Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.465
Filter
1.
Neurology ; 102(11): e209437, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759141

ABSTRACT

OBJECTIVES: To validate a recently published study in which skin biopsy was reported as a valuable alternative to brain biopsy in diagnosing CSF1R-related disorder (CSF1R-RD). METHODS: Blinded evaluation of skin samples was performed by independent reviewers using light and electron microscopy collected from a group of CSF1R variant carriers (n = 10) with various genotypes (mono and biallelic), different stages of the disease (asymptomatic and symptomatic), and exposed to different therapies (glucocorticoids, hematopoietic stem cell transplantation, and TREM2 agonist), and from a group of healthy controls (n = 5). RESULTS: Biopsies from patients with CSF1R-RD at various disease stages were indistinguishable from controls determined using light microscopy and electron microscopy. DISCUSSION: We found no distinctive axonal pathology in skin biopsies collected from CSF1R variant carriers at all stages of the disease. Our results are consistent with clinical and neurophysiologic features of the CSF1R-RD, in that peripheral nervous system involvement has not been reported. Studies aiming to discover new biomarkers are important, but the results must be validated with larger numbers of patients and healthy controls. Based on blinded light and electron microscopic studies of skin biopsies, there is no evidence that CSF1R-RD is associated with distinctive changes in cutaneous peripheral nerves. This suggests that skin biopsy is not useful in diagnosis of CSF1R-RD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that skin biopsy does not distinguish those with CSF1R-RD, or carriers, from normal controls.


Subject(s)
Biomarkers , Skin , Humans , Skin/pathology , Biopsy , Female , Male , Adult , Biomarkers/cerebrospinal fluid , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Middle Aged , Young Adult , Adolescent , Child , Receptor, Macrophage Colony-Stimulating Factor
2.
Sci Rep ; 14(1): 12531, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822100

ABSTRACT

Binding affinity is an important factor in drug design to improve drug-target selectivity and specificity. In this study, in silico techniques based on molecular docking followed by molecular dynamics (MD) simulations were utilized to identify the key residue(s) for CSF1R binding affinity among 14 pan-tyrosine kinase inhibitors and 15 CSF1R-specific inhibitors. We found tryptophan at position 550 (W550) on the CSF1R binding site interacted with the inhibitors' aromatic ring in a π-π way that made the ligands better at binding. Upon W550-Alanine substitution (W550A), the binding affinity of trans-(-)-kusunokinin and imatinib to CSF1R was significantly decreased. However, in terms of structural features, W550 did not significantly affect overall CSF1R structure, but provided destabilizing effect upon mutation. The W550A also did not either cause ligand to change its binding site or conformational changes due to ligand binding. As a result of our findings, the π-π interaction with W550's aromatic ring could be still the choice for increasing binding affinity to CSF1R. Nevertheless, our study showed that the increasing binding to W550 of the design ligand may not ensure CSF1R specificity and inhibition since W550-ligand bound state did not induce significantly conformational change into inactive state.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Tryptophan , Tryptophan/chemistry , Tryptophan/metabolism , Ligands , Binding Sites , Humans , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Imatinib Mesylate/pharmacology , Imatinib Mesylate/chemistry , Receptor, Macrophage Colony-Stimulating Factor
3.
J Med Chem ; 67(8): 6854-6879, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38593344

ABSTRACT

Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Receptor, Macrophage Colony-Stimulating Factor , Colorectal Neoplasms/drug therapy , Animals , Humans , Mice , Immunotherapy/methods , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Tumor Microenvironment/drug effects , Mice, Inbred BALB C , Cell Line, Tumor , Female , Drug Discovery , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Male , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology
4.
Pediatr Blood Cancer ; 71(6): e30970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556751

