Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Growth Horm IGF Res ; 25(1): 2-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25466906

ABSTRACT

The prime position of the insulin-like growth factor 1 receptor (IGF-1R), at the head of the principle mitogenic and anti-apoptotic signalling cascades, along with the resilience to transformation of IGF-1R deficient cells fuelled great excitement for its anti-cancer targeting. Yet its potential has not been fulfilled, as clinical trial results fell far short of expectations. Advancements in understanding of other receptors' function have now begun to shed light on this incongruity, with the now apparent parallels highlighting the immaturity of our understanding of IGF-1R biology, with the model used for drug development now recognised as having been too simplistic. Gathering together the many advancements of the field of IGF-1R research over the past decade, alongside those in the GPCR field, advocates for a major paradigm shift in our appreciation of the subtle workings of this receptor. This review will emphasise the updating of the IGF-1R's classification from an RTK, to an RTK/GPCR functional hybrid, which integrates both canonical kinase signalling with many functions characteristic of a GPCR. Recognition of the shortcomings of IGF-1R inhibitor drug development programs and the models used not only allows us to reignite the initial interest in the IGF-1R as an anti-cancer therapeutic target, but also points to the possibility of biased ligand therapeutics, which together may hold a very powerful key to unlocking the true potential of IGF-1R modulation.


Subject(s)
Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, IGF Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Mice , Molecular Targeted Therapy , Neoplasms/drug therapy , Receptor, IGF Type 1/classification
2.
Mol Biol Evol ; 25(6): 1043-53, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18310661

ABSTRACT

The molecular phylogeny of the vertebrate insulin receptor (IR) family was reconstructed under maximum likelihood (ML) to establish homologous relationships among its members. A sister group relationship between the orphan insulin-related receptor (IRR) and the insulin-like growth factor 1 receptor (IGF1R) to the exclusion of the IR obtained maximal bootstrap support. Although both IR and IGF1R were identified in all vertebrates, IRR could not be found in any teleost fish. The ancestral character states at each position of the receptor molecule were inferred for IR, IRR + IGF1R, and all 3 paralogous groups based on the recovered phylogeny using ML in order to determine those residues that could be important for the specific function of IR. For 18 residues, ancestral character state of IR was significantly distinct (probability >0.95) with respect to the corresponding inferred ancestral character states both of IRR + IGF1R and of all 3 vertebrate paralogs. Most of these IR distinct (shared derived) residues were located on the extracellular portion of the receptor (because this portion is larger and the rate of generation of IR shared derived sites is uniform along the receptor), suggesting that functional diversification during the evolutionary history of the family was largely generated modifying ligand affinity rather than signal transduction at the tyrosine kinase domain. In addition, 2 residues at positions 436 and 1095 of the human IR sequence were identified as radical cluster-specific sites in IRR + IGF1R. Both Ir and Irr have an extra exon (namely exon 11) with respect to Igf1r. We used the molecular phylogeny to infer the evolution of this additional exon. The Irr exon 11 can be traced back to amphibians, whereas we show that presence and alternative splicing of Ir exon 11 seems to be restricted exclusively to mammals. The highly divergent sequence of both exons and the reconstructed phylogeny of the vertebrate IR family strongly indicate that both exons were acquired independently by each paralog.


Subject(s)
Evolution, Molecular , Genetic Variation , Receptor, Insulin/classification , Receptor, Insulin/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Chick Embryo , Conserved Sequence , Exons , Mice , Molecular Sequence Data , Multigene Family , Phylogeny , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Quaternary , Receptor, IGF Type 1/classification , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL