Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
1.
J Neurol Sci ; 460: 122987, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579412

ABSTRACT

Neuronal intranuclear inclusion disease, caused by a GGC repeat expansion in the 5'-untranslated region of NOTCH2NLC, is a rare neurodegenerative condition with highly variable clinical manifestations. In recent years, the number of reported cases have increased dramatically in East Asia. We report the first four genetically confirmed cases of neuronal intranuclear inclusion disease in New Zealand, all having Polynesian ancestry (three New Zealand Maori and one Cook Island Maori). Phenotypically, they resemble cases reported from recent large East Asian cohorts.


Subject(s)
Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Humans , New Zealand , Intranuclear Inclusion Bodies/pathology , Intranuclear Inclusion Bodies/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Male , Female , Middle Aged , Aged , Receptor, Notch2/genetics
2.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674095

ABSTRACT

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Subject(s)
Cytokines , Dendritic Cells , Porphyromonas gingivalis , Th17 Cells , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Porphyromonas gingivalis/immunology , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Cell Differentiation , Th1 Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Cells, Cultured , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Tumor Necrosis Factor-alpha/metabolism
3.
Anticancer Res ; 44(4): 1399-1407, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538004

ABSTRACT

BACKGROUND/AIM: The prognosis of ovarian cancer (OC) patients is especially poor for patients with chemotherapy resistance. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor, has shown encouraging clinical efficacy in several tumor types. The aim of the present study was to examine the inhibitory efficacy and mechanism of anlotinib on the proliferation and chemosensitivity of OC cells. MATERIALS AND METHODS: The inhibitory effects of Anlotinib on SKOV3 and OVCAR3 OC cells were examined using CCK-8 cell-viability, colony-formation, flow-cytometry, transwell-migration and sphere-formation assays. A xenograft mouse model was used for in vivo studies. RT-qPCR and western blotting were used to detect gene expression. RESULTS: Molecular targets of anlotinib were elevated in OC patient tumors. Anlotinib significantly inhibited ovarian cancer cell proliferation and migration in vitro. Anlotinib enhanced the sensitivity of ovarian cancer cells to cisplatinum both in vitro and in vivo. Anlotinib suppressed sphere formation and the stemness phenotype of OC cells by inhibiting NOTCH2 expression. CONCLUSION: Anlotinib inhibits ovarian cancer and enhances cisplatinum sensitivity, suggesting its future clinical promise.


Subject(s)
Indoles , Ovarian Neoplasms , Quinolines , Animals , Female , Humans , Mice , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Cisplatin/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Quinolines/pharmacology , Quinolines/therapeutic use , Receptor, Notch2/genetics , Signal Transduction
4.
Eur J Immunol ; 54(5): e2350669, 2024 May.
Article in English | MEDLINE | ID: mdl-38339772

ABSTRACT

The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity. By performing transcriptomics analysis of AT macrophages (ATMs), we found that late-stage ATMs from high-fat diet mice presented with perturbed Notch signaling accompanied by robust proinflammatory and metabolic changes. To explore the hypothesis that the deregulated Notch pathway contributes to the development of AT inflammation and diet-induced obesity, we employed a genetic approach to abrogate myeloid Notch1 and Notch2 receptors. Our results revealed that the combined loss of Notch1 and Notch2 worsened obesity-related metabolic dysregulation. Body and AT weight gain was higher, blood glucose levels increased and metabolic parameters were substantially worsened in deficient mice fed high-fat diet. Moreover, serum insulin and leptin were elevated as were triglycerides. Molecular analysis of ATMs showed that deletion of Notch receptors escalated inflammation through the induction of an M1-like pro-inflammatory phenotype. Our findings thus support a protective role of myeloid Notch signaling in adipose tissue inflammation and metabolic dysregulation.


Subject(s)
Adipose Tissue , Diet, High-Fat , Inflammation , Macrophages , Obesity , Receptor, Notch1 , Receptor, Notch2 , Signal Transduction , Animals , Macrophages/immunology , Macrophages/metabolism , Adipose Tissue/metabolism , Adipose Tissue/immunology , Mice , Diet, High-Fat/adverse effects , Inflammation/immunology , Inflammation/metabolism , Signal Transduction/immunology , Obesity/metabolism , Obesity/immunology , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Receptor, Notch2/metabolism , Receptor, Notch2/genetics , Mice, Knockout , Mice, Inbred C57BL , Male
5.
Cancer Lett ; 585: 216647, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38301911

ABSTRACT

The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Receptor, Notch1/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Receptors, Notch/metabolism , Receptor, Notch2/metabolism , Receptor, Notch3 , Signal Transduction
6.
Mol Cell Endocrinol ; 586: 112163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38246572

ABSTRACT

NOTCH2 is expressed in pituitary stem cells and is necessary for stem cell maintenance, proliferation, and differentiation. However, the pathways NOTCH2 engages to affect pituitary development remain unclear. In this study, we hypothesized that glycoprotein hormone subunit A2 (GPHA2), a corneal stem cell factor and ligand for the thyroid stimulating hormone receptor (TSHR), is downstream of NOTCH2 signaling. We found Gpha2 is expressed in quiescent pituitary stem cells by RNAscope in situ hybridization and scRNA seq. In Notch2 conditional knockout pituitaries, Gpha2 mRNA is reduced compared with control littermates. We then investigated the possible functions of GPHA2. Pituitaries treated with a GPHA2 peptide do not have a change in proliferation. However, in dissociated adult pituitary cells, GPHA2 increased pCREB expression and this induction was reversed by co-treatment with a TSHR inhibitor. These data suggest GPHA2 is a NOTCH2 related stem cell factor that activates TSHR signaling, potentially impacting pituitary development.


Subject(s)
Pituitary Gland , Stem Cell Factor , Adult , Humans , Pituitary Gland/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Thyrotropin , Stem Cell Factor/metabolism , Stem Cells/metabolism
7.
In Vivo ; 38(1): 205-212, 2024.
Article in English | MEDLINE | ID: mdl-38148075

ABSTRACT

BACKGROUND/AIM: Chronic pelvic pain (CPP) is a common gynecological condition in women with multifactorial etiology. Some studies have revealed that patients with CPP have the same structural and functional changes in the pain matrix in the brain to patients with other types of chronic pain. However, the relationship between localized pelvic pain and changes in the structure and function of the central nervous system is still unclear. MATERIALS AND METHODS: In this study, a rat model of CPP was established by pelvic nerve ligation and behavioral tests were used to validate the model. Afterwards, we compared the expression of CCL2 in CPP and control rats and observed the changes in their behavioral patterns by blocking the expression of CCL2 in the former group. In addition, we upregulated the expression of CCL2 in human microglia cells (HMC3) to further observe the effect of CCL2 on the Notch2 pathway. RESULTS: Our results showed that the expression of chemokine ligand 2 (CCL2) in the serum exosomes, pelvic vascular endothelial cells, and cerebrospinal fluid was higher in the CPP group than the control group (p<0.05). In HMC3 treated with recombinant CCL2 protein, a significant increase in the mRNA and protein expression of Notch2 was observed. CONCLUSION: CCL2 can activate the Notch2 signaling pathway and plays an important role in the central sensitization of chronic pelvic pain.


