Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.420
Filter
1.
Genes (Basel) ; 15(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38790245

ABSTRACT

Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants.


Subject(s)
Mice, Knockout , Ovary , Receptor, IGF Type 1 , Receptor, Insulin , Animals , Female , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Ovary/metabolism , Ovary/pathology , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Ovulation/genetics , Granulosa Cells/metabolism , Granulosa Cells/pathology , Pregnancy , Signal Transduction/genetics
2.
BMC Biol ; 22(1): 127, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816743

ABSTRACT

BACKGROUND: Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS: Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS: Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.


Subject(s)
Fetal Development , GRB10 Adaptor Protein , Mice, Knockout , Receptor, IGF Type 1 , Receptor, Insulin , Animals , GRB10 Adaptor Protein/genetics , GRB10 Adaptor Protein/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Fetal Development/genetics , Genomic Imprinting , Female , Male , Insulin-Like Peptides
3.
Mol Cancer ; 23(1): 91, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715012

ABSTRACT

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Signal Transduction , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Drug Resistance, Neoplasm/genetics , Acrylamides/pharmacology , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Aniline Compounds/pharmacology , Cell Line, Tumor , Animals , Mice , Apoptosis , Cell Movement/genetics , Xenograft Model Antitumor Assays , Male , Female , Indoles , Pyrimidines
4.
Cell Death Dis ; 15(5): 374, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811543

ABSTRACT

High workload-induced cellular stress can cause pancreatic islet ß cell death and dysfunction, or ß cell failure, a hallmark of type 2 diabetes mellitus. Thus, activation of molecular chaperones and other stress-response genes prevents ß cell failure. To this end, we have shown that deletion of the glucose-regulated protein 94 (GRP94) in Pdx1+ pancreatic progenitor cells led to pancreas hypoplasia and reduced ß cell mass during pancreas development in mice. Here, we show that GRP94 was involved in ß cell adaption and compensation (or failure) in islets from leptin receptor-deficient (db/db) mice in an age-dependent manner. GRP94-deficient cells were more susceptible to cell death induced by various diabetogenic stress conditions. We also identified a new client of GRP94, insulin-like growth factor-1 receptor (IGF-1R), a critical factor for ß cell survival and function that may mediate the effect of GRP94 in the pathogenesis of diabetes. This study has identified essential functions of GRP94 in ß cell failure related to diabetes.


Subject(s)
Insulin-Secreting Cells , Receptor, IGF Type 1 , Animals , Mice , Cell Death , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics
5.
Gene ; 918: 148503, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38670398

ABSTRACT

The study is based on the complexity of Insulin like growth factor receptor (IGF1R) signaling and its regulation by noncoding RNAs (ncRNAs). IGF1R signaling is an important cascade in Alzheimer's disease (AD); however, its regulation and roles are poorly understood. Due to the presence of ß-arrestin and GPCR Receptor Kinase binding sites, this protein has been termed a 'functional hybrid', as it can take part in both kinase and GPCR signaling pathways, further adding to its complexity. The objective of this study is to understand the underlying ncRNA regulation controlling IGF1R and GPCRs in AD to find commonalities in the network. We found through data mining that 45 GPCRs were reportedly deregulated in AD and built clusters based on GO/KEGG pathways to show shared functionality with IGF1R. Eight miRs were further discovered that could coregulate IGF1R and GPCRs. We validated their expression in an AD cell model and probed for common lncRNAs downstream that could regulate these miRs. Seven such candidates were identified and further validated. A combined network comprising IGF1R with nine GPCRs, eight miRs, and seven lncRNAs was created to visualize the interconnectivity within pathways. Betweenness centrality analysis showed a cluster of NEAT1, hsa-miR-15a-5p, hsa-miR-16-5p, and IGF1R to be crucial form a competitive endogenous RNA-based (ceRNA) tetrad that could relay information within the network, which was further validated by cell-based studies. NEAT1 emerged as a master regulator that could alter the levels of IGF1R and associated GPCRs. This combined bioinformatics and experimental study for the first time explored the regulation of IGF1R through ncRNAs from the perspective of neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , RNA, Long Noncoding , Receptor, IGF Type 1 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Gene Expression Regulation , Receptors, Somatomedin/genetics , Receptors, Somatomedin/metabolism , Gene Regulatory Networks
6.
Geroscience ; 46(3): 3481-3501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38388918

ABSTRACT

Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.


