Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
World J Gastroenterol ; 29(38): 5374-5382, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37900582

ABSTRACT

BACKGROUND: Many studies have shown that interstitial Cajal-like cell (ICLC) abnormalities are closely related to a variety of dynamic gastrointestinal disorders. ICLCs are pacemaker cells for gastrointestinal movement and are involved in the transmission of nerve impulses. AIM: To elucidate the expression profile and significance of cholecystokinin-A (CCK-A) receptors in ICLCs in the common bile duct (CBD), as well as the role of CCK in regulating CBD motility through CCK-A receptors on CBD ICLCs. METHODS: The levels of tyrosine kinase receptor (c-kit) and CCK-A receptors in CBD tissues and isolated CBD cells were quantified using the double immunofluorescence labeling technique. The CCK-mediated enhancement of the movement of CBD muscle strips through CBD ICLCs was observed by a muscle strip contraction test. RESULTS: Immunofluorescence showed co-expression of c-kit and CCK-A receptors in the CBD muscularis layer. Observations of isolated CBD cells showed that c-kit was expressed on the surface of ICLCs, the cell body and synapse were colored and polygonal, and some cells presented protrusions and formed networks adjacent to the CBD while others formed filaments at the synaptic terminals of local cells. CCK-A receptors were also expressed on CBD ICLCs. At concentrations ranging from 10-6 mol/L to 10-10 mol/L, CCK promoted CBD smooth muscle contractility in a dose-dependent manner. In contrast, after ICLC removal, the contractility mediated by CCK in CBD smooth muscle decreased. CONCLUSION: CCK-A receptors are highly expressed on CBD ICLCs, and CCK may regulate CBD motility through the CCK-A receptors on ICLCs.


Subject(s)
Gallbladder , Telocytes , Guinea Pigs , Animals , Receptor, Cholecystokinin A/metabolism , Common Bile Duct , Telocytes/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Cholecystokinin/metabolism
2.
Nat Commun ; 14(1): 47, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599824

ABSTRACT

Obesity increases asthma prevalence and severity. However, the underlying mechanisms are poorly understood, and consequently, therapeutic options for asthma patients with obesity remain limited. Here we report that cholecystokinin-a metabolic hormone best known for its role in signaling satiation and fat metabolism-is increased in the lungs of obese mice and that pharmacological blockade of cholecystokinin A receptor signaling reduces obesity-associated airway hyperresponsiveness. Activation of cholecystokinin A receptor by the hormone induces contraction of airway smooth muscle cells. In vivo, cholecystokinin level is elevated in the lungs of both genetically and diet-induced obese mice. Importantly, intranasal administration of cholecystokinin A receptor antagonists (proglumide and devazepide) suppresses the airway hyperresponsiveness in the obese mice. Together, our results reveal an unexpected role for cholecystokinin in the lung and support the repurposing of cholecystokinin A receptor antagonists as a potential therapy for asthma patients with obesity.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , Asthma/drug therapy , Asthma/metabolism , Cholecystokinin/metabolism , Lung/metabolism , Mice, Obese , Obesity/complications , Obesity/metabolism , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/metabolism
3.
Genes (Basel) ; 11(12)2020 11 29.
Article in English | MEDLINE | ID: mdl-33260332

ABSTRACT

The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK's regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical-chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.


Subject(s)
Gallbladder/metabolism , Gallstones/metabolism , Receptor, Cholecystokinin A/metabolism , Animals , Cholesterol/metabolism , Gallbladder Emptying/physiology , Humans , Intestine, Small/metabolism
4.
Exp Eye Res ; 188: 107763, 2019 11.
Article in English | MEDLINE | ID: mdl-31421135

