Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.833
Filter
1.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750548

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Subject(s)
Endocytosis , Galectin 1 , Galectins , Receptor, Fibroblast Growth Factor, Type 1 , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Humans , Galectin 1/metabolism , Galectin 1/genetics , Galectins/metabolism , Signal Transduction , Animals
2.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821585

ABSTRACT

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Administration, Oral , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors
3.
Sci Rep ; 14(1): 9284, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654040

ABSTRACT

Bromodomain and extra-terminal domain (BET) proteins are therapeutic targets in several cancers including the most common malignant adult brain tumor glioblastoma (GBM). Multiple small molecule inhibitors of BET proteins have been utilized in preclinical and clinical studies. Unfortunately, BET inhibitors have not shown efficacy in clinical trials enrolling GBM patients. One possible reason for this may stem from resistance mechanisms that arise after prolonged treatment within a clinical setting. However, the mechanisms and timeframe of resistance to BET inhibitors in GBM is not known. To identify the temporal order of resistance mechanisms in GBM we performed quantitative proteomics using multiplex-inhibitor bead mass spectrometry and demonstrated that intrinsic resistance to BET inhibitors in GBM treatment occurs rapidly within hours and involves the fibroblast growth factor receptor 1 (FGFR1) protein. Additionally, small molecule inhibition of BET proteins and FGFR1 simultaneously induces synergy in reducing GBM tumor growth in vitro and in vivo. Further, FGFR1 knockdown synergizes with BET inhibitor mediated reduction of GBM cell proliferation. Collectively, our studies suggest that co-targeting BET and FGFR1 may dampen resistance mechanisms to yield a clinical response in GBM.


Subject(s)
Brain Neoplasms , Bromodomain Containing Proteins , Cell Proliferation , Drug Resistance, Neoplasm , Glioblastoma , Receptor, Fibroblast Growth Factor, Type 1 , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Humans , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Mice , Xenograft Model Antitumor Assays , Proteomics/methods , Proteins/metabolism , Proteins/antagonists & inhibitors
5.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644407

ABSTRACT

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Subject(s)
Adipose Tissue, White , Benzhydryl Compounds , Glucosides , Protein Serine-Threonine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Diet, High-Fat , Glucosides/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
6.
Eur J Med Chem ; 271: 116415, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38643670

ABSTRACT

Fibroblast growth factor receptor (FGFR) is an attractive target for cancer therapy, but existing FGFR inhibitors appear to hardly meet the demand for clinical application. Herein, a number of irreversible covalent FGFR inhibitors were designed and synthesized by selecting several five- and six-membered azaheterocycles as parent scaffold with different substituents to take over the hydrophobic region in the active pocket of FGFR proteins. Among the resulting target compounds, III-30 showed the most potent effect on enzyme activity inhibition and anti-proliferative activity against the tested cancer cell lines. Significantly, III-30 could inhibit the enzyme activity by achieving irreversible covalent binding with FGFR1 and FGFR4 proteins. It could also regulate FGFR-mediated signaling pathway and mitochondrial apoptotic pathway to promote cancer cell apoptosis and inhibit cancer cell invasion and metastasis. Moreover, III-30 had a good metabolic stability and showed relatively potent anti-tumor activity in the MDA-MB-231 xenograft tumor mice model.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Mice , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Cell Line, Tumor , Purines/pharmacology , Purines/chemistry , Purines/chemical synthesis , Drug Discovery , Apoptosis/drug effects , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Dose-Response Relationship, Drug , Mice, Nude , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Female
7.
Genes Chromosomes Cancer ; 63(4): e23232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607246

ABSTRACT

The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Male , Humans , Adult , Child , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Embryonal/genetics , Epigenomics , Genomics , Ribonuclease III , DEAD-box RNA Helicases , Receptor, Fibroblast Growth Factor, Type 1/genetics
8.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38627238

