Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 507
Filter
1.
Nat Commun ; 15(1): 4820, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844479

ABSTRACT

Chondrocyte differentiation controls skeleton development and stature. Here we provide a comprehensive map of chondrocyte-specific enhancers and show that they provide a mechanistic framework through which non-coding genetic variants can influence skeletal development and human stature. Working with fetal chondrocytes isolated from mice bearing a Col2a1 fluorescent regulatory sensor, we identify 780 genes and 2'704 putative enhancers specifically active in chondrocytes using a combination of RNA-seq, ATAC-seq and H3K27ac ChIP-seq. Most of these enhancers (74%) show pan-chondrogenic activity, with smaller populations being restricted to limb (18%) or trunk (8%) chondrocytes only. Notably, genetic variations overlapping these enhancers better explain height differences than those overlapping non-chondrogenic enhancers. Finally, targeted deletions of identified enhancers at the Fgfr3, Col2a1, Hhip and, Nkx3-2 loci confirm their role in regulating cognate genes. This enhancer map provides a framework for understanding how genes and non-coding variations influence bone development and diseases.


Subject(s)
Chondrocytes , Chondrogenesis , Enhancer Elements, Genetic , Receptor, Fibroblast Growth Factor, Type 3 , Animals , Enhancer Elements, Genetic/genetics , Humans , Chondrocytes/metabolism , Chondrocytes/cytology , Mice , Chondrogenesis/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression Regulation, Developmental , Bone Development/genetics , Extremities/embryology , Male , Cell Differentiation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Female
2.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821585

ABSTRACT

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Administration, Oral , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors
3.
Exp Mol Med ; 56(4): 975-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38609519

ABSTRACT

We explored the genomic events underlying central neurocytoma (CN), a rare neoplasm of the central nervous system, via multiomics approaches, including whole-exome sequencing, bulk and single-nuclei RNA sequencing, and methylation sequencing. We identified FGFR3 hypomethylation leading to FGFR3 overexpression as a major event in the ontogeny of CN that affects crucial downstream events, such as aberrant PI3K-AKT activity and neuronal development pathways. Furthermore, we found similarities between CN and radial glial cells based on analyses of gene markers and CN tumor cells and postulate that CN tumorigenesis is due to dysregulation of radial glial cell differentiation into neurons. Our data demonstrate the potential role of FGFR3 as one of the leading drivers of tumorigenesis in CN.


Subject(s)
DNA Methylation , Ependymoglial Cells , Neurocytoma , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Neurocytoma/genetics , Neurocytoma/pathology , Neurocytoma/metabolism , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Gene Expression Regulation, Neoplastic
4.
Front Immunol ; 15: 1358019, 2024.
Article in English | MEDLINE | ID: mdl-38515743

ABSTRACT

Bladder cancer is an increasingly prevalent global disease that continues to cause morbidity and mortality despite recent advances in treatment. Immune checkpoint inhibitors (ICI) and fibroblast growth factor receptor (FGFR)-targeted therapeutics have had modest success in bladder cancer when used as monotherapy. Emerging data suggests that the combination of these two therapies could lead to improved clinical outcomes, but the optimal strategy for combining these agents remains uncertain. Mathematical models, specifically agent-based models (ABMs), have shown recent successes in uncovering the multiscale dynamics that shape the trajectory of cancer. They have enabled the optimization of treatment methods and the identification of novel therapeutic strategies. To assess the combined effects of anti-PD-1 and anti-FGFR3 small molecule inhibitors (SMI) on tumor growth and the immune response, we built an ABM that captures key facets of tumor heterogeneity and CD8+ T cell phenotypes, their spatial interactions, and their response to therapeutic pressures. Our model quantifies how tumor antigenicity and FGFR3 activating mutations impact disease trajectory and response to anti-PD-1 antibodies and anti-FGFR3 SMI. We find that even a small population of weakly antigenic tumor cells bearing an FGFR3 mutation can render the tumor resistant to combination therapy. However, highly antigenic tumors can overcome therapeutic resistance mediated by FGFR3 mutation. The optimal therapy depends on the strength of the FGFR3 signaling pathway. Under certain conditions, ICI alone is optimal; in others, ICI followed by anti-FGFR3 therapy is best. These results indicate the need to quantify FGFR3 signaling and the fitness advantage conferred on bladder cancer cells harboring this mutation. This ABM approach may enable rationally designed treatment plans to improve clinical outcomes.