ABSTRACT

Langerhans cell histiocytosis (LCH) is a rare hematologic neoplasm characterized by the clonal proliferation of Langerhans-like cells. Colony-stimulating factor 1 receptor (CSF1R) is a membrane-bound receptor that is highly expressed in LCH cells and tumor-associated macrophages. In this study, a soluble form of CSF1R protein (sCSF1R) was identified by plasma proteome profiling, and its role in evaluating LCH prognosis was explored. We prospectively measured plasma sCSF1R levels in 104 LCH patients and 10 healthy children using ELISA. Plasma sCSF1R levels were greater in LCH patients than in healthy controls (p < .001) and significantly differed among the three disease extents, with the highest level in MS RO+ LCH patients (p < .001). Accordingly, immunofluorescence showed the highest level of membrane-bound CSF1R in MS RO+ patients. Furthermore, the plasma sCSF1R concentration at diagnosis could efficiently predict the prognosis of LCH patients treated with standard first-line treatment (AUC = 0.782, p < .001). Notably, dynamic monitoring of sCSF1R levels could predict relapse early in patients receiving BRAF inhibitor treatment. In vitro drug sensitivity data showed that sCSF1R increased resistance to Ara-C in THP-1 cells expressing ectopic BRAF-V600E. Overall, the plasma sCSF1R level at diagnosis and during follow-up is of great clinical importance in pediatric LCH patients.


Subject(s)
Histiocytosis, Langerhans-Cell , Receptor, Macrophage Colony-Stimulating Factor , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/pathology , Histiocytosis, Langerhans-Cell/blood , Male , Female , Child , Prognosis , Child, Preschool , Infant , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/blood , Adolescent , Prospective Studies , Follow-Up Studies
6.
Kidney Int ; 106(1): 67-84, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428734

ABSTRACT

Parietal epithelial cells (PECs) are kidney progenitor cells with similarities to a bone marrow stem cell niche. In focal segmental glomerulosclerosis (FSGS) PECs become activated and contribute to extracellular matrix deposition. Colony stimulating factor-1 (CSF-1), a hematopoietic growth factor, acts via its specific receptor, CSF-1R, and has been implicated in several glomerular diseases, although its role on PEC activation is unknown. Here, we found that CSF-1R was upregulated in PECs and podocytes in biopsies from patients with FSGS. Through in vitro studies, PECs were found to constitutively express CSF-1R. Incubation with CSF-1 induced CSF-1R upregulation and significant transcriptional regulation of genes involved in pathways associated with PEC activation. Specifically, CSF-1/CSF-1R activated the ERK1/2 signaling pathway and upregulated CD44 in PECs, while both ERK and CSF-1R inhibitors reduced CD44 expression. Functional studies showed that CSF-1 induced PEC proliferation and migration, while reducing the differentiation of PECs into podocytes. These results were validated in the Adriamycin-induced FSGS experimental mouse model. Importantly, treatment with either the CSF-1R-specific inhibitor GW2580 or Ki20227 provided a robust therapeutic effect. Thus, we provide evidence of the role of the CSF-1/CSF-1R pathway in PEC activation in FSGS, paving the way for future clinical studies investigating the therapeutic effect of CSF-1R inhibitors on patients with FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Hyaluronan Receptors , Macrophage Colony-Stimulating Factor , Podocytes , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Animals , Humans , Podocytes/metabolism , Podocytes/pathology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Mice , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Male , Disease Models, Animal , Cells, Cultured , Female , Up-Regulation , Cell Movement/drug effects , MAP Kinase Signaling System/drug effects , Signal Transduction , Mice, Inbred C57BL , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
7.
Mov Disord ; 39(5): 798-813, 2024 May.
Article in English | MEDLINE | ID: mdl-38465843

