67 attaches to the C5a receptor on phagocytes and stimulates the engulfment and digestion of fibrillar and prefibrillar amyloid while exhibiting minimal inflammation. Older CRND8 mice and their respective controls were treated with EP67 for a prolonged period of time. Following treatment, the CRND8 mice displayed improved spatial memory, while both amyloid deposition and tau hyperphosphorylation were found to be diminished.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Mice , Animals , Receptor, Anaphylatoxin C5a , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/drug therapy , Brain/metabolism , Alzheimer Disease/drug therapy , Cognition , Plaque, Amyloid , Amyloid/metabolism , Phosphopyruvate Hydratase
17.
Nihon Yakurigaku Zasshi ; 158(5): 399-407, 2023 Sep 05.
Article in Japanese | MEDLINE | ID: mdl-37460300

ABSTRACT

Avacopan (TAVNEOS® capsules) is an orally available selective C5a receptor (C5aR) antagonist. It has been approved in Japan since 2021 for the treatment of microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA), the two major subtypes of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The current standard therapy combining glucocorticoids (GC) and immunosuppressants has greatly improved the prognosis of AAV, however, issues such as side effects associated with GC use remain to be resolved. Avacopan suppresses priming of neutrophils induced by the complement component C5a, a process deeply involved in the pathogenesis of AAV. In pre-clinical studies, avacopan inhibited chemotaxis and priming of neutrophils induced by C5a-C5aR signaling. It also significantly suppressed nephritis and renal damage in an ANCA-induced glomerulonephritis mouse model. In the global phase 3 study "ADVOCATE", avacopan achieved both primary endpoints being 1) non-inferior to prednisone in inducing remission at week 26 and 2) superior in sustained remission at week 52 for MPA and GPA patients. Additionally, with avacopan, GC toxicity score was significantly lower and fewer adverse events possibly related to GC were observed. Furthermore, avacopan increased estimated glomerular filtration rate (eGFR) more than prednisone indicating improved renal function. Thus, the novel mechanism of avacopan targeting the complement system is a promising new therapeutic option for AAV with fewer GC-related side effects and better improvement of renal function.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Microscopic Polyangiitis , Animals , Mice , Prednisone/therapeutic use , Receptor, Anaphylatoxin C5a , Antibodies, Antineutrophil Cytoplasmic/therapeutic use , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Microscopic Polyangiitis/drug therapy , Microscopic Polyangiitis/pathology , Glucocorticoids/adverse effects
18.
Front Immunol ; 14: 1197709, 2023.
Article in English | MEDLINE | ID: mdl-37275893

ABSTRACT

Introduction: The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods: LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results: We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion: Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.


Subject(s)
Autoimmune Diseases , Epidermolysis Bullosa Acquisita , Animals , Mice , Complement C5a/metabolism , Neutrophil Activation , Neutrophils , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/metabolism , Receptors, IgG/metabolism
19.
Int J Mol Sci ; 24(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373467

ABSTRACT

Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.


Subject(s)
Neutrophils , Receptor, Anaphylatoxin C5a , Infant, Newborn , Humans , Infant, Premature , Killer Cells, Natural , Anaphylatoxins
20.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37227781

ABSTRACT

Therapeutic strategies targeting complement have revolutionized the treatment of myasthenia gravis (MG). However, a deeper understanding of complement modulation in the human system is required to improve treatment responses and identify off-target effects shaping long-term outcomes. For this reason, we studied a cohort of patients with MG treated with either eculizumab or azathioprine as well as treatment-naive patients using a combined proteomics and metabolomics approach. This strategy validated known effects of eculizumab on the terminal complement cascade. Beyond that, eculizumab modulated the serum proteometabolome as distinct pathways were altered in eculizumab-treated patients, including the oxidative stress response, mitogen-activated protein kinase signaling, and lipid metabolism with particular emphasis on arachidonic acid signaling. We detected reduced levels of arachidonate 5-lipoxygenase (ALOX5) and leukotriene A4 in eculizumab-treated patients. Mechanistically, ligation of the C5a receptor (C5aR) is needed for ALOX5 metabolism and generation of downstream leukotrienes. As eculizumab prevents cleavage of C5 into C5a, decreased engagement of C5aR may inhibit ALOX5-mediated synthesis of pro-inflammatory leukotrienes. These findings indicate distinct off-target effects induced by eculizumab, illuminating potential mechanisms of action that may be harnessed to improve treatment outcomes.


Subject(s)
Complement C5 , Myasthenia Gravis , Humans , Complement System Proteins , Complement Activation , Myasthenia Gravis/drug therapy , Receptor, Anaphylatoxin C5a , Leukotrienes
SELECTION OF CITATIONS
SEARCH DETAIL
...