Subject(s)
Signal Transduction , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Combined Modality Therapy , Mutation , Cell Line, Tumor , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism
5.
J Ethnopharmacol ; 327: 117973, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38403002

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY: The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS: Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS: PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION: Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.


Subject(s)
Depression , Peptides , Receptor, Fibroblast Growth Factor, Type 3 , Mice , Animals , Depression/drug therapy , Depression/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Molecular Docking Simulation , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Hippocampus/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal
6.
Biochim Biophys Acta Gen Subj ; 1868(4): 130565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244702

ABSTRACT

N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.


Subject(s)
Biological Phenomena , Polysaccharides , Cricetinae , Animals , Humans , Phosphorylation , Glycosylation , CHO Cells , Cricetulus , Polysaccharides/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism
7.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226620

ABSTRACT

The combination of targeted therapy with immune checkpoint inhibition (ICI) is an area of intense interest. We studied the interaction of fibroblast growth factor receptor (FGFR) inhibition with ICI in urothelial carcinoma (UC) of the bladder, in which FGFR3 is altered in 50% of cases. Using an FGFR3-driven, Trp53-mutant genetically engineered murine model (UPFL), we demonstrate that UPFL tumors recapitulate the histology and molecular subtype of their FGFR3-altered human counterparts. Additionally, UPFL1 allografts exhibit hyperprogression to ICI associated with an expansion of T regulatory cells (Tregs). Erdafitinib blocked Treg proliferation in vitro, while in vivo ICI-induced Treg expansion was fully abrogated by FGFR inhibition. Combined erdafitinib and ICI resulted in high therapeutic efficacy. In aggregate, our work establishes that, in mice, co-alteration of FGFR3 and Trp53 results in high-grade, non-muscle-invasive UC and presents a previously underappreciated role for FGFR inhibition in blocking ICI-induced Treg expansion.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Animals , Humans , Mice , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Immunosuppression Therapy , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
8.
Am J Surg Pathol ; 48(3): 284-291, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38084010

ABSTRACT

Seven cases of primary lung tumors characterized histologically by clear cell morphology and a distinctive FGFR3::TACC3 gene rearrangement are described. The tumors arose in 4 women and 3 men, aged 47 to 81 years (mean=68). They occurred in peripheral locations, predominantly subpleural, and ranged in size from 1.4 to 6.5 cm (mean=4.1 cm). All tumors showed a solid growth pattern with abundant central areas of necrosis and marked nuclear pleomorphism. The tumors demonstrated clear cell histology, with large cohesive tumor cells displaying atypical nuclei and abundant clear cytoplasm. Immunohistochemical stains identified a squamous phenotype in 5 cases and an adenocarcinoma phenotype in 2 cases. One case was a squamous cell carcinoma with focal glandular component, and one of the squamous cell carcinomas showed focal sarcomatoid changes. Next generation sequencing identified FGFR3::TACC3 gene rearrangements in all 7 cases. One case demonstrated a concurrent activating FGFR3 mutation and a second case demonstrated concurrent FGFR3 amplification. Two cases harbored a concurrent KRAS G12D mutation. One case harbored both KRAS and EGFR mutations, and 1 case had a concurrent TP53 mutation. Non-small cell lung carcinoma harboring FGFR3::TACC3 gene rearrangements is extremely rare, and this rearrangement may potentially be enriched in tumors that demonstrate clear cell histology. Identification of FGFR3::TACC3 in patients with lung carcinomas with clear cell features may be of importance as they could potentially be candidates for therapy with tyrosine kinase inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Male , Humans , Female , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , High-Throughput Nucleotide Sequencing , Proto-Oncogene Proteins p21(ras)/genetics , Oncogene Proteins, Fusion/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Mutation , Chromosome Aberrations , Cell Cycle Proteins/genetics , Gene Rearrangement , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Microtubule-Associated Proteins/genetics
9.
Neurourol Urodyn ; 43(2): 516-526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38108523