ABSTRACT

BACKGROUND: This Phase 1b/2 study assessed the efficacy in terms of objective response rate (ORR) of the FGFR1/2/3 kinase inhibitor derazantinib as monotherapy or in combination with atezolizumab in patients with metastatic urothelial cancer (mUC) and FGFR1-3 genetic aberrations (FGFR1-3GA). METHODS: This multicenter, open-label study comprised 5 substudies. In Substudies 1 and 5, patients with mUC with FGFR1-3GA received derazantinib monotherapy (300 mg QD in Substudy 1, 200 mg BID in Substudy 5). In Substudy 2, patients with any solid tumor received atezolizumab 1200 mg every 3 weeks plus derazantinib 200 or 300 mg QD. In Substudy 3, patients with mUC harboring FGFR1-3GA received derazantinib 200 mg BID plus atezolizumab 1200 mg every 3 weeks. In Substudy 4, patients with FGFR inhibitor-resistant mUC harboring FGFR1-3GA received derazantinib 300 mg QD monotherapy or derazantinib 300 mg QD plus atezolizumab 1200 mg every 3 weeks. RESULTS: The ORR for Substudies 1 and 5 combined was 4/49 (8.2%, 95% confidence interval = 2.3% to 19.6%), which was based on 4 partial responses. The ORR in Substudy 4 was 1/7 (14.3%, 95% confidence interval = 0.4% to 57.9%; 1 partial response for derazantinib 300 mg monotherapy, zero for derazantinib 300 mg plus atezolizumab 1200 mg). In Substudy 2, derazantinib 300 mg plus atezolizumab 1200 mg was identified as a recommended dose for Phase 2. Only 2 patients entered Substudy 3. CONCLUSIONS: Derazantinib as monotherapy or in combination with atezolizumab was well-tolerated but did not show sufficient efficacy to warrant further development in mUC. Clinicaltrials.gov NCT04045613, EudraCT 2019-000359-15.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Male , Female , Aged , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Aged, 80 and over , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology , Urologic Neoplasms/genetics , Adult , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/secondary
9.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568193

ABSTRACT

The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.


Subject(s)
Fibroblast Growth Factors , Signal Transduction , Female , Pregnancy , Humans , Ligands , Phosphorylation , Bias , Receptor, Fibroblast Growth Factor, Type 1/genetics
10.
Phytomedicine ; 129: 155612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38669968

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) continues to be a major global health challenge, ranking as a top cause of cancer-related mortality. Alarmingly, the five-year survival rate for CRC patients hovers around a mere 10-30 %. The disruption of fibroblast growth factor receptor (FGFRs) signaling pathways is significantly implicated in the onset and advancement of CRC, presenting a promising target for therapeutic intervention in CRC management. Further investigation is essential to comprehensively elucidate FGFR1's function in CRC and to create potent therapies that specifically target FGFR1. PURPOSE: This study aims to demonstrate the oncogenic role of FGFR1 in colorectal cancer and to explore the potential of ß,ß-dimethylacrylalkannin (ß,ß-DMAA) as a therapeutic option to inhibit FGFR1. METHODS: In this research, we employed a comprehensive suite of techniques including tissue array, kinase profiling, computational docking, knockdown assay to predict and explore the inhibitor of FGFR1. Furthermore, we utilized kinase assay, pull-down, cell proliferation tests, and Patient derived xenograft (PDX) mouse models to further investigate a novel FGFR1 inhibitor and its impact on the growth of CRC. RESULTS: In our research, we discovered that FGFR1 protein is markedly upregulated in colorectal cancer tissues, suggesting a significant role in regulating cellular proliferation, particularly in patients with colorectal cancer. Furthermore, we conducted a computational docking, kinase profiling analysis, simulation and identified that ß,ß-DMAA could directly bind with FGFR1 within ATP binding pocket domain. Cell-based assays confirmed that ß,ß-DMAA effectively inhibited the proliferation of colon cancer cells and also triggered cell cycle arrest, apoptosis, and altered FGFR1-mediated signaling pathways. Moreover, ß,ß-DMAA effectively attenuated the development of PDX tumors in mice that were FGFR1-positive, with no notable toxicity observed. In summary, our study highlights the pivotal role of FGFR1 in colorectal cancer, suggesting that inhibiting FGFR1 activity could be a promising strategy for therapeutic intervention. We present strong evidence that targeting FGFR1 with ß,ß-DMAA is a viable approach for the management of colorectal cancer. Given its low toxicity and high efficacy, ß,ß-DMAA, as an FGFR1 inhibitor, warrants further investigation in clinical settings for the treatment of FGFR1-positive tumors.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Receptor, Fibroblast Growth Factor, Type 1 , Xenograft Model Antitumor Assays , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Colorectal Neoplasms/drug therapy , Humans , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Molecular Docking Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Female , Acrylamides/pharmacology , Apoptosis/drug effects
11.
J Matern Fetal Neonatal Med ; 37(1): 2344718, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38679587