Subject(s)
Central Nervous System Sensitization , Chronic Pain , Animals , Female , Humans , Rats , Central Nervous System Sensitization/physiology , Chemokine CCL2/genetics , Chemokines , Chronic Pain/genetics , Endothelial Cells/metabolism , Ligands , Pelvic Pain/etiology , Pelvic Pain/therapy , Receptor, Notch2
8.
J Biol Chem ; 300(2): 105613, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159855

ABSTRACT

Notch signaling plays a key regulatory role in bone remodeling and NOTCH2 enhances osteoclastogenesis, an effect that is mostly mediated by its target gene Hes1. In the present study, we explored mechanisms responsible for the enhanced osteoclastogenesis in bone marrow-derived macrophages (BMM) from Notch2tm1.1Ecan, harboring a NOTCH2 gain-of-function mutation, and control mice. Notch2tm1.1Ecan mice are osteopenic and have enhanced osteoclastogenesis. Bulk RNA-Seq and gene set enrichment analysis of Notch2tm1.1Ecan BMMs cultured in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand revealed enrichment of genes associated with enhanced cell metabolism, aerobic respiration, and mitochondrial function, all associated with osteoclastogenesis. These pathways were not enhanced in the context of a Hes1 inactivation. Analysis of single cell RNA-Seq data of pooled control and Notch2tm1.1Ecan BMMs treated with M-CSF or M-CSF and receptor activator of NF-κB ligand for 3 days identified 11 well-defined cellular clusters. Pseudotime trajectory analysis indicated a trajectory of clusters expressing genes associated with osteoclast progenitors, osteoclast precursors, and mature cells. There were an increased number of cells expressing gene markers associated with the osteoclast and with an unknown, albeit related, cluster in Notch2tm1.1Ecan than in control BMMs as well as enhanced expression of genes associated with osteoclast progenitors and precursors in Notch2tm1.1Ecan cells. In conclusion, BMM cultures display cellular heterogeneity, and NOTCH2 enhances osteoclastogenesis, increases mitochondrial and metabolic activity of osteoclasts, and affects cell cluster allocation in BMMs.


Subject(s)
Osteoclasts , Osteogenesis , Receptor, Notch2 , Transcriptome , Animals , Mice , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Macrophage Colony-Stimulating Factor/metabolism , Mice, Inbred C57BL , Mutation , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Transcription Factor HES-1/metabolism , Transcriptome/genetics
9.
Article in English, Russian | MEDLINE | ID: mdl-38054226

ABSTRACT

Glioma cell cultures are used in basic researches of tumor processes, personalized medicine for selecting treatment regimens depending on individual characteristics of patients and pharmacology for assessing the effectiveness of chemotherapy. Suppression of glioma culture growth without reduction of malignancy grade is common. Drug cancellation may be followed by substitution of precursor cells by more malignant clones. Therefore, analysis of culture cell malignancy grade is important. In the future, intraoperative analysis of glioma cell malignancy grade can be used to select individual therapy. OBJECTIVE: We analyzed the relationship between expression of marker genes TUBB3, CD133, CDK4, CDK6, CIRBP, DR4, DR5, EGFR, FGFR, FSHR, GDNF, GFAP, L1CAM, LEF1, MAP2, MDM2, MELK, NANOG, NOTCH2, OCT4, OLIG2, PDGFRA, PDGFA, PDGFB and SOX2 and glioma cell malignancy grade, as well as created appropriate prognostic model. MATERIAL AND METHODS: We analyzed expression of 25 marker genes in 22 samples of human glioma cultures using quantitative real-time PCR. Statistical analysis was performed using the IBM SPSS Statistics 26.0 software. We used the Kolmogorov-Smirnov and Shapiro-Wilk tests to assess distribution normality. Nonparametric Jonckheere-Terpstra and Spearman tests were applied. RESULTS: We obtained a prognostic model for assessing the grade III and IV glioma cell malignancy based on expression of marker genes MDM2, MELK, SOX2, CDK4, DR5 and OCT4. Predictive accuracy was 83% (Akaike information criterion -55.125).


Subject(s)
Glioma , Humans , Prognosis , Glioma/genetics , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Gene Expression , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/therapeutic use , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/therapeutic use , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/therapeutic use , RNA-Binding Proteins/genetics , RNA-Binding Proteins/therapeutic use , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
10.
Cell Rep ; 42(11): 113408, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37943661

ABSTRACT

Transfer RNA-derived fragments (tRFs) are a class of small non-coding regulatory RNAs that are involved in the pathophysiology of many diseases. However, the role of tRFs in cancer progression remains largely elusive. Here, we demonstrate that a pan-cancer 3'-tRF, CAT1 (cancer associated tRF 1), is ubiquitously upregulated in tumors and associated with poor prognosis of a variety of cancers, including lung cancer. The upregulated CAT1 in cancer cells binds to RNA-binding protein with multiple splicing (RBPMS) and displaces NOTCH2 association from RBPMS, thereby inhibiting the subsequent CCR4-NOT deadenylation-complex-mediated NOTCH2 mRNA decay. The CAT1-enhanced NOTCH2 expression promotes lung cancer cell proliferation and metastasis in vitro and in vivo. In addition, plasma CAT1 levels are substantially increased in patients with lung cancer compared to non-cancer control subjects. Our findings reveal an intrinsic connection between cancer-specific upregulation of CAT1 and cancer progression, show the regulation of NOTCH signaling in cancer by a 3'-tRF, and highlight its great clinical potential.


Subject(s)
Lung Neoplasms , RNA, Transfer , Humans , RNA, Messenger/genetics , RNA, Transfer/metabolism , Cell Transformation, Neoplastic , Lung Neoplasms/genetics , RNA-Binding Proteins , Receptor, Notch2/genetics , Receptor, Notch2/metabolism
11.
J Biol Chem ; 299(12): 105372, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865314

ABSTRACT

Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.


Subject(s)
Chondrocytes , Osteoarthritis , Receptor, Notch2 , Tumor Necrosis Factor-alpha , Animals , Humans , Mice , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Immunoglobulins , Interleukin-6/genetics , Interleukin-6/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Inflammation , Disease Models, Animal , Chondrogenesis , Signal Transduction/drug effects , Protein Domains/immunology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Gene Deletion , Gene Expression Regulation/drug effects
12.
Blood ; 142(11): 943-944, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37707876
13.
Clinics (Sao Paulo) ; 78: 100268, 2023.
Article in English | MEDLINE | ID: mdl-37567042

ABSTRACT

OBJECTIVE: Trastuzumab is the preferred drug for the treatment of breast cancer. However, research on the cellular mechanisms of trastuzumab's potential cardiotoxicity is insufficient. The purpose of this study was to explore the toxic effects and potential mechanism of action of trastuzumab on cardiomyocytes. METHOD: Human Cardiomyocyte (HCM) viability was assessed using the MTT method. HCM apoptosis was detected using the Hoechst33342/PI Fluorescent staining. The LDH and CK activities of the cell were measured using commercially available LDH and CK assay kits. The expression levels of Notch2, JAK2, STAT3, cleaved caspase 3, bax, and bcl 2 in HCMs were detected using western blotting. RESULTS: The results showed that 250 mg/L trastuzumab induced cardiomyocyte injury and apoptosis, inhibited viability, activated the Notch2 receptor, and inhibited JAK2/STAT3 expression in HCM. Inhibition of Notch2 expression in HCM by targeted siNotch2 transfection reversed the trastuzumab-induced injury and apoptosis, and the expression of JAK2/STAT3 returned to normal levels. CONCLUSIONS: Trastuzumab induces Notch2 expression by inhibiting the JAK2/STAT3 pathway of HCMs, promotes cell apoptosis, and causes cardiomyocyteinjury. Notch2 may be a potential target of trastuzumab-inducedmyocardial injury. This experiment reveals the mechanism of trastuzumab-induced cardiotoxicity, providing a theoretical basis for the application of trastuzumab.


Subject(s)
Cardiotoxicity , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Trastuzumab/adverse effects , Trastuzumab/metabolism , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Receptor, Notch2/metabolism , Apoptosis , Janus Kinase 2/metabolism , Janus Kinase 2/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology
14.
Int Immunopharmacol ; 123: 110705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37523971

ABSTRACT

OBJECTIVE: To investigate the effect of Notch2 gene knockout in Treg cells on head and neck squamous cell carcinoma (HNSCC) in mice. METHODS: A mouse model of HNSCC was constructed. Flow cytometry and immunofluorescence were used to examine the numbers of related immune cells and programmed cell death in tumor cells in the spleen and tumor microenvironment of mice. Western blotting was used to measure the expression of related proteins in tumor tissues. RESULTS: The tumor volume of regulatory T (Treg) cell-specific Notch2-knockout mice (experimental group) was significantly smaller than that of control mice (control group) (P < 0.05). Compared with those in the control group, the number of Treg cells and the expression of Ki67 in Treg cells in the spleen and tumor tissue were significantly decreased in the experimental group, while the numbers of CD45+ hematopoietic cells, CD4+ T cells, CD8+ T cells, T helper 1 (Th1) cells, CD11b+ cells (macrophages), and CD11b+CD11c+ cells (dendritic cells) and the expression of Ki67 in CD4+ T cells and CD8+ T cells were significantly increased (P < 0.05). There was no significant difference in the number of Th2 cells between the two groups (P > 0.05). Immunofluorescence analysis showed that the numbers of CD4+ T cells and CD8+ T cells in the tumor tissue in the experimental group were significantly higher than those in the control group (P < 0.05). Compared with that in the control group, programmed cell death in the experimental group was significantly increased (P < 0.05). Moreover, the expression levels of NLRP3, Caspase-1 and GSDMD in the tumor tissues of the experimental group were higher than those in the control group (P < 0.01), while the expression levels of BCL2, Bax, ATG5, LC3 and p62 were not significantly different (P > 0.05). CONCLUSIONS: Specific knockout of the Notch2 gene in Treg cells significantly decreases the function of Treg cells, inhibits the growth of HNSCC and improves the immune microenvironment in mice, thus effectively treating HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Receptor, Notch2 , Animals , Mice , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Ki-67 Antigen/metabolism , Mice, Knockout , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , T-Lymphocytes, Regulatory , Tumor Microenvironment , Receptor, Notch2/genetics , Receptor, Notch2/metabolism
15.
Parasite Immunol ; 45(8): e12999, 2023 08.
Article in English | MEDLINE | ID: mdl-37415265

ABSTRACT

Intestinal helminth infection promotes a Type 2 inflammatory response in resistant C57BL/6 mice that is essential for worm clearance. The study of inbred mouse strains has revealed factors that are critical for parasite resistance and delineated the role of Type 1 versus Type 2 immune responses in worm clearance. In C57BL/6 mice, basophils are key innate immune cells that promote Type 2 inflammation and are programmed via the Notch signalling pathway during infection with the helminth Trichuris muris. However, how the host genetic background influences basophil responses and basophil expression of Notch receptors remains unclear. Here we use genetically susceptible inbred AKR/J mice that have a Type 1-skewed immune response during T. muris infection to investigate basophil responses in a susceptible host. Basophil population expansion occurred in AKR/J mice even in the absence of fulminant Type 2 inflammation during T. muris infection. However, basophils in AKR/J mice did not robustly upregulate expression of the Notch2 receptor in response to infection as occurred in C57BL/6 mice. Blockade of the Type 1 cytokine interferon-γ in infected AKR/J mice was not sufficient to elicit infection-induced basophil expression of the Notch2 receptor. These data suggest that the host genetic background, outside of the Type 1 skew, is important in regulating basophil responses during T. muris infection in susceptible AKR/J mice.


Subject(s)
Parasites , Trichuriasis , Animals , Mice , Mice, Inbred AKR , Trichuris , Basophils , Receptor, Notch2 , Mice, Inbred C57BL , Disease Susceptibility , Inflammation
16.
Sci Rep ; 13(1): 11418, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452111

ABSTRACT

Notch signaling regulates cell fate in multiple tissues including the skeleton. Hajdu-Cheney-Syndrome (HCS), caused by gain-of-function mutations in the Notch2 gene, is a rare inherited disease featuring early-onset osteoporosis and increased risk for fractures and non-union. As the impact of Notch2 overactivation on fracture healing is unknown, we studied bone regeneration in mice harboring a human HCS mutation. HCS mice, displaying high turnover osteopenia in the non-fractured skeleton, exhibited only minor morphologic alterations in the progression of bone regeneration, evidenced by static radiological and histological outcome measurements. Histomorphometry showed increased osteoclast parameters in the callus of HCS mice, which was accompanied by an increased expression of osteoclast and osteoblast markers. These observations were accompanied by inferior biomechanical stability of healed femora in HCS mice. Together, our data demonstrate that structural indices of bone regeneration are normal in HCS mice, which, however, exhibit signs of increased callus turnover and display impaired biomechanical stability of healed fractures.


Subject(s)
Bone Diseases, Metabolic , Hajdu-Cheney Syndrome , Osteoporosis , Humans , Mice , Animals , Fracture Healing , Hajdu-Cheney Syndrome/genetics , Hajdu-Cheney Syndrome/metabolism , Hajdu-Cheney Syndrome/pathology , Bone Diseases, Metabolic/pathology , Osteoporosis/pathology , Osteoclasts/metabolism , Receptor, Notch2/metabolism
17.
Food Chem Toxicol ; 178: 113861, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37277016

ABSTRACT

Female reproductive lifespan is largely determined by the size of the primordial follicle pool, which is established in early life. Dibutyl phthalate (DBP), a popular plasticiser, is a known environmental endocrine disruptor that poses a potential threat to reproductive health. However, DBP impact on early oogenesis has been rarely reported. In this study, maternal exposure to DBP in gestation disrupted germ-cell cyst breakdown and primordial follicle assembly in foetal ovary, impairing female fertility in adulthood. Subsequently, altered autophagic flux with autophagosome accumulation was observed in DBP-exposed ovaries carrying CAG-RFP-EGFP-LC3 reporter genes, whereas autophagy inhibition by 3-methyladenine attenuated the impact of DBP on primordial folliculogenesis. Moreover, DBP exposure reduced the expression of NOTCH2 intracellular domain (NICD2) and decreased interactions between NICD2 and Beclin-l. NICD2 was observed within the autophagosomes in DBP-exposed ovaries. Furthermore, NICD2 overexpression partially restored primordial folliculogenesis. Furthermore, melatonin significantly relieved oxidative stress, decreased autophagy, and restored NOTCH2 signalling, consequently reversing the effect on folliculogenesis. Therefore, this study demonstrated that gestational DBP exposure disrupts primordial folliculogenesis by inducing autophagy, which targets NOTCH2 signalling, and this impact has long-term consequences on fertility in adulthood, strengthening the potential contribution of environmental chemicals to the development of ovarian dysfunctional diseases.


Subject(s)
Dibutyl Phthalate , Ovarian Follicle , Animals , Female , Mice , Autophagy , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/metabolism , Ovary , Plasticizers/metabolism , Receptor, Notch2/chemistry , Receptor, Notch2/metabolism
18.
Future Oncol ; 19(14): 1003-1012, 2023 May.
Article in English | MEDLINE | ID: mdl-37199277