ABSTRACT

BACKGROUND: Partial bladder outlet obstruction (pBOO) may lead to bladder remodeling, including fibrosis and extracellular matrix (ECM) deposition. Despite the extensive research on the mechanisms underlying pBOO, potential therapeutic targets for the treatment of pBOO require further research. Dysregulated expression of thrombospondin-1 (Thbs1) has been reported in various human fibrotic diseases; however, its relationship with pBOO remains unclear. AIMS: Investigate the effects of Thbs1 on bladder remodeling caused by pBOO. METHODS: We established a pBOO model in Sprague-Dawley rats and performed urodynamic analyses to estimate functional changes in the bladder, validated the histopathological changes in the bladder by using haematoxylin-eosin and Masson's trichrome staining, identified key target genes by integrating RNA sequencing (RNA-seq) and bioinformatics analyses, validated the expression of related factors using Western blot analysis and RT-qPCR, and used immunofluorescence staining to probe the potential interaction factors of Thbs1. RESULTS: Urodynamic results showed that pressure-related parameters were significantly increased in rats with pBOO. Compared with the sham group, the pBOO group demonstrated significant increases in bladder morphology, bladder weight, and collagen deposition. Thbs1 was significantly upregulated in the bladder tissues of rats with pBOO, consistent with the RNA-seq data. Thbs1 upregulation led to increased expression of matrix metalloproteinase (MMP) 2, MMP9, and fibronectin (Fn) in normal human urinary tract epithelial cells (SV-HUC-1), whereas anti-Thbs1 treatment inhibited the production of these cytokines in TGF-ß1-treated SV-HUC-1. Further experiments indicated that Thbs1 affected bladder remodeling in pBOO via the fibroblast growth factor receptor 3 (FGFR3) pathway. CONCLUSIONS: Thbs1 plays a crucial role in bladder remodeling caused by pBOO. Targeting Thbs1 might alleviate ECM damage. Mechanistically, Thbs1 may function via the FGFR signaling pathway by regulating the FGFR3 receptor, identified as the most relevant disease target of pBOO, and FGF2 may be a mediator. These findings suggest that Thbs1 plays a role in BOO development and is a therapeutic target for this condition.


Subject(s)
Urinary Bladder Neck Obstruction , Urinary Bladder , Animals , Humans , Rats , Disease Models, Animal , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/pharmacology , Signal Transduction
10.
Hum Exp Toxicol ; 42: 9603271231219480, 2023.
Article in English | MEDLINE | ID: mdl-38059300

ABSTRACT

This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 µM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 µM BGJ398. 1 µM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.


Subject(s)
Cartilage, Articular , Kashin-Beck Disease , Osteoarthritis , T-2 Toxin , Rats , Animals , T-2 Toxin/toxicity , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/pharmacology , Osteoarthritis/metabolism , Kashin-Beck Disease/chemically induced
11.
J Immunother Cancer ; 11(9)2023 09.
Article in English | MEDLINE | ID: mdl-37777251

ABSTRACT

BACKGROUND: Immune checkpoint blockade (ICB) therapy holds promise in metastatic urothelial carcinoma (UC). Fibroblast growth factor receptor 3 (FGFR3) mutation drives T-cell-depleted microenvironment in UC, which led to the hypothesis that FGFR3 mutation might attenuate response to ICB in patients with metastatic UC. The study aims to compare prognosis and response between patients with FGFR3-mutated and FGFR3-wildtype metastatic UC after ICB therapy, and decode the potential molecular mechanisms. METHODS: Based on the single-arm, multicenter, phase 2 trial, IMvigor210, we conducted a propensity score matched (PSM) analysis. After a 1:1 ratio PSM method, 39 patients with FGFR3-mutated and 39 FGFR3-wildtype metastatic UC treated with atezolizumab were enrolled. A meta-analysis through systematical database retrieval was conducted for validation. In addition, we performed single-cell RNA sequencing on three FGFR3-mutated and three FGFR3-wildtype UC tumors and analyzed 58,069 single cells. RESULTS: The PSM analysis indicated FGFR3-mutated patients had worse overall survival (OS) in comparison to FGFR3-wildtype patients (HR=2.11, 95% CI=(1.16 to 3.85), p=0.015) receiving atezolizumab. The median OS was 9.2 months (FGFR3-mutated) versus 21.0 months (FGFR3-wildtype). FGFR3-mutated patients had lower disease control rate than FGFR3-wildtype patients (41.0% vs 66.7%, p=0.023). The meta-analysis involving 938 patients with metastatic UC confirmed FGFR3 mutation was associated with worse OS after ICB (HR=1.28, 95% CI=(1.04 to 1.59), p=0.02). Single-cell RNA transcriptome analysis identified FGFR3-mutated UC carried a stronger immunosuppressive microenvironment compared with FGFR3-wildtype UC. FGFR3-mutated UC exhibited less immune infiltration, and lower T-cell cytotoxicity. Higher TREM2+ macrophage abundance in FGFR3-mutated UC can undermine and suppress the T cells, potentially contributing to the formation of an immunosuppressive microenvironment. Lower inflammatory-cancer-associated fibroblasts in FGFR3-mutated UC recruited less chemokines in antitumor immunity but expressed growth factors to promote FGFR3-mutated malignant cell development. FGFR3-mutated UC carried abundance of malignant cells characterized by high hypoxia/metabolism and low interferon response phenotype. CONCLUSIONS: FGFR3 mutation can attenuate prognosis and response to ICB in patients with metastatic UC. FGFR3-mutated UC carries a stronger immunosuppressive microenvironment in comparison with FGFR3-wildtype UC. Inhibition of FGFR3 might activate the immune microenvironment, and the combination of FGFR inhibitor targeted therapy and ICB might be a promising therapeutic regimen in metastatic UC, providing important implications for UC clinical management.