ABSTRACT

OBJECTIVE: Holoprosencephaly (HPE) is the most common aberration of forebrain development, and it leads to a wide spectrum of developmental and craniofacial anomalies. HPE etiology is highly heterogeneous and includes both chromosomal abnormalities and single-gene defects. METHODS: Here, we report an FGFR1 heterozygous variant detected by prenatal exome sequencing and inherited from the asymptomatic mother, in association with recurrent neurological abnormalities in the HPE spectrum in two consecutive pregnancies. RESULTS: Individuals with germline pathogenic variants in FGFR1 (MIM: 136350) show extensive phenotypic variability, which ranges from asymptomatic carriers to hypogonadotropic hypogonadism, arhinencephaly, Kallmann's syndrome with associated features such as cleft lip and palate, skeletal anomalies, isolated HPE, and Hartsfield syndrome. CONCLUSION: The presented case supports the role of exome sequencing in prenatal diagnosis when fetal midline structural anomalies are suggestive of a genetic etiology, as early as the first trimester of gestation. The profound heterogeneity of FGFR1 allelic disorders needs to be considered when planning prenatal screening even in asymptomatic carriers.


Subject(s)
Holoprosencephaly , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Female , Receptor, Fibroblast Growth Factor, Type 1/genetics , Pregnancy , Holoprosencephaly/genetics , Holoprosencephaly/diagnosis , Adult , Prenatal Diagnosis/methods , Exome Sequencing , Ultrasonography, Prenatal , Prosencephalon/abnormalities , Prosencephalon/embryology , Heterozygote
12.
Breast Cancer Res ; 26(1): 54, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553760

ABSTRACT

Fibroblast growth factors (FGFs) control various cellular functions through fibroblast growth factor receptor (FGFR) activation, including proliferation, differentiation, migration, and survival. FGFR amplification in ER + breast cancer patients correlate with poor prognosis, and FGFR inhibitors are currently being tested in clinical trials. By comparing three-dimensional spheroid growth of ER + breast cancer cells with and without FGFR1 amplification, our research discovered that FGF2 treatment can paradoxically decrease proliferation in cells with FGFR1 amplification or overexpression. In contrast, FGF2 treatment in cells without FGFR1 amplification promotes classical FGFR proliferative signaling through the MAPK cascade. The growth inhibitory effect of FGF2 in FGFR1 amplified cells aligned with an increase in p21, a cell cycle inhibitor that hinders the G1 to S phase transition in the cell cycle. Additionally, FGF2 addition in FGFR1 amplified cells activated JAK-STAT signaling and promoted a stem cell-like state. FGF2-induced paradoxical effects were reversed by inhibiting p21 or the JAK-STAT pathway and with pan-FGFR inhibitors. Analysis of patient ER + breast tumor transcriptomes from the TCGA and METABRIC datasets demonstrated a strong positive association between expression of FGF2 and stemness signatures, which was further enhanced in tumors with high FGFR1 expression. Overall, our findings reveal a divergence in FGFR signaling, transitioning from a proliferative to stemness state driven by activation of JAK-STAT signaling and modulation of p21 levels. Activation of these divergent signaling pathways in FGFR amplified cancer cells and paradoxical growth effects highlight a challenge in the use of FGFR inhibitors in cancer treatment.