ABSTRACT

Background & aim: MicroRNAs associated with the Notch pathway play a critical role in the progression of pancreatic carcinoma. Our aim was to study the clinical significance of miR-107 and NOTCH2 in pancreatic ductal adenocarcinoma (PDAC). Methods: The circulating miR-107 levels in PDAC and controls were determined by qPCR. NOTCH2 protein (target) expression in tissue of PDAC, periampullary carcinoma, chronic pancreatitis and normal pancreatic tissue was assessed by immunohistochemistry. Results: The circulating miR-107 levels were found to be significantly reduced in PDAC as compared with controls. Additionally, NOTCH2 protein expression was higher in PDAC tissue as compared with controls and was clinically associated with metastasis. Conclusion: Our findings demonstrate the utility of circulating miR-107 as a potential differentiating marker in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Clinical Relevance , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Pancreatic Neoplasms
19.
Blood ; 142(11): 973-988, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37235754

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Up to 40% of patients with DLBCL display refractory disease or relapse after standard chemotherapy treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]), leading to significant morbidity and mortality. The molecular mechanisms of chemoresistance in DLBCL remain incompletely understood. Using a cullin-really interesting new gene (RING) ligase-based CRISPR-Cas9 library, we identify that inactivation of the E3 ubiquitin ligase KLHL6 promotes DLBCL chemoresistance. Furthermore, proteomic approaches helped identify KLHL6 as a novel master regulator of plasma membrane-associated NOTCH2 via proteasome-dependent degradation. In CHOP-resistant DLBCL tumors, mutations of NOTCH2 result in a protein that escapes the mechanism of ubiquitin-dependent proteolysis, leading to protein stabilization and activation of the oncogenic RAS signaling pathway. Targeting CHOP-resistant DLBCL tumors with the phase 3 clinical trial molecules nirogacestat, a selective γ-secretase inhibitor, and ipatasertib, a pan-AKT inhibitor, synergistically promotes DLBCL destruction. These findings establish the rationale for therapeutic strategies aimed at targeting the oncogenic pathway activated in KLHL6- or NOTCH2-mutated DLBCL.


Subject(s)
Drug Resistance, Neoplasm , Lymphoma, Large B-Cell, Diffuse , Humans , Drug Resistance, Neoplasm/genetics , Ubiquitin , Proteomics , Neoplasm Recurrence, Local/drug therapy , Rituximab/therapeutic use , Vincristine , Cyclophosphamide , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Prednisone , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Receptor, Notch2/genetics
20.
Acta Neuropathol Commun ; 11(1): 71, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37131242

ABSTRACT

The retinal pathology of genetically confirmed neuronal intranuclear inclusion disease (NIID) is yet unknown. We report the ocular findings in four NIID patients with NOTCH2NLC GGC repeat expansion to investigate the pathology of retinopathy. All four NIID patients were diagnosed by skin biopsy and NOTCH2NLC GGC repeat analysis. Ocular findings in patients with NIID were studied using fundus photographs, optical coherence tomographic images (OCT), and full-field electroretinograms (ERGs). The histopathology of the retina was studied on autopsy samples from two cases with immunohistochemistry. All patients had an expansion of the GGC repeat (87-134 repeats) in the NOTCH2NLC. Two patients were legally blind and had been diagnosed with retinitis pigmentosa prior to the diagnosis of NIID and assessed with whole exome sequencing to rule out comorbidity with other retinal diseases. Fundus photographs around the posterior pole showed chorioretinal atrophy in the peripapillary regions. OCT showed thinning of the retina. ERGs showed various abnormalities in cases. The histopathology of autopsy samples showed diffusely scattered intranuclear inclusions throughout the retina from the retinal pigment epithelium to the ganglion cell layer, and optic nerve glial cells. And severe gliosis was observed in retina and optic nerve. The NOTCH2NLC GGC repeat expansion causes numerous intranuclear inclusions in the retina and optic nerve cells and gliosis. Visual dysfunction could be the first sign of NIID. We should consider NIID as one of the causes of retinal dystrophy and investigate the GGC repeat expansion in NOTCH2NLC.


Subject(s)
Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Receptor, Notch2 , Humans , Gliosis/pathology , Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/pathology , Retina/pathology , Receptor, Notch2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...