ABSTRACT

BACKGROUND: Colony-stimulating factor 1 receptor (CSF1R)-related disorder (CRD) is a rare autosomal dominant disease. The clinical and genetic characteristics of Chinese patients have not been elucidated. OBJECTIVE: The objective of the study is to clarify the core features and influence factors of CRD patients in China. METHODS: Clinical and genetic-related data of CRD patients in China were collected. Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Sundal MRI Severity Score were evaluated. Whole exome sequencing was used to analyze the CSF1R mutation status. Patients were compared between different sexes, mutation types, or mutation locations. RESULTS: A total of 103 patients were included, with a male-to-female ratio of 1:1.51. The average age of onset was (40.75 ± 8.58). Cognitive impairment (85.1%, 86/101) and parkinsonism (76.2%, 77/101) were the main clinical symptoms. The most common imaging feature was bilateral asymmetric white matter changes (100.0%). A total of 66 CSF1R gene mutants (22 novel mutations) were found, and 15 of 92 probands carried c.2381 T > C/p.I794T (16.30%). The MMSE and MoCA scores (17.0 [9.0], 11.90 ± 7.16) of female patients were significantly lower than those of male patients (23.0 [10.0], 16.36 ± 7.89), and the white matter severity score (20.19 ± 8.47) of female patients was significantly higher than that of male patients (16.00 ± 7.62). There is no statistical difference in age of onset between male and female patients. CONCLUSIONS: The core manifestations of Chinese CRD patients are progressive cognitive decline, parkinsonism, and bilateral asymmetric white matter changes. Compared to men, women have more severe cognitive impairment and imaging changes. c.2381 T > C/p.I794T is a hotspot mutation in Chinese patients. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Mutation , Phenotype , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Male , Female , Adult , Middle Aged , China/epidemiology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Mutation/genetics , Genotype , Cognitive Dysfunction/genetics , Magnetic Resonance Imaging , Parkinsonian Disorders/genetics , Aged , Age of Onset , Young Adult , Receptor, Macrophage Colony-Stimulating Factor
8.
Eur J Med Chem ; 268: 116253, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401188

ABSTRACT

This study explores the potential of CSF-1R inhibitors as therapeutic agents for neurodegenerative diseases. CSF-1R, a receptor tyrosine kinase primarily expressed in macrophage lineages, plays a pivotal role in regulating various cellular processes. Recent research highlights the significance of CSF-1R inhibition in mitigating neuroinflammation, particularly in Alzheimer's disease, where microglial overactivation contributes to neurodegeneration. The research reveals a series of N-(5-amido-2-methylphenyl)-5-methylisoxazole-3-carboxamide CSF-1R inhibitors, where compounds 7d, 7e, and 9a exhibit outstanding inhibitory activities and selectivity, with IC50 values of 33, 31, and 64 nM, respectively. These most promising compounds in this series were profiled for cellular potency and subjected to in vitro pharmacokinetic profiling. These inhibitors exhibit minimal cytotoxicity, even at higher concentrations, and possess promising blood-brain barrier permeability, making them potential candidates for central nervous system diseases. The investigation into the in vitro ADME properties, including plasma and microsomal stability, reveals that these CSF-1R inhibitors maintain their structural integrity and plasma concentration. This resilience positions them for further development as therapeutic agents for neurodegenerative diseases.


Subject(s)
Isoxazoles , Neurodegenerative Diseases , Receptor, Macrophage Colony-Stimulating Factor , Humans , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Blood-Brain Barrier/metabolism , Receptor Protein-Tyrosine Kinases , Enzyme Inhibitors
9.
Adv Mater ; 36(19): e2310876, 2024 May.
Article in English | MEDLINE | ID: mdl-38321645

ABSTRACT

Structural and physiological cues provide guidance for the directional migration and spatial organization of endogenous cells. Here, a microchannel scaffold with instructive niches is developed using a circumferential freeze-casting technique with an alkaline salting-out strategy. Thereinto, polydopamine-coated nano-hydroxyapatite is employed as a functional inorganic linker to participate in the entanglement and crystallization of chitosan molecules. This scaffold orchestrates the advantage of an oriented porous structure for rapid cell infiltration and satisfactory immunomodulatory capacity to promote stem cell recruitment, retention, and subsequent osteogenic differentiation. Transcriptomic analysis as well as its in vitro and in vivo verification demonstrates that essential colony-stimulating factor-1 (CSF-1) factor is induced by this scaffold, and effectively bound to the target colony-stimulating factor-1 receptor (CSF-1R) on the macrophage surface to activate the M2 phenotype, achieving substantial endogenous bone regeneration. This strategy provides a simple and efficient approach for engineering inducible bone regenerative biomaterials.