Subject(s)
Breast Neoplasms , Signal Transduction , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/therapeutic use , Janus Kinases/metabolism , Janus Kinases/pharmacology , Janus Kinases/therapeutic use , STAT Transcription Factors/metabolism , STAT Transcription Factors/pharmacology , STAT Transcription Factors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1 , Cell Proliferation , Fibroblast Growth Factors/pharmacology , Cell Line, Tumor
13.
Environ Toxicol ; 39(6): 3548-3562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477013

ABSTRACT

Tumor cell metastasis is the key cause of death in patients with nasopharyngeal carcinoma (NPC). MiR-2110 was cloned and identified in Epstein-Barr virus (EBV)-positive NPC, but its role is unclear in NPC. In this study, we investigated the effect of miR-2110 on NPC metastasis and its related molecular basis. In addition, we also explored whether miR-2110 can be regulated by cinobufotalin (CB) and participate in the inhibition of CB on NPC metastasis. Bioinformatics, RT-PCR, and in situ hybridization were used to observe the expression of miR-2110 in NPC tissues and cells. Scratch, Boyden, and tail vein metastasis model of nude mouse were used to detect the effect of miR-2110 on NPC metastasis. Western blot, Co-IP, luciferase activity, colocalization of micro confocal and ubiquitination assays were used to identify the molecular mechanism of miR-2110 affecting NPC metastasis. Finally, miR-2110 induced by CB participates in CB-stimulated inhibition of NPC metastasis was explored. The data showed that increased miR-2110 significantly suppresses NPC cell migration, invasion, and metastasis. Suppressing miR-2110 markedly restored NPC cell migration and invasion. Mechanistically, miR-2110 directly targeted FGFR1 and reduced its protein expression. Decreased FGFR1 attenuated its recruitment of NEDD4, which downregulated NEDD4-induced phosphatase and tensin homolog (PTEN) ubiquitination and degradation and further increased PTEN protein stability, thereby inactivating PI3K/AKT-stimulated epithelial-mesenchymal transition signaling and ultimately suppressing NPC metastasis. Interestingly, CB, a potential new inhibitory drug for NPC metastasis, significantly induced miR-2110 expression by suppressing PI3K/AKT/c-Jun-mediated transcription inhibition. Suppression of miR-2110 significantly restored cell migration and invasion in CB-treated NPC cells. Finally, a clinical sample assay indicated that reduced miR-2110 was negatively correlated with NPC lymph node metastasis and positively related to NPC patient survival prognosis. In summary, miR-2110 is a metastatic suppressor involving in CB-induced suppression of NPC metastasis.


Subject(s)
Bufanolides , Cell Movement , Mice, Nude , MicroRNAs , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , PTEN Phosphohydrolase , Receptor, Fibroblast Growth Factor, Type 1 , Ubiquitination , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Cell Line, Tumor , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Ubiquitination/drug effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Bufanolides/pharmacology , Cell Movement/drug effects , Mice , Mice, Inbred BALB C , Male , Neoplasm Metastasis , Female , Gene Expression Regulation, Neoplastic/drug effects
14.
Endocr J ; 71(4): 335-343, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38556320

ABSTRACT

Bone secrets the hormone, fibroblast growth factor 23 (FGF23), as an endocrine organ to regulate blood phosphate level. Phosphate is an essential mineral for the human body, and around 85% of phosphate is present in bone as a constituent of hydroxyapatite, Ca10(PO4)6(OH)2. Because hypophosphatemia induces rickets/osteomalacia, and hyperphosphatemia results in ectopic calcification, blood phosphate (inorganic form) level must be regulated in a narrow range (2.5 mg/dL to 4.5 me/dL in adults). However, as yet it is unknown how bone senses changes in blood phosphate level, and how bone regulates the production of FGF23. Our previous data indicated that high extracellular phosphate phosphorylates FGF receptor 1 (FGFR1) in an unliganded manner, and its downstream intracellular signaling pathway regulates the expression of GALNT3. Furthermore, the post-translational modification of FGF23 protein via a gene product of GALNT3 is the main regulatory mechanism of enhanced FGF23 production due to high dietary phosphate. Therefore, our research group proposes that FGFR1 works as a phosphate-sensing receptor at least in the regulation of FGF23 production and blood phosphate level, and phosphate behaves as a first messenger. Phosphate is involved in various effects, such as stimulation of parathyroid hormone (PTH) synthesis, vascular calcification, and renal dysfunction. Several of these responses to phosphate are considered as phosphate toxicity. However, it is not clear whether FGFR1 is involved in these responses to phosphate. The elucidation of phosphate-sensing mechanisms may lead to the identification of treatment strategies for patients with abnormal phosphate metabolism.