Subject(s)
Carcinoma, Transitional Cell , Receptor, Fibroblast Growth Factor, Type 3 , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunosuppressive Agents/therapeutic use , Multicenter Studies as Topic , Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Tumor Microenvironment , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
12.
Asian Pac J Cancer Prev ; 24(9): 3125-3131, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37774064

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the association between the overexpression of tumor protein (P53), cytokeratin 20 (CK20), fibroblast growth factor receptor 3 (FGFR3), biomarkers and the grading, prognosis, heterogeneity, and relapse tendency of urothelial cell carcinomas (UCCs) of the bladder. METHODS: A cross-sectional study was conducted using 413 samples of Iranian patients diagnosed with UCC of the bladder. The tissue microarray technique was used to evaluate the patterns of tumor tissue. Two pathologists scored tissue staining using a semi-quantitative scoring system. RESULTS: The results showed that P53 was a predictor of a high-grade pattern (the area under the curve (AUC)=0.620) with a best cut-off value of 95.0 using the receiver operating characteristic (ROC) curve. CK20 was another predictor of a high-grade pattern (AUC=0.745) with a best cut-off value of 15. However, the overexpression of both biomarkers was not associated with a heterogeneous pattern and could not predict tumor-associated death or relapse. The heterogeneous (odds ratio (OR)=4.535, p-value=0.001) and non-papillary (OR= 6.363, p-value= 0.001) patterns were effective predictors of tumor recurrence among all baseline variables, including patient and tumor characteristics. FGFR3 was positive in all specimens and was not a valuable biomarker for differentiating patterns. None of the variables predicted tumor prognosis. CONCLUSION: The study findings indicate that the intensity and percentage of cell staining for P53 and CK20 in the UCC of the bladder can aid in differentiating the grading patterns. The tendency of tumor relapse can be predicted by demonstrating heterogeneous and non-papillary patterns.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/metabolism , Carcinoma, Transitional Cell/metabolism , Cross-Sectional Studies , Iran , Neoplasm Recurrence, Local/pathology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/pathology
13.
Biotech Histochem ; 98(7): 447-455, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37381732

ABSTRACT

Mesenchymal stem cells (MSCs) are an attractive source of pluripotent cells for regenerative therapy; however, maintaining stemness and self-renewal of MSCs during expansion ex vivo is challenging. For future clinical applications, it is essential to define the roles and signaling pathways that regulate the fate of MSCs. Based on our earlier finding that Krüppel-like factor 2 (KLF2) participates in maintaining stemness in MSCs, we examined further the role of this factor in intrinsic signaling pathways. Using a chromatin immunoprecipitation (ChIP)-sequence assay, we found that the FGFR3 gene is a KLF2 binding site. Knockdown of FGFR3 significantly decreased the levels of key pluripotency factors, enhanced the expression of differentiation-related genes and down-regulated colony formation of human bone marrow MSCs (hBMSCs). Using alizarin red S and oil red O staining, we found that knockdown of FGFR3 inhibited the osteogenic and adipogenic ability of MSCs under conditions of differentiation. The ChIP-qPCR assay confirmed that KLF2 interacts with the promoter regions of FGFR3. Our findings suggest that KLF2 promotes hBMSC stemness by direct regulation of FGFR. Our findings may contribute to enhanced MSC stemness by genetic modification of stemness-related genes.