Subject(s)
Bone Regeneration , Durapatite , Macrophage Colony-Stimulating Factor , Osteogenesis , Polymers , Receptor, Macrophage Colony-Stimulating Factor , Tissue Scaffolds , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Mice , Durapatite/chemistry , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Polymers/chemistry , Cell Differentiation , Chitosan/chemistry , Indoles/chemistry , Signal Transduction , Tissue Engineering/methods , Macrophages/metabolism , Macrophages/cytology , RAW 264.7 Cells
10.
Mol Biol Cell ; 35(3): ar38, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38170572

ABSTRACT

The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.


Subject(s)
Receptor, Macrophage Colony-Stimulating Factor , Ubiquitin , Mice , Animals , Ubiquitin/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Proto-Oncogene Proteins c-cbl/metabolism , Ubiquitin-Protein Ligases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Macrophages/metabolism
11.
J Leukoc Biol ; 115(3): 573-582, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38038378

ABSTRACT

CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.


Subject(s)
Monocytes , Receptor, Macrophage Colony-Stimulating Factor , Mice , Animals , Monocytes/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Flow Cytometry , Macrophages/metabolism , Cell Differentiation
12.
Glia ; 71(11): 2664-2678, 2023 11.
Article in English | MEDLINE | ID: mdl-37519044

ABSTRACT

Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.


Subject(s)
Leukoencephalopathies , Receptor, Macrophage Colony-Stimulating Factor , Mice , Animals , Prednisone/pharmacology , Proteomics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Leukoencephalopathies/genetics , Leukoencephalopathies/prevention & control , Microglia , Receptor Protein-Tyrosine Kinases , Immunosuppression Therapy
13.
Int Immunopharmacol ; 123: 110688, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499396

ABSTRACT

Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPß, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1ß) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1ß, decreased TGF-ß release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-ß, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.


Subject(s)
Azithromycin , Colony-Stimulating Factors , Receptor, Macrophage Colony-Stimulating Factor , Animals , Mice , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Cytokines/metabolism , Interleukin-12/metabolism , Macrophages , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Receptor, Macrophage Colony-Stimulating Factor/drug effects
14.
J Leukoc Biol ; 114(5): 421-433, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37167456

ABSTRACT

Macrophages are an abundant cell population in the placenta and developing embryo and appear to be involved in processes of vascularization, morphogenesis, organogenesis, and hematopoiesis. The proliferation, differentiation, and survival are dependent on signals from the macrophage colony-stimulating factor receptor, CSF1R. Aside from the role in macrophages, Csf1r mRNA is highly expressed in placental trophoblasts. To explore the function of macrophages and Csf1r in placental and embryonic development, we analyzed the impact of homozygous Csf1r null mutation (Csf1rko) in the rat. In late gestation, IBA1+ macrophages were abundant in control embryos in all tissues, including the placenta, and greatly reduced in the Csf1rko. CSF1R was also detected in stellate macrophage-like cells and in neurons using anti-CSF1R antibody but was undetectable in trophoblasts. However, the neuronal signal was not abolished in the Csf1rko. CD163 was most abundant in cells forming the center of erythroblastic islands in the liver and was also CSF1R dependent. Despite the substantial reduction in macrophage numbers, we detected no effect of the Csf1rko on development of the placenta or any organs, the relative abundance of vascular elements (CD31 staining), or cell proliferation (Ki67 staining). The loss of CD163+ erythroblastic island macrophages in the liver was not associated with anemia or any reduction in the proliferative activity in the liver, but there was a premature expansion of CD206+ cells, presumptive precursors of liver sinusoidal endothelial cells. We suggest that many functions of macrophages in development of the placenta and embryo can be provided by other cell types in their absence.