Subject(s)
Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Phosphates , Humans , Phosphates/metabolism , Fibroblast Growth Factors/metabolism , Animals , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction , Bone and Bones/metabolism , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Hyperphosphatemia/metabolism , Polypeptide N-acetylgalactosaminyltransferase
15.
Eur J Med Chem ; 270: 116335, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38555854

ABSTRACT

Several flavonoids have been shown to exert anti-osteoporosis activity. However, the structure-activity relationship and the mechanism of anti-osteoporosis activity of flavonoids remain unknown. In this study, we prepared a series of novel homoisoflavonoid (HIF) derivatives to evaluate their inhibitory effects on osteoclastogenesis using TRAP-activity in vitro assay. Then, the preliminary structure-activity relationship was studied. Among the evaluated novel flavonoids, derivative 5g exerted the most inhibitory bioactivity on primary osteoclast differentiation without interfering with osteogenesis. It was hence selected for further in vitro, in vivo and mechanism of action investigation. Results show that 5g likely directly binds to the fibroblast growth factor receptor 1 (FGFR1), decreasing the activation of ERK1/2 and IκBα/NF-κB signaling pathways, which in turn blocks osteoclastogenesis in vitro and osteoclastic bone loss in vivo. Our study shows that homoisoflavonoid (HIF) derivatives 5g can serve as a potential novel candidate for treating osteoporosis via inhibition of FGFR1.


Subject(s)
Bone Resorption , Osteoporosis , Humans , Osteoclasts , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Bone Resorption/metabolism , Osteogenesis , NF-kappa B/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , RANK Ligand/metabolism , Cell Differentiation
16.
Int J Hematol ; 119(6): 722-727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38457113

ABSTRACT

Myeloid and lymphoid neoplasms associated with FGFR1 abnormalities (MLN-FGFR1 abnormalities) are rare hematologic malignancies associated with chromosome 8p11.2 abnormalities. Translocations of 8p11.2 were detected in 10 of 17,039 (0.06%) unique patient cytogenetic studies performed at nine institutions in Japan. No inversions or insertions of 8p11.2 were detected. Among the 10 patients with 8p11.2 translocations, three patients were diagnosed with MLN-FGFR1 abnormalities, which were confirmed by FISH analysis. Peripheral blood eosinophilia was observed in all three patients, and all progressed to AML or T-lymphoblastic lymphoma/leukemia. The prevalence of 8p11.2 translocations in clinical practice and the proportion of MLN-FGFR1 abnormalities in patients with 8p11.2 translocations in Japan were consistent with those in previous reports from Western countries.


Subject(s)
Chromosomes, Human, Pair 8 , Receptor, Fibroblast Growth Factor, Type 1 , Translocation, Genetic , Humans , Receptor, Fibroblast Growth Factor, Type 1/genetics , Chromosomes, Human, Pair 8/genetics , Japan/epidemiology , Male , Female , Middle Aged , Prevalence , Aged , Adult , Cohort Studies , Lymphoma/genetics , Lymphoma/epidemiology , In Situ Hybridization, Fluorescence
17.
Clin Cancer Res ; 30(8): 1466-1477, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38329716

