Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 487
Filter
1.
World J Gastroenterol ; 30(10): 1431-1449, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38596485

ABSTRACT

BACKGROUND: Serotonin receptor 2B (5-HT2B receptor) plays a critical role in many chronic pain conditions. The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea (IBS-D) was investigated in the present study. AIM: To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D. METHODS: Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls. The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores. The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint. Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1 (TRPV1) expression were examined following 5-HT2B receptor antagonist administration. Changes in visceral sensitivity after administration of the TRPV1 antagonist were recorded. RESULTS: Here, we observed greater expression of the 5-HT2B receptor in the colonic mucosa of patients with IBS-D than in that of controls, which was correlated with abdominal pain scores. Intracolonic instillation of acetic acid and wrap restraint induced obvious chronic visceral hypersensitivity and increased fecal weight and fecal water content. Exogenous 5-HT2B receptor agonist administration increased visceral hypersensitivity, which was alleviated by successive administration of a TRPV1 antagonist. IBS-D rats receiving the 5-HT2B receptor antagonist exhibited inhibited visceral hyperalgesia.Moreover, the percentage of 5-HT2B receptor-immunoreactive (IR) cells surrounded by TRPV1-positive cells (5-HT2B receptor I+) and total 5-HT2B receptor IR cells (5-HT2B receptor IT) in IBS-D rats was significantly reduced by the administration of a 5-HT2B receptor antagonist. CONCLUSION: Our finding that increased expression of the 5-HT2B receptor contributes to visceral hyperalgesia by inducing TRPV1 expression in IBS-D patients provides important insights into the potential mechanisms underlying IBS-D-associated visceral hyperalgesia.


Subject(s)
Irritable Bowel Syndrome , Humans , Rats , Animals , Irritable Bowel Syndrome/pathology , Receptor, Serotonin, 5-HT2B , Hyperalgesia/etiology , Hyperalgesia/metabolism , Serotonin/metabolism , Diarrhea/etiology , Receptors, Serotonin , Abdominal Pain/etiology , Abdominal Pain/metabolism , Acetates
2.
Mol Cancer Res ; 22(6): 538-554, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38381131

ABSTRACT

A number of neurotransmitters have been detected in tumor microenvironment and proved to modulate cancer oncogenesis and progression. We previously found that biosynthesis and secretion of neurotransmitter 5-hydroxytryptamine (5-HT) was elevated in colorectal cancer cells. In this study, we discovered that the HTR2B receptor of 5-HT was highly expressed in colorectal cancer tumor tissues, which was further identified as a strong risk factor for colorectal cancer prognostic outcomes. Both pharmacological blocking and genetic knocking down HTR2B impaired migration of colorectal cancer cell, as well as the epithelial-mesenchymal transition (EMT) process. Mechanistically, HTR2B signaling induced ribosomal protein S6 kinase B1 (S6K1) activation via the Akt/mTOR pathway, which triggered cAMP-responsive element-binding protein 1 (CREB1) phosphorylation (Ser 133) and translocation into the nucleus, then the phosphorylated CREB1 acts as an activator for ZEB1 transcription after binding to CREB1 half-site (GTCA) at ZEB1 promoter. As a key regulator of EMT, ZEB1, therefore, enhances migration and EMT process in colorectal cancer cells. We also found that HTR2B-specific antagonist (RS127445) treatment significantly ameliorated metastasis and reversed EMT process in both HCT116 cell tail-vein-injected pulmonary metastasis and CT26 cell intrasplenic-injected hepatic metastasis mouse models. IMPLICATIONS: These findings uncover a novel regulatory role of HTR2B signaling on colorectal cancer metastasis, which provide experimental evidences for potential HTR2B-targeted anti-colorectal cancer metastasis therapy.


Subject(s)
Colorectal Neoplasms , Cyclic AMP Response Element-Binding Protein , Epithelial-Mesenchymal Transition , Receptor, Serotonin, 5-HT2B , Zinc Finger E-box-Binding Homeobox 1 , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Animals , Mice , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Receptor, Serotonin, 5-HT2B/metabolism , Receptor, Serotonin, 5-HT2B/genetics , Cell Line, Tumor , Cell Movement , Neoplasm Metastasis , Signal Transduction , Gene Expression Regulation, Neoplastic , Male , Female
3.
J Med Chem ; 66(16): 11027-11039, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37584406

ABSTRACT

The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the serotonin receptor 2B (5-HT2B) has solidified the receptor's place as an "antitarget" in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart disease (VHD), and related cardiopathies. In this Perspective, we summarize the link between the clinical failure of fenfluramine-phentermine (fen-phen) and the subsequent research on the role of 5-HT2B in disease progression, as well as the development of drug-like and receptor subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment of PAH and VHD, but their utility has been historically understudied due to the clinical disasters associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug discovery, with an emphasis on the receptor's role in the central nervous system (CNS) versus the periphery.