Subject(s)
Endothelial Cells , Placenta , Rats , Female , Animals , Pregnancy , Endothelial Cells/metabolism , Placenta/metabolism , Macrophages/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Embryonic Development , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism
15.
J Virol ; 97(4): e0010223, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37022164

ABSTRACT

Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-ß) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.


Subject(s)
Interferon Type I , Orthomyxoviridae Infections , Receptor, Macrophage Colony-Stimulating Factor , STAT1 Transcription Factor , Up-Regulation , Animals , Humans , Mice , Influenza A virus/immunology , Interferon Type I/immunology , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/immunology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Orthomyxoviridae Infections/immunology , Hematopoiesis/immunology , Granulocyte-Macrophage Progenitor Cells/immunology , Streptococcus pneumoniae/immunology , Pneumococcal Infections/immunology
16.
AIDS ; 37(9): 1419-1424, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37070549

ABSTRACT

OBJECTIVE: Neuroimmune activation is a putative driver of cognitive impairment in people with HIV (PWH), even in the age of modern antiretroviral therapy. Nevertheless, imaging of the microglial marker, the 18 kDa translocator protein (TSPO), with positron emission tomography (PET) in treated PWH has yielded inconclusive findings. One potential reason for the varied TSPO results is a lack of cell-type specificity of the TSPO target. DESIGN: [ 11 C]CPPC, 5-cyano- N -(4-(4-[ 11 C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxaminde, is a radiotracer for use with PET to image the colony stimulating factor 1 receptor (CSF1R). The CSF1R is expressed on microglia and central nervous system macrophages, with little expression on other cell types. We used [ 11 C]CPPC PET in virally-suppressed- (VS)-PWH and HIV-uninfected individuals to estimate the effect sizes of higher CSF1R in the brains of VS-PWH. METHODS: Sixteen VS-PWH and 15 HIV-uninfected individuals completed [ 11 C]CPPC PET. [ 11 C]CPPC binding (V T ) in nine regions was estimated using a one-tissue compartmental model with a metabolite-corrected arterial input function, and compared between groups. RESULTS: Regional [ 11 C]CPPC V T did not significantly differ between groups after age- and sex- adjustment [unstandardized beta coefficient ( B ) = 1.84, standard error (SE) = 1.18, P  = 0.13]. The effect size was moderate [Cohen's d  = 0.56, 95% confidence interval (CI) -0.16, 1.28), with strongest trend of higher V T in VS-PWH in striatum and parietal cortex (each P  = 0.04; Cohen's d  = 0.71 and 0.72, respectively). CONCLUSIONS: A group difference in [ 11 C]CPPC V T was not observed between VS-PWH and HIV-uninfected individuals in this pilot, although the observed effect sizes suggest the study was underpowered to detect regional group differences in binding.


Subject(s)
Brain , HIV Infections , Receptor, Macrophage Colony-Stimulating Factor , Humans , Brain/diagnostic imaging , Brain/metabolism , HIV Infections/complications , HIV Infections/metabolism , Microglia , Positron-Emission Tomography/methods , Receptors, GABA , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Molecular Imaging
17.
Eur J Pharm Sci ; 185: 106427, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36948408