ABSTRACT

Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness, and individuals with ocular hypertension are at risk to develop POAG. Currently, the only modifiable risk factor for glaucoma progression is lowering of intraocular pressure (IOP). A novel mechanism for lowering IOP involves activation of the type B natriuretic peptide receptor (NPR-B), the naturally occurring agonist of which is C-type natriuretic peptide (CNP). Being a cyclic peptide of 22 amino acids, CNP does not readily penetrate the cornea and its ocular hypotensive effect requires intraocular injection. TAK-639 is a synthetic, cornea-permeable, 9-amino acid CNP analog has been studied for the treatment of ocular hypertension and POAG. We assessed TAK-639 in a receptor binding profile and the effects of TAK-639 on NPR-B-mediated cyclic GMP production in cultured transformed human trabecular meshwork (TM) cells (GTM-3). We also evaluated the effects of topical ocular administration of TAK-639 on mouse IOP and aqueous humor dynamics. Among 89 non-natriuretic peptide receptors, transporters, and channels evaluated, TAK-639 at 10 µM displaced ligand binding by more than 50% to only two receptors: the type 2 angiotensin receptor (IC50 = 8.2 µM) and the cholecystokinin A receptor (IC50 = 25.8 µM). In vitro, TAK-639 selectively activates NPR-B (EC50 = 61 ±â€¯11 nM; GTM-3 cells) relative to NPR-A (EC50 = 2179 ±â€¯670 nM; 293T cells). In vivo, TAK-639 lowered mouse IOP by three mechanisms: increase in aqueous humor outflow facility (C), reduction in the aqueous humor formation rate (Fin), and reduction in episcleral venous pressure (Pe). The maximum mean IOP decreases from baseline were -12.1%, -21.0%, and -36.1% for 0.1%, 0.3%, and 0.6% doses of TAK-639, respectively. Maximum IOP-lowering effect was seen at 2 h, and the duration of action was >6 h. With TAK-639 0.6%, at 2 h post-dose, aqueous outflow facility (C) increased by 155.8%, Fin decreased by 41.0%, the uveoscleral outflow rate (Fu) decreased by 52.6%, and Pe decreased by 31.5% (all p < 0.05). No ocular adverse effects were observed. TAK-639 is an efficacious IOP-lowering agent, with a unique combination of mechanisms of action on both aqueous formation and aqueous outflow facility. Further study of this mechanism of treatment may optimize pharmacologic outcomes and provide disease management in patients with POAG and ocular hypertension.


Subject(s)
Aqueous Humor/physiology , Intraocular Pressure/drug effects , Natriuretic Peptide, C-Type/analogs & derivatives , Natriuretic Peptide, C-Type/pharmacology , Trabecular Meshwork/drug effects , Administration, Ophthalmic , Animals , Cell Line, Transformed , Cyclic GMP/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Ophthalmic Solutions , Receptor, Angiotensin, Type 2/metabolism , Receptor, Cholecystokinin A/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Tonometry, Ocular , Trabecular Meshwork/metabolism
5.
Int Immunopharmacol ; 48: 180-186, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28521244

ABSTRACT

BACKGROUND: Cholecystokinin (CCK), as a gastrointestinal hormone, has an important protective role against sepsis or LPS-induced endotoxic shock. We aim to address the role of CCK in hepatic ischemia followed by reperfusion (I/R) injury. MATERIALS AND METHODS: A murine model of 60min partial hepatic ischemia followed by 6h of reperfusion was used in this study. CCK and CCKAR Levels in blood and liver were detected at 3h, 6h, 12h and 24h after reperfusion. Then the mice were treated with CCK or proglumide, a nonspecific CCK-receptor (CCK-R) antagonist. Mice were randomly divided into four groups as follows: (1) sham group, in which mice underwent sham operation and received saline; (2) I/R group, in which mice were subjected to hepatic I/R and received saline; (3) CCK group, in which mice were subjected to hepatic I/R and treated with CCK (400µg/kg); (4) proglumide group (Pro), in which mice underwent hepatic I/R and treated with proglumide (3mg/kg); CCK and proglumide were administrated via tail vein at the moment of reperfusion. Serum AST (sAST) and serum ALT (sALT) were determined with a biochemical assay and histological analysis were performed with hematoxylin-eosin (H&E). Cytokines (IL-1ß, IL-6, IL-10, TNF-α) expressions in blood were determined with enzyme-linked immunosorbent assay (ELISA). The MPO (myeloperoxidase) assay were used to measure neutrophils' infiltration into the liver. The apoptotic index (TUNEL-positive cell number/total liver cell number×100%) was calculated to assess hepatocelluar apoptosis. Finally, activation of NF-κB and phosphor-p38 expression in liver homogenates were analyzed with Western Blot (WB). RESULTS: Our findings showed that 1) CCK and CCK-AR were upregulated in our experimental model over time; 2) Treatment with CCK decreased sAST/sALT levels, inflammatory hepatic injury, neutrophil influx and hepatocelluar apoptosis, while proglumide aggravated hepatic injury. CONCLUSION: These findings support our hypothesis and suggest that CCK played a positive role in the ongoing inflammatory process leading to liver I/R injury.


Subject(s)
Cholecystokinin/metabolism , Ischemia/metabolism , Liver/blood supply , Liver/metabolism , Reperfusion Injury/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cytokines/genetics , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Peroxidase/metabolism , Receptor, Cholecystokinin A/metabolism , Receptor, Cholecystokinin B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Am J Physiol Renal Physiol ; 313(1): F20-F29, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28298361

ABSTRACT

The natriuretic hormone CCK exhibits its gene transcripts in total kidney extracts. To test the possibility of CCK acting as an intrarenal mediator of sodium excretion, we examined mouse kidneys by 1) an in situ hybridization technique for CCK mRNA in animals fed a normal- or a high-sodium diet; 2) immuno-electron microscopy for the CCK peptide, 3) an in situ hybridization method and immunohistochemistry for the CCK-specific receptor CCKAR; 4) confocal image analysis of receptor-mediated Ca2+ responses in isolated renal tubules; and 5) metabolic cage experiments for the measurement of urinary sodium excretion in high-salt-fed mice either treated or untreated with the CCKAR antagonist lorglumide. Results showed the CCK gene to be expressed intensely in the inner medulla and moderately in the inner stripe of the outer medulla, with the expression in the latter being enhanced by high sodium intake. Immunoreactivity for the CCK peptide was localized to the rough endoplasmic reticulum of the medullary interstitial cells in corresponding renal regions, confirming it to be a secretory protein. Gene transcripts, protein products, and the functional activity for CCKAR were consistently localized to the late proximal tubule segments (S2 and S3) in the medullary rays, and the outer stripe of the outer medulla. Lorglumide significantly diminished natriuretic responses of mice to a dietary sodium load without altering the glomerular filtration rate. These findings suggest that the medullary interstitial cells respond to body fluid expansion by CCK release for feedback regulation of the late proximal tubular reabsorption.


Subject(s)
Cholecystokinin/metabolism , Kidney Medulla/metabolism , Kidney Tubules, Proximal/metabolism , Natriuresis , Signal Transduction , Sodium, Dietary/administration & dosage , Water-Electrolyte Balance , Animals , Calcium/metabolism , Cholecystokinin/antagonists & inhibitors , Cholecystokinin/genetics , Feedback, Physiological , Hormone Antagonists/pharmacology , Immunohistochemistry , In Situ Hybridization, Fluorescence , Kidney Medulla/drug effects , Kidney Medulla/ultrastructure , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/ultrastructure , Male , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Immunoelectron , Natriuresis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Signal Transduction/drug effects , Time Factors , Water-Electrolyte Balance/drug effects
7.
Rev Neurosci ; 28(6): 573-585, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28343167

ABSTRACT

The CCK(1) receptor is a G-protein-coupled receptor activated by the sulfated forms of cholecystokinin (CCK), a gastrin-like peptide released in the gastrointestinal tract and mammal brain. A substantial body of research supports the hypothesis that CCK(1)r stimulates gallbladder contraction and pancreatic secretion in the gut, as well as satiety in brain. However, this receptor may also fulfill relevant roles in behavior, thanks to its widespread distribution in the brain. The strategic location of CCK(1)r in mesolimbic structures and specific hypothalamic and brainstem nuclei lead to complex interactions with neurotransmitters like dopamine, serotonin, and glutamate, as well as hypothalamic hormones and neuropeptides. The activity of CCK(1)r maintains adequate levels of dopamine and regulates the activity of serotonin neurons of raphe nuclei, which makes CCK(1)r an interesting therapeutic target for the development of adjuvant treatments for schizophrenia, drug addiction, and mood disorders. Unexplored functions of CCK(1)r, like the transmission of interoceptive sensitivity in addition to the regulation of hypothalamic hormones and neurotransmitters affecting emotional states, well-being, and attachment behaviors, may open exciting roads of research. The absence of specific ligands for the CCK(1) receptor has complicated the study of its distribution in brain so that research about its impact on behavior has been published sporadically over the last 30 years. The present review reunites all this body of evidence in a comprehensive way to summarize our knowledge about the actual role of CCK in the neurobiology of mental illness.