Subject(s)
Hypertension , Muscle, Smooth, Vascular , Receptor, IGF Type 1 , Aged , Animals , Humans , Mice , Gait , Hypertension/genetics , Hypertension/complications , Insulin-Like Growth Factor I/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Receptor, IGF Type 1/genetics , Gait Disorders, Neurologic/genetics
7.
Signal Transduct Target Ther ; 9(1): 31, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342897

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, characterized by an intense desmoplastic reaction that compresses blood vessels and limits nutrient supplies. PDAC aggressiveness largely relies on its extraordinary capability to thrive and progress in a challenging tumor microenvironment. Dysregulation of the onco-suppressor miR-15a has been extensively documented in PDAC. Here, we identified the transcription factor Fos-related antigen-2 (Fra-2) as a miR-15a target mediating the adaptive mechanism of PDAC to nutrient deprivation. We report that the IGF1 signaling pathway was enhanced in nutrient deprived PDAC cells and that Fra-2 and IGF1R were significantly overexpressed in miR-15a downmodulated PDAC patients. Mechanistically, we discovered that miR-15a repressed IGF1R expression via Fra-2 targeting. In miR-15a-low context, IGF1R hyperactivated mTOR, modulated the autophagic flux and sustained PDAC growth in nutrient deprivation. In a genetic mouse model, Mir15aKO PDAC showed Fra-2 and Igf1r upregulation and mTOR activation in response to diet restriction. Consistently, nutrient restriction improved the efficacy of IGF1R inhibition in a Fra-2 dependent manner. Overall, our results point to a crucial role of Fra-2 in the cellular stress response due to nutrient restriction typical of pancreatic cancer and support IGF1R as a promising and vulnerable target in miR-15a downmodulated PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Fos-Related Antigen-2 , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , TOR Serine-Threonine Kinases , Tumor Microenvironment , Receptor, IGF Type 1/genetics
8.
Sci Rep ; 14(1): 3565, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347000

ABSTRACT

Gout is a common autoinflammatory joint diseases characterized by deposition of monosodium urate (MSU) crystals which trigger an innate immune response mediated by inflammatory cytokines. IGF1R is one of the loci associated with both urate levels and gout susceptibility in GWAS to date, and IGF-1-IGF-1R signaling is implicated in urate control. We investigate the role of IGF-1/IGF1R signaling in the context of gouty inflammation. Also, we test the gout and urate-associated IGF1R rs6598541 polymorphism for association with the inflammatory capacity of mononuclear cells. For this, freshly isolated human peripheral blood mononuclear cells (PBMCs) were exposed to recombinant IGF-1 or anti-IGF1R neutralizing antibody in the presence or absence of solubilized urate, stimulated with LPS/MSU crystals. Also, the association of rs6598541 with IGF1R and protein expression and with ex vivo cytokine production levels after stimulation with gout specific stimuli was tested. Urate exposure was not associated with IGF1R expression in vitro or in vivo. Modulation of IGF1R did not alter urate-induced inflammation. Developing urate-induced trained immunity in vitro was not influenced in cells challenged with IGF-1 recombinant protein. Moreover, the IGF1R rs6598541 SNP was not associated with cytokine production. Our results indicate that urate-induced inflammatory priming is not regulated by IGF-1/IGF1R signaling in vitro. IGF1R rs6598541 status was not asociated with IGF1R expression or cytokine production in primary human PBMCs. This study suggests that the role of IGF1R in gout is tissue-specific and may be more relevant in the control of urate levels rather than in inflammatory signaling in gout.