ABSTRACT

PURPOSE: Futibatinib, a covalently-binding inhibitor of fibroblast growth factor receptor (FGFR)1-4 gained approval for the treatment of refractory, advanced intrahepatic cholangiocarcinoma (iCCA) harboring an FGFR2 fusion/other rearrangement. An integrated analysis was performed to evaluate safety and provide guidance on the management of futibatinib-associated adverse events (AEs) in patients with unresectable/metastatic tumors, including iCCA. PATIENTS AND METHODS: Data from three global phase I or II studies of futibatinib (NCT02052778; JapicCTI-142552) were pooled. AEs were graded per NCI CTCAE v4.03, where applicable. Safety was analyzed for patients receiving any futibatinib starting dose (overall population) and in those receiving the approved starting dose of 20 mg once every day. RESULTS: In total, 469 patients with one of 33 known tumor types were analyzed, including 318 patients who received futibatinib 20 mg every day. AEs of clinical interest (AECI; any grade/grade ≥3) in the overall population included hyperphosphatemia (82%/19%), nail disorders (27%/1%), hepatic AEs (27%/11%), stomatitis (19%/3%), palmar-plantar erythrodysesthesia syndrome (PPES; 13%/3%), rash (9%/0%), retinal disorders (8%/0%), and cataract (4%/1%). Median time to onset of grade ≥3 AECIs ranged from 9 days (hyperphosphatemia) to 125 days (cataract). Grade ≥3 hyperphosphatemia, hepatic AEs, PPES, and nail disorders resolved to grade ≤2 within a median of 7, 7, 8, and 28 days, respectively. Discontinuations due to treatment-related AEs were rare (2%), and no treatment-related deaths occurred. AE management included phosphate-lowering medication and dose adjustments. CONCLUSIONS: Futibatinib showed a consistent and manageable safety profile across patients with various tumor types. AECIs were mostly reversible with appropriate clinical management.


Subject(s)
Bile Duct Neoplasms , Cataract , Cholangiocarcinoma , Hyperphosphatemia , Pyrazoles , Pyrimidines , Pyrroles , Humans , Cholangiocarcinoma/drug therapy , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/pathology , Receptor, Fibroblast Growth Factor, Type 1
18.
JCO Precis Oncol ; 8: e2300513, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38354330

ABSTRACT

PURPOSE: The Targeted Agent and Profiling Utilization Registry Study is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results from cohorts of patients with metastatic breast cancer (BC) with FGFR1 and FGFR2 alterations treated with sunitinib are reported. METHODS: Eligible patients had measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS: Forty patients with BC with FGFR1 (N = 30; amplification only n = 26, mutation only n = 1, both n = 3) or FGFR2 (N = 10; amplification only n = 2, mutation only n = 6, both n = 2) alterations were enrolled. Three patients in the FGFR1 cohort were not evaluable for efficacy; all patients in the FGFR2 cohort were evaluable. For the FGFR1 cohort, two patients with partial response and four with SD16+ were observed for DC and OR rates of 27% (90% CI, 13 to 100) and 7% (95% CI, 1 to 24), respectively. The null hypothesis of 15% DC rate was not rejected (P = .169). No patients achieved DC in the FGFR2 cohort (P = 1.00). Thirteen of the 40 total patients across both cohorts had at least one grade 3-4 adverse event or serious adverse event at least possibly related to sunitinib. CONCLUSION: Sunitinib did not meet prespecified criteria to declare a signal of antitumor activity in patients with BC with either FGFR1 or FGFR2 alterations. Other treatments and clinical trials should be considered for these patient populations.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Sunitinib/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Antineoplastic Agents/adverse effects , Mutation , Progression-Free Survival , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/therapeutic use
19.
Drug Resist Updat ; 73: 101064, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387284

ABSTRACT

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS: Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS: Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION: FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Proliferation , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm/genetics , Gemcitabine , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proteomics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/therapeutic use
20.
Acta Pharmacol Sin ; 45(5): 988-1001, 2024 May.
Article in English | MEDLINE | ID: mdl-38279043

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.


Subject(s)
Diet, High-Fat , Macrophages , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Receptor, Fibroblast Growth Factor, Type 1 , Tumor Necrosis Factor-alpha , Animals , Diet, High-Fat/adverse effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Macrophages/metabolism , Macrophages/drug effects , Mice , Male , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Tumor Necrosis Factor-alpha/metabolism , Mice, Knockout , Liver/pathology , Liver/metabolism , Signal Transduction , Inflammation/metabolism , MAP Kinase Signaling System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...