Subject(s)
Mesenchymal Stem Cells , Transcription Factors , Humans , Cell Differentiation , Transcription Factors/metabolism , Osteogenesis/genetics , Signal Transduction , Cells, Cultured , Bone Marrow Cells , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
14.
Chin Med J (Engl) ; 136(12): 1468-1477, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37192015

ABSTRACT

BACKGROUND: Congenital scoliosis (CS) is a complex spinal malformation of unknown etiology with abnormal bone metabolism. Fibroblast growth factor 23 (FGF23), secreted by osteoblasts and osteocytes, can inhibit bone formation and mineralization. This research aims to investigate the relationship between CS and FGF23. METHODS: We collected peripheral blood from two pairs of identical twins for methylation sequencing of the target region. FGF23 mRNA levels in the peripheral blood of CS patients and age-matched controls were measured. Receiver operator characteristic (ROC) curve analyses were conducted to evaluate the specificity and sensitivity of FGF23. The expression levels of FGF23 and its downstream factors fibroblast growth factor receptor 3 (FGFr3)/tissue non-specific alkaline phosphatase (TNAP)/osteopontin (OPN) in primary osteoblasts from CS patients (CS-Ob) and controls (CT-Ob) were detected. In addition, the osteogenic abilities of FGF23-knockdown or FGF23-overexpressing Ob were examined. RESULTS: DNA methylation of the FGF23 gene in CS patients was decreased compared to that of their identical twins, accompanied by increased mRNA levels. CS patients had increased peripheral blood FGF23 mRNA levels and decreased computed tomography (CT) values compared with controls. The FGF23 mRNA levels were negatively correlated with the CT value of the spine, and ROCs of FGF23 mRNA levels showed high sensitivity and specificity for CS. Additionally, significantly increased levels of FGF23, FGFr3, OPN, impaired osteogenic mineralization and lower TNAP levels were observed in CS-Ob. Moreover, FGF23 overexpression in CT-Ob increased FGFr3 and OPN levels and decreased TNAP levels, while FGF23 knockdown induced downregulation of FGFr3 and OPN but upregulation of TNAP in CS-Ob. Mineralization of CS-Ob was rescued after FGF23 knockdown. CONCLUSIONS: Our results suggested increased peripheral blood FGF23 levels, decreased bone mineral density in CS patients, and a good predictive ability of CS by peripheral blood FGF23 levels. FGF23 may contribute to osteopenia in CS patients through FGFr3/TNAP / OPN pathway.


Subject(s)
Bone Diseases, Metabolic , Calcinosis , Scoliosis , Humans , Osteopontin/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Scoliosis/genetics , Osteoblasts/metabolism , RNA, Messenger/metabolism , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Fibroblast Growth Factors/genetics
15.
Arkh Patol ; 85(2): 5-12, 2023.
Article in Russian | MEDLINE | ID: mdl-37053347