Subject(s)
Gout , Hyperuricemia , Humans , Uric Acid/metabolism , Hyperuricemia/complications , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Leukocytes, Mononuclear/metabolism , Genome-Wide Association Study , Gout/genetics , Gout/complications , Inflammation/metabolism , Cytokines/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
9.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38231539

ABSTRACT

Respiratory syncytial virus (RSV) has two main surface glycoproteins, the attachment glycoprotein (G) and the fusion (F) protein, which together mediate viral entry. Attachment is mediated by the RSV-G protein, while the RSV-F protein makes specific contact with the cellular insulin-like growth factor 1 receptor (IGF1R). This interaction leads to IGF1R activation and initiates a signalling cascade that calls the co-receptor, nucleolin, from the nucleus to the cell surface, where it can trigger viral fusion. We performed molecular docking analysis, which provided a potential set of 35 residues in IGF1R that may be important for interactions with RSV-F. We used alanine-scanning mutagenesis to generate IGF1R mutants and assessed their abundance and maturation, as well as the effect of mutation on RSV infection. We identified several mutations that appear to inhibit IGF1R maturation; but surprisingly, these mutations had no significant effect on RSV infection. This suggests that maturation of IGF1R may not be required for RSV infection. Additionally, we identified one residue, S788, that, when mutated, significantly reduced RSV infection. Further analysis revealed that this mutation disrupted a hydrogen bonding network that may be important for both IGF1R maturation and RSV infection.


Subject(s)
Receptor, IGF Type 1 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viral Fusion Proteins , Humans , Alanine/genetics , Molecular Docking Simulation , Mutagenesis , Receptor, IGF Type 1/genetics , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics
10.
Mol Metab ; 80: 101863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182007

ABSTRACT

OBJECTIVE: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time. METHODS: We chemically synthesized single chain (sc, IGF-1 like) and double chain (dc, insulin like) forms of MFRV and LCDV-Sa VILPs. Using cell lines overexpressing either human insulin receptor isoform A (IR-A), isoform B (IR-B) or IGF-1 receptor (IGF1R), and AML12 murine hepatocytes, we characterized receptor binding, insulin/IGF signaling. We further characterized the VILPs' effects of proliferation and IGF1R and IR gene expression, and compared them to native ligands. Additionally, we performed insulin tolerance test in CB57BL/6 J mice to examine in vivo effects of VILPs on blood glucose levels. Finally, we employed cryo-electron microscopy (cryoEM) to analyze the structure of scMFRV-VILP in complex with the IGF1R ectodomain. RESULTS: VILPs can bind to human IR and IGF1R, stimulate receptor autophosphorylation and downstream signaling pathways. Notably, scMFRV-VILP exhibited a particularly strong affinity for IGF1R, with a mere 10-fold decrease compared to human IGF-1. At high concentrations, scMFRV-VILP selectively reduced IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation (Ras/MAPK pathway), while leaving Akt phosphorylation (PI3K/Akt pathway) unaffected, indicating a potential biased inhibitory function. Prolonged exposure to MFRV-VILP led to a significant decrease in IGF1R gene expression in IGF1R overexpressing cells and AML12 hepatocytes. Furthermore, insulin tolerance test revealed scMFRV-VILP's sustained glucose-lowering effect compared to insulin and IGF-1. Finally, cryo-EM analysis revealed that scMFRV-VILP engages with IGF1R in a manner closely resembling IGF-1 binding, resulting in a highly analogous structure. CONCLUSIONS: This study introduces MFRV and LCDV-Sa VILPs as novel members of the insulin/IGF superfamily. Particularly, scMFRV-VILP exhibits a biased inhibitory effect on IGF1R signaling at high concentrations, selectively inhibiting IGF-1 stimulated IGF1R autophosphorylation and Erk phosphorylation, without affecting Akt phosphorylation. In addition, MFRV-VILP specifically regulates IGF-1R gene expression and IGF1R protein levels without affecting IR. CryoEM analysis confirms that scMFRV-VILP' binding to IGF1R is mirroring the interaction pattern observed with IGF-1. These findings offer valuable insights into IGF1R action and inhibition, suggesting potential applications in development of IGF1R specific inhibitors and advancing long-lasting insulins.


Subject(s)
Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Humans , Animals , Mice , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cryoelectron Microscopy , Insulin/metabolism , Protein Isoforms/metabolism , Gene Expression
11.
Exp Cell Res ; 434(1): 113862, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38036052

ABSTRACT

Breast cancer is the most common cancer in women. The upregulation of insulin-like growth factor (IGF) system observed in certain types of breast cancers was linked to growth, metastasis, and survival resulting in multiple strategies designed to target the type I IGF receptor (IGF-1R) in breast cancer. These attempts failed to prove beneficial and it has been suggested that insulin receptor (IR) could also play an important role in breast cancer biology. To better understand the IR's role in breast cancer cells, the receptor was deleted from MCF-7L cells using CRISPR technology, and fluorescence-assisted cell sorting was used to obtain clone 35 (CL35). It was found that CL35 activated signaling pathways upon insulin stimulation despite the absence of IR expression. We hypothesized that CL35 used a surrogate receptor for sustained growth and development. IGF-1R was able to activate insulin signaling and growth in CL35. Thus, insulin may play a central role in regulating breast cancer growth due to its ability to activate all the receptors of the IGF family. These findings argue that dual targeting of IR and IGF-IR may be required to inhibit breast cancer growth.


Subject(s)
Breast Neoplasms , Receptor, Insulin , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Insulin/pharmacology , Insulin-Like Growth Factor I/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Receptors, Somatomedin/genetics
12.
Open Biol ; 13(11): 230142, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37935358

ABSTRACT

The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood. The C-terminal part of the alpha subunit (αCT) of the receptors is indispensable for the formation of the hormone-binding site. We mutated the αCT residues Arg717 and His710 of IR-A and Arg704 and His697 of IGF-1R. We then measured the saturation binding curves of ligands on the mutated receptors and their ability to become activated. Mutations of Arg704 and His697 to Ala in IGF-1R decreased the binding of IGF-1. Moreover, the number of binding sites for IGF-1 on the His697 IGF-1R mutant was reduced to one-half, demonstrating the presence of two binding sites. Both mutations of Arg717 and His710 to Ala in IR-A inactivated the receptor. We have proved that Arg717 is important for the binding of insulin to its receptor, which suggests that Arg717 is a key residue for the transition to the active conformation.


Subject(s)
Receptor, IGF Type 1 , Receptor, Insulin , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/chemistry , Insulin-Like Growth Factor I/metabolism , Ligands , Cryoelectron Microscopy , Insulin/metabolism
13.
J Exp Clin Cancer Res ; 42(1): 283, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37880793

ABSTRACT

BACKGROUND: Lung cancer is the most common and deadliest cancer worldwide, and approximately 90% of all lung cancer deaths are caused by tumor metastasis. Tumor-derived exosomes could potentially promote tumor metastasis through the delivery of metastasis-related molecules. However, the function and underlying mechanism of exosomal long noncoding RNA (lncRNA) in lung cancer metastasis remain largely unclear. METHODS: Cell exosomes were purified from conditioned media by differential ultracentrifugation and observed using transmission electron microscopy, and the size distributions were determined by nanoparticle tracking analysis. Exosomal lncRNA sequencing (lncRNA-seq) was used to identify long noncoding RNAs. Cell migration and invasion were determined by wound-healing assays, two-chamber transwell invasion assays and cell mobility tracking. Mice orthotopically and subcutaneously xenografted with human cancer cells were used to evaluate tumor metastasis in vivo. Western blot, qRT‒PCR, RNA-seq, and dual-luciferase reporter assays were performed to investigate the potential mechanism. The level of exosomal lncRNA in plasma was examined by qRT‒PCR. MS2-tagged RNA affinity purification (MS2-TRAP) assays were performed to verify lncRNA-bound miRNAs. RESULTS: Exosomes derived from highly metastatic lung cancer cells promoted the migration and invasion of lung cancer cells with low metastatic potential. Using lncRNA-seq, we found that a novel lncRNA, lnc-MLETA1, was upregulated in highly metastatic cells and their secreted exosomes. Overexpression of lnc-MLETA1 augmented cell migration and invasion of lung cancer. Conversely, knockdown of lnc-MLETA1 attenuated the motility and metastasis of lung cancer cells. Interestingly, exosome-transmitted lnc-MLETA1 promoted cell motility and metastasis of lung cancer. Reciprocally, targeting lnc-MLETA1 with an LNA suppressed exosome-induced lung cancer cell motility. Mechanistically, lnc-MLETA1 regulated the expression of EGFR and IGF1R by sponging miR-186-5p and miR-497-5p to facilitate cell motility. The clinical datasets revealed that lnc-MLETA1 is upregulated in tumor tissues and predicts survival in lung cancer patients. Importantly, the levels of exosomal lnc-MLETA1 in plasma were positively correlated with metastasis in lung cancer patients. CONCLUSIONS: This study identifies lnc-MLETA1 as a critical exosomal lncRNA that mediates crosstalk in lung cancer cells to promote cancer metastasis and may serve as a prognostic biomarker and potential therapeutic target for lung cancer diagnosis and treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Movement/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Receptor, IGF Type 1/genetics
14.
J Transl Med ; 21(1): 732, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848931