Subject(s)
Anxiety Disorders/metabolism , Brain/metabolism , Receptor, Cholecystokinin A/metabolism , Animals , Brain/cytology , Brain/physiology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Humans , Receptor, Cholecystokinin A/genetics
8.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1153-1164, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28288880

ABSTRACT

The orexin (OX1R) and cholecystokinin A (CCK1R) receptors play opposing roles in the migration of the human colon cancer cell line HT-29, and may be involved in the pathogenesis and pathophysiology of cancer cell invasion and metastasis. OX1R and CCK1R belong to family A of the G-protein-coupled receptors (GPCRs), but the detailed mechanisms underlying their functions in solid tumor development remain unclear. In this study, we investigated whether these two receptors heterodimerize, and the results revealed novel signal transduction mechanisms. Bioluminescence and Förster resonance energy transfer, as well as proximity ligation assays, demonstrated that OX1R and CCK1R heterodimerize in HEK293 and HT-29 cells, and that peptides corresponding to transmembrane domain 5 of OX1R impaired heterodimer formation. Stimulation of OX1R and CCK1R heterodimers with both orexin-A and CCK decreased the activation of Gαq, Gαi2, Gα12, and Gα13 and the migration of HT-29 cells in comparison with stimulation with orexin-A or CCK alone, but did not alter GPCR interactions with ß-arrestins. These results suggest that OX1R and CCK1R heterodimerization plays an anti-migratory role in human colon cancer cells.


Subject(s)
Cell Movement , GTP-Binding Protein alpha Subunits/metabolism , Orexin Receptors/metabolism , Protein Multimerization , Receptor, Cholecystokinin A/metabolism , Signal Transduction , HEK293 Cells , HT29 Cells , Humans , Orexin Receptors/genetics , Protein Binding , Protein Domains , Receptor, Cholecystokinin A/genetics , beta-Arrestins/metabolism
9.
Physiol Behav ; 165: 392-7, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27570192

ABSTRACT

Food intake occurs in bouts or meals, and numerous meal-generated signals have been identified that act to limit the size of ongoing meals. Hormones such as cholecystokinin (CCK) are secreted from the intestine as ingested food is being processed, and in addition to aiding the digestive process, they provide a signal to the brain that contributes to satiation, limiting the size of the meal. The potency of CCK to elicit satiation is enhanced by elevated levels of adiposity signals such as insulin. In the present experiments we asked whether CCK and insulin interact at the level of the blood-brain barrier (BBB). We first isolated rat brain capillary endothelial cells that comprise the BBB and found that they express the mRNA for both the CCK1R and the insulin receptor, providing a basis for a possible interaction. We then administered insulin intraperitoneally to another group of rats and 15min later administered CCK-8 intraperitoneally to half of those rats. After another 15min, CSF and blood samples were obtained and assayed for immunoreactive insulin. Plasma insulin was comparably elevated above baseline in both the CCK-8 and control groups, indicating that the CCK had no effect on circulating insulin levels given these parameters. In contrast, rats administered CCK had CSF-insulin levels that were more than twice as high as those of control rats. We conclude that circulating CCK greatly facilitates the transport of insulin into the brain, likely by acting directly at the BBB. These findings imply that in circumstances in which the plasma levels of both CCK and insulin are elevated, such as during and soon after meals, satiation is likely to be due, in part, to this newly-discovered synergy between CCK and insulin.