ABSTRACT

OBJECTIVE: To study the somatic mutational status of the FGFR3 gene in urothelial bladder cancer (BC) and evaluate its relationship with the clinical and morphological characteristics of the tumor, deficiency of the DNA mismatch repair (dMMR), PD-L1 tumor status, and immunohistochemical (IHC) expression of the p16 protein. MATERIAL AND METHODS: Surgical material of 40 patients with BC, on which the mutational status of the FGFR3 gene was studied using the molecular genetic method, as well as the MMR status, PD-L1 and p16 expression by the IHC method. RESULTS: FGFR3 mutations, such as G370C, S249C, S371C/Y373C, R248C, were detected in 35.0% of the studied BC samples. FGFR3 status did not depend on the gender and age of patients, as well as on the degree of tumor lymphoid infiltration (TILs). Statistically significant differences were found in the analysis of FGFR3 status depending on the histological structure and degree of tumor differentiation, as well as on the pT stage. The FGFR3 status of BC was not associated with the IHC expression of the studied proteins of the MMR system, as well as with the PD-L1 status. Higher levels of PD-L1 expression were demonstrated by BC tumor cells, in which no aberrations in FGFR3 were detected. There was no significant association between p16 status and the presence of FGFR3 mutations, but for FGFR3-positive carcinomas, the basal pattern of p16 staining by IHC was noted. CONCLUSION: A positive somatic mutational status of the FGFR3 gene was statistically significantly more common in the group of papillary low-grade non-muscle-invasive BC, demonstrating basal p16 IHC staining. In the study sample, there was no statistically significant relationship between the FGFR3 status of BC and gender and age differences, TILs, MMR status, PD-L1 status (SP142 and 22C3), and p16 status. The results of the study indicate the need to determine the FGFR3 status in patients with BC for further prescription of personalized therapy.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , B7-H1 Antigen , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism
16.
Technol Cancer Res Treat ; 22: 15330338231161139, 2023.
Article in English | MEDLINE | ID: mdl-36927233

ABSTRACT

Objectives: This study aims to investigate the function of the protein arginine methyltransferase 5 (PRMT5) and fibroblast growth factor receptor 3 (FGFR3)/Akt signaling axis in the epithelial-mesenchymal transition (EMT) of human lung cancer. Methods: The mRNA and protein expression levels of PRMT5, FGFR3, p-Akt, and EMT markers are determined by quantitative real-time PCR and Western blotting, respectively; the expression and localization of PRMT5, p-Akt, and proliferating cell nuclear antigen are detected by immunofluorescence; the human lung cancer cell proliferation is measured by MTS assay. Results: PRMT5 and FGFR3 are highly expressed in human lung cancer tissues and are closely related to lymphatic metastasis. Moreover, down-regulation of PRMT5 by lentivirus-mediated shRNAs or inhibition of PRMT5 by specific inhibitors attenuates FGFR3 expression, Akt phosphorylation, and lung cancer cell proliferation. Further studies show that silencing PRMT5 impairs EMT-related markers, including vimentin, collagen I, and ß-catenin. Conversely, ectopic expression of PRMT5 increases FGFR3 expression, Akt phosphorylation, and EMT-related markers, suggesting that PRMT5 regulates metastasis probably through the FGFR3/Akt signaling axis. Conclusion: PRMT5/FGFR3/Akt signaling axis controls human lung cancer progression and metastasis and also implies that PRMT5 may serve as a prognostic biomarker and therapeutic candidate for treating lung cancer.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Lung Neoplasms/pathology , Signal Transduction/genetics , RNA, Small Interfering/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
17.
Cancer Treat Rev ; 115: 102530, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36898352

ABSTRACT

Bladder cancer is a heterogeneous malignancy and is responsible for approximately 3.2% of new diagnoses of cancer per year (Sung et al., 2021). Fibroblast Growth Factor Receptors (FGFRs) have recently emerged as a novel therapeutic target in cancer. In particular, FGFR3 genomic alterations are potent oncogenic drivers in bladder cancer and represent predictive biomarkers of response to FGFR inhibitors. Indeed, overall âˆ¼50% of bladder cancers have somatic mutations in the FGFR3 -coding sequence (Cappellen et al., 1999; Turner and Grose, 2010). FGFR3 gene rearrangements are typical alterations in bladder cancer (Nelson et al., 2016; Parker et al., 2014). In this review, we summarize the most relevant evidence on the role of FGFR3 and the state-of-art of anti-FGFR3 treatment in bladder cancer. Furthermore, we interrogated the AACR Project GENIE to investigate clinical and molecular features of FGFR3-altered bladder cancers. We found that FGFR3 rearrangements and missense mutations were associated with a lower fraction of mutated genome, compared to the FGFR3 wild-type tumors, as also observed in other oncogene-addicted cancers. Moreover, we observed that FGFR3 genomic alterations are mutually exclusive with other genomic aberrations of canonical bladder cancer oncogenes, such as TP53 and RB1. Finally, we provide an overview of the treatment landscape of FGFR3-altered bladder cancer, discussing future perspectives for the management of this disease.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Oncogenes , Signal Transduction , Forecasting , Genomics , Mutation
18.
Bull Exp Biol Med ; 174(4): 578-584, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36913092