ABSTRACT

OBJECTIVE: Promoting angiogenesis is crucial for tissue repair. Adipose-derived mesenchymal stem cells (ADSCs) are endowed with the ability of paracrine secretion of various angiogenic cytokines and the differentiation potential into endothelium-like cells to directly participate in angiogenesis. ADSCs are key seed cells for promoting angiogenesis in regenerative medicine and tissue engineering. This study aimed to explore the role and mechanism of C9orf106 (LINC02913) in the angiogenesis of ADSCs. METHODS: The microarray dataset GSE12884 was analyzed to identify the differentially expressed lncRNAs in ADSCs under normoxia and hypoxia. The expression of the key genes was detected using qRT-PCR, western blot assay (western blot), and immunofluorescence (IF) staining. The adipogenic ability and tube formation ability of ADSCs was detected using oil red O staining and tube formation assay, respectively. The regulatory relationship between hypoxia-inducible factor-1alpha (HIF1A) and LINC02913 was verified using chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter gene assay. A skin wound healing nude mice model was established. Hematoxylin and eosin (H&E) staining was applied to detect pathological skin damage. Immunohistochemistry (IHC) staining was used to determine the level of CD31 in skin tissues. RESULTS: LINC02913 expression was decreased in ADSCs under hypoxia; LINC02913 overexpression inhibited the proliferation, adipogenic ability, endothelial differentiation ability, and tube formation ability of ADSCs. ChIP assay and dual-luciferase reporter gene assay results showed that HIF1A could directly bind to the LINC02913 promoter region to inhibit its transcription. Through RNAact prediction and analysis of the correlation with LINC02913 expression, it was found that IGF1R may directly interact with LINCO02913. The HIF1A/LINC02913/IGF1R axis could activate the PI3K/AKT pathway to promote the biological function of ADSCs. Hypoxia-ADSCs significantly promoted vascularization in the wounded skin. The regulatory effect of LINC02913/IGF1R axis on hypoxia-ADSCs treated skin wound healing were verified. CONCLUSION: The HIF1A/LINC02913/IGF1R axis promoted the proliferation, adipogenic ability, and tube formation ability of ADSCs under hypoxia via activating the PI3K/AKT pathway.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Mesenchymal Stem Cells , RNA, Long Noncoding , Receptor, IGF Type 1 , Animals , Humans , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Luciferases/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
15.
Obesity (Silver Spring) ; 31(11): 2689-2698, 2023 11.
Article in English | MEDLINE | ID: mdl-37840435

ABSTRACT

OBJECTIVE: This study tested the hypothesis that expression of insulin-like growth factor 1 (IGF-1) protein and mRNA splice variants is lower in skeletal muscle of humans with obesity who have a lower mixed-muscle protein fractional synthesis rate (MMP-FSR) when compared with individuals without obesity. METHODS: The study included nine participants with obesity (OB, mean [SD],  BMI = 35 [3] kg/m2 , MMP-FSR = 0.06%/h [0.02%/h]) and nine participants without obesity (W-OB, BMI = 24 [3] kg/m2 , MMP-FSR = 0.08%/h [0.02%/h]; for both BMI and MMP-FSR p < 0.05). MMP-FSR and mitochondrial protein FSR were measured following an overnight fast. RESULTS: Along with lower MMP-FSR, OB participants displayed lower mitochondrial protein FSR (p = 0.03) compared with W-OB participants. Expression of IGF-1 (p = 0.04) and IGF-1 receptor (p < 0.01) proteins was lower in muscle of OB participants. In addition, OB participants had lower (p < 0.05) mRNA expression of IGF1 variants Eb and Ec. This study demonstrates that lower protein synthesis in muscle of humans with obesity occurs concurrently with lower expression of muscle IGF-1 and IGF-1 receptor proteins, as well as lower mRNA expression of the IGF1 splice variants. CONCLUSIONS: These findings indicate that lower protein synthesis observed in muscle of humans with obesity may result from diminished muscle IGF1 gene expression.