Subject(s)
Brain/anatomy & histology , Insulin/metabolism , Microvessels/drug effects , Receptor, Cholecystokinin A/metabolism , Sincalide/pharmacology , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Gene Expression Regulation/drug effects , In Vitro Techniques , Male , Protein Transport/drug effects , RNA, Messenger/metabolism , Rats , Rats, Long-Evans , Receptor, Cholecystokinin A/genetics
10.
Biochem Genet ; 54(5): 665-75, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27287528

ABSTRACT

In the present study, we investigated expression pattern of Cholecystokinin type A receptor (CCKAR) in relation to its commonly studied polymorphism (rs1800857, T/C) in gallstone disease (GSD) patients and controls. A total of 502 subjects (272 GSD and 230 controls) were enrolled, and genotyping was performed by evaluating restriction fragments of PstI digested DNA. For analyzing expression pattern of CCKAR in relation to polymorphism, gallbladder tissue samples from 80 subjects (GSD-55; control-25) were studied. Expression of CCKAR mRNA was evaluated by reverse transcriptase-PCR and confirmed using real-time PCR. Protein expression was evaluated by enzyme-linked immunosorbent assay. We observed significantly (p < 0.0001) lower expression of CCKAR mRNA and protein in GSD tissues as compared with control. Significantly higher frequency of A1/A1 genotype (C/T transition) (p = 0.0005) was observed for GSD as compared with control. Expression of CCKAR protein was found to be significantly lower (p < 0.0001) in A1/A1 genotype as compared with other genotypes for GSD patients. Perhaps, this is the first report providing evidence of alteration in CCKAR expression in relation to its polymorphism elucidating the molecular pathway of the disease. Additional investigations with lager sample size are needed to confirm these findings.


Subject(s)
Gallstones/genetics , Polymorphism, Single Nucleotide , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Adult , Disease Susceptibility , Down-Regulation , Female , Gallstones/metabolism , Genotyping Techniques , Humans , India , Male , Middle Aged , Tissue Distribution , Young Adult
11.
World J Gastroenterol ; 22(24): 5540-7, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27350732

ABSTRACT

AIM: To investigate the mechanisms and effects of sphincter of Oddi (SO) motility on cholesterol gallbladder stone formation in guinea pigs. METHODS: Thirty-four adult male Hartley guinea pigs were divided randomly into two groups, the control group (n = 10) and the cholesterol gallstone group (n = 24), which was sequentially divided into four subgroups with six guinea pigs each according to time of sacrifice. The guinea pigs in the cholesterol gallstone group were fed a cholesterol lithogenic diet and sacrificed after 3, 6, 9, and 12 wk. SO manometry and recording of myoelectric activity were obtained by a multifunctional physiograph at each stage. Cholecystokinin-A receptor (CCKAR) expression levels in SO smooth muscle were detected by quantitative real-time PCR (qRT-PCR) and serum vasoactive intestinal peptide (VIP), gastrin, and cholecystokinin octapeptide (CCK-8) were detected by enzyme-linked immunosorbent assay at each stage in the process of cholesterol gallstone formation. RESULTS: The gallstone formation rate was 0%, 0%, 16.7%, and 83.3% in the 3, 6, 9, and 12 wk groups, respectively. The frequency of myoelectric activity in the 9 wk group, the amplitude of myoelectric activity in the 9 and 12 wk groups, and the amplitude and the frequency of SO in the 9 wk group were all significantly decreased compared to the control group. The SO basal pressure and common bile duct pressure increased markedly in the 12 wk group, and the CCKAR expression levels increased in the 6 and 12 wk groups compared to the control group. Serum VIP was elevated significantly in the 9 and 12 wk groups and gastrin decreased significantly in the 3 and 9 wk groups. There was no difference in serum CCK-8 between the groups. CONCLUSION: A cholesterol gallstone-causing diet can induce SO dysfunction. The increasing tension of the SO along with its decreasing activity may play an important role in cholesterol gallstone formation. Expression changes of CCKAR in SO smooth muscle and serum VIP and CCK-8 may be important causes of SO dysfunction.


Subject(s)
Gallstones/physiopathology , Sphincter of Oddi Dysfunction/physiopathology , Sphincter of Oddi/physiopathology , Animals , Cholesterol , Disease Models, Animal , Electromyography , Enzyme-Linked Immunosorbent Assay , Gallstones/genetics , Gallstones/metabolism , Gastrins/genetics , Gastrins/metabolism , Guinea Pigs , Manometry , Muscle, Smooth/metabolism , Real-Time Polymerase Chain Reaction , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Sincalide/genetics , Sincalide/metabolism , Sphincter of Oddi/metabolism , Sphincter of Oddi Dysfunction/genetics , Sphincter of Oddi Dysfunction/metabolism , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism
12.
Trends Endocrinol Metab ; 27(9): 609-619, 2016 09.
Article in English | MEDLINE | ID: mdl-27156041

ABSTRACT

Cholecystokinin (CCK) regulates appetite and reduces food intake by activating the type 1 CCK receptor (CCK1R). Attempts to develop CCK1R agonists for obesity have yielded active agents that have not reached clinical practice. Here we discuss why, along with new strategies to target CCK1R more effectively. We examine signaling events and the possibility of developing agents that exhibit ligand-directed bias, to dissociate satiety activity from undesirable side effects. Potential allosteric sites of modulation are also discussed, along with desired properties of a positive allosteric modulator (PAM) without intrinsic agonist action as another strategy to treat obesity. These new types of CCK1R-active drugs could be useful as standalone agents or as part of a rational drug combination for management of obesity.


Subject(s)
Receptors, Cholecystokinin/metabolism , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Animals , Cholecystokinin/metabolism , Humans , Obesity/genetics , Obesity/metabolism , Receptor, Cholecystokinin A/agonists , Receptor, Cholecystokinin A/metabolism , Receptors, Cholecystokinin/agonists , Receptors, Cholecystokinin/genetics
13.
Clin Nutr ; 35(6): 1374-1379, 2016 12.
Article in English | MEDLINE | ID: mdl-27016394

ABSTRACT

BACKGROUND & AIMS: The type 1 cholecystokinin receptor (CCK1R) mediates the actions of CCK to support nutritional homeostasis, including post-cibal satiety. However, elevated levels of membrane cholesterol, such as have been observed in metabolic syndrome, interfere with CCK stimulus-activity coupling at the CCK1R, thereby disrupting this important servomechanism. We hypothesize that reversal of the negative impact of cholesterol on this receptor could be useful in the management of obesity. METHODS: We have studied the effects of ß-sitosterol, a phytosterol structurally related to cholesterol, on CCK receptor function. This included CCK binding and biological activity at wild type CCK1R and CCK2R, as well as at CCK1R in a high cholesterol environment, and at a CCK1R mutant, Y140A, which mimics the behavior of wild type receptor in high cholesterol. RESULTS: ß-sitosterol (100 µM and 10 µM) significantly improved the defective signaling of the CCK1R present in high cholesterol (p < 0.05), without affecting CCK binding affinity. This effect was absent at the CCK1R present in a normal cholesterol environment, as well as at the structurally-related CCK2R. Furthermore, the cholesterol-insensitive Y140A mutant of CCK1R was resistant to the effects of ß-sitosterol. CONCLUSION: These data suggest that ß-sitosterol affects CCK1R function in high cholesterol by competing with cholesterol at a receptor cholesterol-binding site and may shift its conformation toward normal. This phytosterol extends our understanding of the structure-activity relationships for developing a drug that can target the external surface of CCK1R. Since the concentrations of ß-sitosterol shown to be effective in this study are similar to serum levels of this compound achievable during oral administration, it may be worthwhile to study possible beneficial effects of ß-sitosterol in metabolic syndrome.


Subject(s)
Hypercholesterolemia/drug therapy , Receptor, Cholecystokinin A/metabolism , Sitosterols/pharmacology , Animals , CHO Cells , Cricetulus , Gene Expression Regulation , Hypolipidemic Agents/pharmacology , Receptor, Cholecystokinin A/genetics , Signal Transduction
14.
Oncol Rep ; 35(4): 2097-106, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26820391

ABSTRACT

Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genome­wide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Antineoplastic Agents/administration & dosage , Colonic Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Receptor, Cholecystokinin A/antagonists & inhibitors , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , COS Cells , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Drug Evaluation, Preclinical , HCT116 Cells , HT29 Cells , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Peptide Library , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Receptor, Cholecystokinin A/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
Horm Behav ; 78: 79-85, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26522495