ABSTRACT

We studied the effect of fibroblast growth factor receptor 3 (FGFR3) inhibitor BGJ-398 on the differentiation of bone marrow mesenchymal stem cells (BM MSC) into osteoblasts in wild type (wt) mice and in animals with mutation in TBXT gene (mt) and possible differences in the pluripotency of these cells. Cytology tests showed that the cultured BM MSC could differentiate into osteoblasts and adipocytes. The effect of different BGJ-398 concentrations on the expression of FGFR3, RUNX2, SMAD1, SMAD4, SMAD5, SMAD6, SMAD7, and SMAD8 were studied by quantitative reverse transcription PCR. The expression of RUNX2 protein was evaluated by Western blotting. BM MSC of mt and wt mice did not differ in pluripotency and expressed the same membrane marker antigens. BGJ-398 inhibitor reduced the expression of FGFR3 and RUNX2. In BM MSC from mt and wt mice have similar gene expression (and its changing) in FGFR3, RUNX2, SMAD1, SMAD4, SMAD5, SMAD6, SMAD7, and SMAD8 genes. Thus, our experiments confirmed the effect of decreased expression of FGFR3 on osteogenic differentiation of BM MSC from wt and mt mice. However, BM MSC from mt and wt mice did not differ in pluripotency and are an adequate model for laboratory research.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Mice , Bone Marrow Cells , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Mesenchymal Stem Cells/metabolism , Mutation , Osteogenesis/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism
19.
Oncotarget ; 14: 133-145, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36780330

ABSTRACT

FGFR3-TACC3 represents an oncogenic fusion protein frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Various exon breakpoints of FGFR3-TACC3 have been identified in cancers; these were analyzed to determine the minimum contribution of TACC3 for activation of the FGFR3-TACC3 fusion protein. While TACC3 exons 11 and 12 are dispensable for activity, our results show that FGFR3-TACC3 requires exons 13-16 for biological activity. A detailed analysis of exon 13, which consists of 8 heptads forming a coiled coil, further defined the minimal region for biological activity as consisting of 5 heptads from exon 13, in addition to exons 14-16. These conclusions were supported by transformation assays of biological activity, examination of MAPK pathway activation, analysis of disulfide-bonded FGFR3-TACC3, and by examination of the Endoglycosidase H-resistant portion of FGFR3-TACC3. These results demonstrate that clinically identified FGFR3-TACC3 fusion proteins differ in their biological activity, depending upon the specific breakpoint. This study further suggests the TACC3 dimerization domain of FGFR3-TACC3 as a novel target in treating FGFR translocation driven cancers.


Subject(s)
Microtubule-Associated Proteins , Neoplasms , Oncogene Proteins, Fusion , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Cell Line, Tumor , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Neoplasms/genetics
20.
Dig Liver Dis ; 55(3): 400-406, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35999136

ABSTRACT

The FGF/FGFR signaling axis deregulation of the fibroblast growth factor receptor (FGFR) family is closely related to tumorigenesis, tumor progression and drug resistance to anticancer therapy. And fibroblast growth factor receptor 3 (FGFR3) is one member of this family. In this study, we aimed to investigate the effect of siRNA-induced knockdown of FGFR3 on the biological behaviors of intrahepatic cholangiocarcinoma (ICC). The expression levels of FGFR3 were determined in three intrahepatic cholangiocarcinoma cell lines RBE, HUCCT1 and HCCC9810 cell lines by Western blot. FGFR3 expression in RBE cell line was knocked down by siRNA. Our study found that knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells using Wound healing assay, Transwell migration and invasion assays and Cell proliferation assay. And significantly down-regulated the protein expression levels of MMP2, cyclinD1, and NCadherin, but had no significant effect on MMP9, cyclinD3, vimentin, E-cadherin protein. In addition, we found that ERK/c-Myc presumably is its signaling pathway by bioinformatics analysis and Western blot verification. To sum up, knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells. It demonstrated that FGFR3 probably becomes a therapeutic target for ICC and increases the proportion of potentially curable intrahepatic cholangiocarcinoma patients treated with FGFR inhibitors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/pharmacology , Cell Proliferation/genetics , Cell Movement/genetics , Cholangiocarcinoma/pathology , RNA, Small Interfering/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...