ABSTRACT

Prostate cancer remains a serious condition threatening the health of men. Due to the complicated nature of the tumour microenvironment (TME), conventional treatments face challenges including poor prognosis and tumour resistance, therefore new therapeutic strategies are urgently needed. Small interfering RNA (siRNA), a double-stranded non-coding RNA, regulates specific gene expression through RNA interference. Tumour-associated macrophages (TAMs) are a potential therapeutic target in cancer immunotherapy. Colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-1R) signaling pathway plays a crucial role in the polarization of the immunosuppressive TAMs, M2 macrophages. Downregulation of CSF-1R is known to reprogram the immunosuppressive TAMs, M2 macrophages, to the immunostimulatory phenotype, M1 macrophages. Sialic acid is a ligand for Siglec-1 (CD169) which is overexpressed on M2 macrophages with little expression in other phenotypes. Therefore, a sialic acid-targeted cyclodextrin-based nanoparticle was developed to specifically deliver CSF-1R siRNA to M2 macrophages. The nanoparticles were studied in vitro using both human and mouse prostate cancer cell lines. Results show that the targeted nanoparticles achieved cell specific delivery to M2 macrophages via the sialic acid-CD169 axis. The expression of CSF-1R was significantly downregulated in M2 macrophages (29.64% for targeted vs 19.31% for non-targeted nanoparticles in THP-1-derived M2 macrophages and 38.94% for targeted vs 18.51% for non-targeted nanoparticles in RAW 264.7-derived M2 macrophages, n = 4, p < 0.01). The resulting reprograming of M2 macrophages to M1 enhanced the level of apoptosis in the prostate cancer cells in a Transwell model (49.17% for targeted vs 37.68% for non-targeted nanoparticles in PC-3 cells and 69.15% for targeted vs 44.73% for non-targeted nanoparticles in TRAMP C1 cells, n = 3, p < 0.01). Thus, this targeted cyclodextrin-based siRNA drug delivery system provides a potential strategy for prostate cancer immunotherapy.


Subject(s)
Cyclodextrins , Nanoparticles , Prostatic Neoplasms , Animals , Humans , Male , Mice , Colony-Stimulating Factors , Immunotherapy/methods , N-Acetylneuraminic Acid , Nanoparticles/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Tumor Microenvironment , Tumor-Associated Macrophages , Receptor, Macrophage Colony-Stimulating Factor/genetics
19.
Hum Cell ; 36(1): 456-467, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36456782

ABSTRACT

Tenosynovial giant cell tumor (TGCT) is a mesenchymal tumor derived from the synovium of the tendon sheath and joints, most frequently in the large joints. The standard of care for TGCTs is surgical resection. A new targeting approach for treating TGCTs has emerged from studies on the role of the CSF1/CSF1 receptor (CSF1R) in controlling cell survival and proliferation during the pathogenesis of TGCTs. We established four novel cell lines isolated from the primary tumor tissues of patients with TGCTs. The cell lines were designated Si-TGCT-1, Si-TGCT-2, Si-TGCT-3, and Si-TGCT-4, and the TGCT cells were characterized by CSF1R and CD68. These TGCT cells were then checked for cell proliferation using an MTT assay and three-dimensional spheroid. The responses to pexidartinib (PLX3397) and sotuletinib (BLZ945) were evaluated by two-dimensional MTT assays. All cells were positive for α­smooth muscle actin (α­SMA), fibroblast activation protein (FAP), CSF1R, and CD68. Except for Si-TGCT-4, all TGCT cells had high CSF1R expressions. The cells exhibited continuous growth as three-dimensional spheroids formed. Treatment with pexidartinib and sotuletinib inhibited TGCT cell growth and induced cell apoptosis correlated with the CSF1R level. Only Si-TGCT-4 cells demonstrated resistance to the drugs. In addition, the BAX/BCL-2 ratio increased in cells treated with pexidartinib and sotuletinib. With the four novel TGCT cell lines, we have an excellent model for further in vitro and in vivo studies.


Subject(s)
Giant Cell Tumor of Tendon Sheath , Receptor, Macrophage Colony-Stimulating Factor , Humans , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Giant Cell Tumor of Tendon Sheath/drug therapy , Giant Cell Tumor of Tendon Sheath/genetics , Cell Line
20.
Pharmacol Res ; 187: 106566, 2023 01.
Article in English | MEDLINE | ID: mdl-36423789

ABSTRACT

Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.


Subject(s)
Inflammation , Molecular Targeted Therapy , Phosphatidylinositol 3-Kinases , Receptor, Macrophage Colony-Stimulating Factor , Humans , Inflammation/drug therapy , Inflammation/metabolism , Ligands , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...