Subject(s)
Insulin-Like Growth Factor I , Muscle Proteins , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mitochondrial Proteins/metabolism
16.
Int J Mol Sci ; 24(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834454

ABSTRACT

This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.


Subject(s)
Neoplasms , Somatomedins , Humans , Insulin/metabolism , Receptor, Insulin/metabolism , Drug Resistance, Neoplasm/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction , Protein Isoforms/genetics , Protein Isoforms/metabolism , Insulin, Regular, Human , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Carcinogenesis/genetics , Insulin-Like Growth Factor I/metabolism
17.
Nat Commun ; 14(1): 6117, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777542

ABSTRACT

The proline synthesis is importantly involved in tumor growth under hypoxia, while the underlying mechanism remains to be further investigated. Here we show that pyrroline-5-carpoxylate reductase-1 (PYCR1), displaying a constant nuclear localization, is phosphorylated by nuclear IGF1R at Tyrosine 135 under hypoxia; this phosphorylation promotes the binding of PYCR1 to ELK4 and thus PYCR1 recruitment to ELK4-targeted genes promoter. Under hypoxia, ELK4-binding ability and enzymatic activity of PYCR1 are both required for ELK4-Sirt7-mediated transcriptional repression and cell growth maintenance, in which PYCR1-catalyzed NAD+ production stimulates the deacetylation activity of Sirt7 on H3K18ac that restrains genes transcription. Functionally, PYCR1 Tyr-135 phosphorylation exerts supportive effect on tumor growth under hypoxia, and the level of PYCR1 Tyr-135 phosphorylation is associated with malignancy of colorectal cancer (CRC). These data uncover the relationship between the compartmentally metabolic activity of PYCR1 and genes transcription regulation, and highlight the oncogenic role of PYCR1 during CRC development.


Subject(s)
Neoplasms , Oxidoreductases , Humans , Cell Line, Tumor , ets-Domain Protein Elk-4/metabolism , Hypoxia/genetics , Neoplasms/genetics , Receptor, IGF Type 1/genetics , delta-1-Pyrroline-5-Carboxylate Reductase
18.
Front Biosci (Landmark Ed) ; 28(8): 181, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37664932

ABSTRACT

BACKGROUND: A long-term consumption of saturated fat significantly increases the concentration of saturated fatty acids in serum, which accelerates the appearance of senescence markers in ß-cells and leads to their dysfunction. An understanding of the mechanisms underlying ß-cell senescence induced by stearic acid and the exploration of effective agents preventing it remains largely unclear. Here, we aimed to investigate the protective effect of metformin against stearic acid-treated ß-cell senescence and to assess the involvement of miR-297b-5p in this process. METHODS: To identify senescence, we measured senescence-associated ß-galactosidase activity and the expression of senescence-related genes. Gain and loss of function approaches were applied to explore the role of miR-297b-5p in stearic acid-induced ß-cell senescence. Bioinformatics analysis and a luciferase activity assay were used to predict the downstream targets of miR-297b-5p. RESULTS: Stearic acid markedly induced senescence and suppressed miR-297b-5p expression in mouse ß-TC6 cells, which were significantly alleviated by metformin. After transfection of miR-297b-5p mimics, stearic acid-evoked ß-cell senescence was remarkably prevented. Insulin-like growth factor-1 receptor was identified as a direct target of miR-297b-5p. Inhibition of the insulin-like growth factor-1 receptor prevented stearic acid-induced ß-cell senescence and dysfunction. Moreover, metformin alleviates the impairment of the miR-297b-5p inhibitor in ß-TC6 cells. Additionally, long-term consumption of a high-stearic-acid diet significantly increased senescence and reduced miR-297b-5p expression in mouse islets. CONCLUSIONS: These findings imply that metformin alleviates ß-cell senescence by stearic acid through upregulating miR-297b-5p to suppress insulin-like growth factor-1 receptor expression, thereby providing a potential target to not only prevent high fat-diet-induced ß-cell dysfunction but also for metformin therapy in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Metformin , MicroRNAs , Receptor, IGF Type 1 , Animals , Mice , Insulin-Like Growth Factor I , Metformin/pharmacology , MicroRNAs/genetics , Stearic Acids/pharmacology , Receptor, IGF Type 1/genetics
19.
J Nutr Biochem ; 120: 109417, 2023 10.
Article in English | MEDLINE | ID: mdl-37482256

ABSTRACT

The micronutrient selenium (Se) has been shown to exert potential anticancer properties. This study aimed to evaluate the effects of Se (in Se yeast form) on the selenoproteins (SELENO), AR/IGF-1R/EGFR, PI3K/Akt/mTOR and Ras/Raf/ERK cascades, and immune checkpoint blockade in TNBC murine 4T1 cells. We also assessed the effects of combination treatment with chemotherapeutic doxorubicin and Se on trophoblast cell surface antigen 2 (TROP2) levels. Compared with the control groups, cells incubated with Se (0.25, 0.5, 0.75, 1.0, 1.5 µg Se/mL) have lower viability, raised intracellular Se concentrations and SELENO expression, and higher malondialdehyde products in a dose-dependent manner. Se induced the inactivation of AR/IGF-1R/EGFR and downregulation of the PI3K/Akt/mTOR and Ras/Raf/ERK signaling molecules. Se-treated cells also exhibited decreased mitochondrial membrane potential, reduced levels of the cell cycle regulatory protein cyclin D1, cancer stemness, metastatic and EMT-related markers, and increased apoptosis. Subsequently, Se treatment significantly suppressed PD-1/PD-L1 and CTLA-4 mRNA levels and proteins. Doxorubicin decreased 4T1 cell viability and TROP2 expression levels, but the addition of Se to doxorubicin contributed to further reductions. Similar responses to Se treatment were also observed in the human MDA-MB-231 and MCF-7 breast cancer cells. These results show that Se upregulates SELENO and anti-AR/IGF-1R/EGFR signaling in TNBC cells, thus inducing oxidative stress-dependent apoptosis and cell cycle arrest, stemness, EMT, and metastasis, as well as blocking the immune checkpoint molecules. TROP2 down-regulation with Se is also a potential anti-TNBC therapeutic target.


Subject(s)
Breast Neoplasms , Carcinoma , Selenium , Animals , Mice , Humans , Female , Selenium/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Signal Transduction , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/pharmacology , TOR Serine-Threonine Kinases/metabolism , Breast Neoplasms/drug therapy , Apoptosis , ErbB Receptors/metabolism , Doxorubicin/pharmacology , Cell Proliferation
20.
Commun Biol ; 6(1): 758, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474760

ABSTRACT

Overexpression of the EPS15 Homology Domain containing 1 (EHD1) protein has been linked to tumorigenesis but whether its core function as a regulator of intracellular traffic of cell surface receptors plays a role in oncogenesis remains unknown. We establish that EHD1 is overexpressed in Ewing sarcoma (EWS), with high EHD1 mRNA expression specifying shorter patient survival. ShRNA-knockdown and CRISPR-knockout with mouse Ehd1 rescue established a requirement of EHD1 for tumorigenesis and metastasis. RTK antibody arrays identified IGF-1R as a target of EHD1 regulation in EWS. Mechanistically, we demonstrate a requirement of EHD1 for endocytic recycling and Golgi to plasma membrane traffic of IGF-1R to maintain its surface expression and downstream signaling. Conversely, EHD1 overexpression-dependent exaggerated oncogenic traits require IGF-1R expression and kinase activity. Our findings define the RTK traffic regulation as a proximal mechanism of EHD1 overexpression-dependent oncogenesis that impinges on IGF-1R in EWS, supporting the potential of IGF-1R and EHD1 co-targeting.


Subject(s)
Sarcoma, Ewing , Mice , Animals , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Cell Membrane/metabolism , Signal Transduction/physiology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...