ABSTRACT

The current study tested the hypothesis that cholecystokinin (CCK) A receptor (CCKAR) in areas supplied by the celiac artery (CA), stomach and upper duodenum, and the cranial mesenteric artery (CMA), small and parts of the large intestine, is necessary for reduction of meal size, prolongation of the intermeal interval (time between first and second meal) and increased satiety ratio (intermeal interval/meal size or amount of food consumed during any given unit of time) by the non-nutrient stimulator of endogenous CCK release camostat. Consistent with our previous findings camostat reduced meal size, prolonged the intermeal interval and increased the satiety ratio. Here, we report that blocking CCKAR in the area supplied by the celiac artery attenuated reduction of meal size by camostat more so than the cranial mesenteric artery route. Blocking CCKAR in the area supplied by the cranial mesenteric artery attenuated prolongation of the intermeal interval length and increased satiety ratio by camostat more so than the celiac artery route. Blocking CCKAR in the areas supplied by the femoral artery (control) failed to alter the feeding responses evoked by camostat. These results support the hypothesis that CCKAR in the area supplied by the CA is necessary for reduction of meal size by camostat whereas CCKAR in the area supplied by the CMA is necessary for prolongation of the intermeal interval and increased satiety ratio by this substance. Our results demonstrate that meal size and intermeal interval length by camostat are regulated through different gastrointestinal sites.


Subject(s)
Celiac Artery/metabolism , Cholecystokinin/metabolism , Eating/physiology , Feeding Behavior/physiology , Gabexate/analogs & derivatives , Mesenteric Artery, Superior/metabolism , Protease Inhibitors/pharmacology , Receptor, Cholecystokinin A/metabolism , Animals , Eating/drug effects , Esters , Feeding Behavior/drug effects , Femoral Artery/metabolism , Gabexate/administration & dosage , Gabexate/pharmacology , Guanidines , Male , Protease Inhibitors/administration & dosage , Rats , Rats, Sprague-Dawley , Time Factors
16.
Tumour Biol ; 37(4): 4579-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26508021

ABSTRACT

Cholecystokinin and gastrin receptors are upregulated in many human digestive malignancies; however, the correlation of their expressions with severity of colon carcinoma remains sketchy. Here, we determined the expression of cholecystokinin-1 and cholecystokinin-2 receptor, CCK1R and CCK2R, in colon carcinomas and investigated their correlations with clinicopathological characteristics and 1-year survival rate. Expression of CCK1R and CCK2R was determined by immunohistochemical assay in tissue samples obtained from 97 surgical specimens. Clinicopathological character analysis revealed that higher expression of cytoplasmic CCK1R and CCK2R was significantly associated with several variables including the depth of tumor invasion (P = 0.001), venous invasion (P = 0.023), and progression stage (P = 0.013). In addition, immunohistochemical staining revealed statistically significant associations of nuclear CCK1R expression with higher lymphatic invasion (P = 0.042), progression stage (P = 0.025), and unfavorable survival (P = 0.025). Interestingly, we found no link between nuclear CCK2R expression and all the clinicopathological characteristics examined. Taken these, our findings indicate that nuclear CCK1R represents a potential biomarker for poor prognosis, and CCK1R may play a role differing from CCK2R in colon carcinogenesis.


Subject(s)
Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Receptor, Cholecystokinin A/metabolism , Receptor, Cholecystokinin B/metabolism , Aged , Aged, 80 and over , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Survival Analysis , Taiwan
17.
J Med Chem ; 58(24): 9562-77, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26654202

ABSTRACT

The type 1 cholecystokinin receptor (CCK1R) has multiple physiologic roles relating to nutrient homeostasis, including mediation of postcibal satiety. This effect has been central in efforts to develop agonists of this receptor as part of a program to manage and/or prevent obesity. While a number of small molecule CCK1R agonists have been developed, none have yet been approved for clinical use, based on inadequate efficacy, side effects, or the potential for toxicity. Understanding the molecular details of docking and mechanism of action of these ligands can be helpful in the rational refinement and enhancement of small molecule drug candidates. In the current work, we have defined the mechanism of binding and activity of two triazolobenzodiazepinones, CE-326597 and PF-04756956, which are reported to be full agonist ligands. To achieve this, we utilized receptor binding with a series of allosteric and orthosteric radioligands at structurally related CCK1R and CCK2R, as well as chimeric CCK1R/CCK2R constructs exchanging residues in the allosteric pocket, and assessment of biological activity. These triazolobenzodiazepinones docked within the intramembranous small molecule allosteric ligand pocket, with higher affinity binding to CCK2R than CCK1R, yet with biological activity exclusive to or greatly enhanced at CCK1R. These ligands exhibited cooperativity with benzodiazepine binding across the CCK1R homodimeric complex, resulting in their ability to inhibit only a fraction of the saturable binding of a benzodiazepine radioligand, unlike other small molecule antagonists and agonists of this receptor. This may contribute to the understanding of the unique short duration and reversible gallbladder contraction observed in vivo upon administration of these drugs.


Subject(s)
Benzodiazepines/chemistry , Benzodiazepinones/chemistry , Receptor, Cholecystokinin A/agonists , Triazoles/chemistry , Allosteric Site , Amino Acid Sequence , Animals , Benzodiazepines/pharmacology , Benzodiazepinones/pharmacology , CHO Cells , Cricetulus , Humans , Molecular Docking Simulation , Molecular Sequence Data , Mutation , Protein Multimerization , Radioligand Assay , Rats , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship , Triazoles/pharmacology
19.
Physiol Behav ; 152(Pt A): 62-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26384952

ABSTRACT

Ginsenoside Rb1 (Rb1) reduces food intake in both lean and high-fat diet induced-obese rats; however, the sites and/or mediation of the eating-suppressive effect of Rb1 have not previously been identified. We hypothesized that intraperitoneally (ip) administered Rb1 exerts its anorectic action by enhancing sensitivity to satiation signals, such as cholecystokinin (CCK), and/or that it acts through vagal afferent nerves that relay the satiating signaling to the hindbrain. To test these hypotheses, we gave ip bolus doses of Rb1 (2.5-10.0mg/kg) and CCK-8 (0.125-4.0µg/kg) alone or in combination and assessed food intake in rats. Low doses of Rb1 (2.5mg/kg) or CCK-8 (0.125µg/kg) alone had no effect on food intake whereas higher doses did. When these subthreshold doses of Rb1 and CCK-8 were co-administered, the combination significantly reduced food intake relative to saline controls, and this effect was attenuated by lorglumide, a selective CCK1-receptor antagonist. Interestingly, lorglumide blocked food intake induced by an effective dose of CCK-8 alone, but not by Rb1 alone, suggesting that Rb1's anorectic effect is independent of the CCK1 receptor. To determine whether peripherally administered Rb1 suppresses feeding via abdominal vagal nerves, we evaluated the effect of ip Rb1 injection in subdiaphragmatic vagal deafferentation (SDA) and control rats. Rb1's effect on food intake was significantly attenuated in SDA rats, compared with that in SHAM controls. These data indicate that the vagal afferent system is the major pathway conveying peripherally administered Rb1's satiation signal.


Subject(s)
Appetite Depressants/administration & dosage , Eating/drug effects , Ginsenosides/administration & dosage , Neurons, Afferent/drug effects , Sincalide/administration & dosage , Vagus Nerve/drug effects , Animals , Dose-Response Relationship, Drug , Eating/physiology , Glucose , Hormone Antagonists/pharmacology , Injections, Intraperitoneal , Male , Neurons, Afferent/cytology , Neurons, Afferent/physiology , Proglumide/analogs & derivatives , Proglumide/pharmacology , Rats, Long-Evans , Receptor, Cholecystokinin A/antagonists & inhibitors , Receptor, Cholecystokinin A/metabolism , Satiation/drug effects , Satiation/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology
20.
Am J Physiol Gastrointest Liver Physiol ; 309(5): G377-86, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26138469

ABSTRACT

Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation.


Subject(s)
Receptor, Cholecystokinin A/metabolism , Ursodeoxycholic Acid/pharmacology , Animals , Binding Sites , CHO Cells , Chenodeoxycholic Acid/pharmacology , Cholesterol/pharmacology , Cricetinae , Cricetulus , Digestion/drug effects , Mutation , Protein Binding , Receptor, Cholecystokinin A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...