Subject(s)
Heart Valve Diseases , Receptor, Serotonin, 5-HT2B , Humans , Serotonin , Fenfluramine , Drug Discovery
4.
Eur J Med Chem ; 259: 115691, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37562117

ABSTRACT

(N)-Methanocarba adenosine derivatives were structurally modified to target 5-HT2B serotonin receptors as antagonists, predominantly containing branched N6-alkyl groups. N6-Dicycloalkyl-methyl groups, including their asymmetric variations, as well as 2-iodo, were found to generally favor 5-HT2Rs, while only N6-dicyclohexyl-methyl derivative 35 showed weak 5-HT2AR affinity (Ki 3.6 µM). The highest 5-HT2BR affinities were Ki 11-23 nM (N6-dicyclopropyl-methyl-2-iodo 11, 2-chloro-5'-deoxy-5'-methylthio 15 and N6-((R)-cyclobuty-cyclopropyl-methyl)-2-iodo 43), and Ki 73 nM at 5-HT2CR for 36. Direct comparison of adenine ribosides and their corresponding rigid (N)-methanocarba derivatives (cf. 51 and MRS8099 45) indicated a multifold affinity enhancement with the bicyclic ring system. Compounds 43, 45 and 48 were functional 5-HT2BR (KB 2-3 nM) and 5-HT2CR (KB 79-328 nM) antagonists in a Gq-mediated calcium flux assay, with 5-HT2BR functional selectivity ranging from 45- (48) to 113-fold (43). Substantial adenosine receptor (AR) affinity (Ki, A1AR < Ki, A3AR < Ki, A2AAR) was still present in this series, suggestive of dual acting compounds: 5-HT2B antagonist and A1AR agonist, potentially useful for treating chronic conditions (fibrosis; pain). Given its affinity (17 nM) and moderate 5-HT2BR binding selectivity (32-fold vs. 5-HT2CR, 4-fold vs. A1AR), 43 (MRS7925) could potentially be useful for anti-fibrotic therapy.


Subject(s)
Adenosine , Serotonin , Serotonin Antagonists , Structure-Activity Relationship , Receptors, Purinergic P1 , Receptor, Serotonin, 5-HT2B
5.
Eur J Med Res ; 28(1): 243, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480094

ABSTRACT

BACKGROUND: During pregnancy, the increase in maternal insulin resistance is compensated by hyperplasia and increased function of maternal pancreatic beta cells; the failure of this compensatory mechanism is associated with gestational diabetes mellitus (GDM). Serotonin participates in beta cell adaptation, acting downstream of the prolactin pathway; the blocking of serotonin receptor B (HTR2B) signaling in pregnant mice impaired beta cell expansion and caused glucose intolerance. Thus, given the importance of the serotoninergic system for the adaptation of beta cells to the increased insulin demand during pregnancy, we hypothesized that genetic variants (single nucleotide polymorphisms [SNPs]) in the gene encoding HTR2B could influence the risk of developing GDM. METHODS: This was a case-control study. Five SNPs (rs4973377, rs765458, rs10187149, rs10194776, and s17619600) in HTR2B were genotyped by real-time polymerase chain reaction in 453 women with GDM and in 443 pregnant women without GDM. RESULTS: Only the minor allele C of SNP rs17619600 conferred an increased risk for GDM in the codominant model (odds ratio [OR] 2.15; 95% confidence interval [CI] 1.53-3.09; P < 0.0001) and in the rare dominant model (OR 2.32; CI 1.61-3.37; P < 0.0001). No associations were found between the SNPs and insulin use, maternal weight gain, newborn weight, or the result of postpartum oral glucose tolerance test (OGTT). In the overall population, carriers of the XC genotype (rare dominant model) presented a higher area under the curve (AUC) of plasma glucose during the OGTT, performed for diagnostic purposes, compared with carriers of the TT genotype of rs17619600. CONCLUSIONS: SNP rs17619600 in the HTR2B gene influences glucose homeostasis, probably affecting insulin release, and the presence of the minor allele C was associated with a higher risk of GDM.


Subject(s)
Diabetes, Gestational , Female , Humans , Pregnancy , Alleles , Case-Control Studies , Diabetes, Gestational/genetics , Insulin/genetics , Receptor, Serotonin, 5-HT2B
6.
Assay Drug Dev Technol ; 21(3): 89-96, 2023 04.
Article in English | MEDLINE | ID: mdl-36930852

ABSTRACT

Antagonists of the serotonin receptor 2B (5-HT2B) have shown great promise as therapeutics for the treatment of pulmonary arterial hypertension, valvular heart disease, and related cardiopathies. Herein, we describe a high-throughput screen campaign that led to the identification of highly potent and selective 5-HT2B antagonists. Furthermore, selected compounds were profiled for their predicted ability to cross the blood-brain barrier. Two exemplary compounds, VU0530244 and VU0631019, were predicted to have very limited potential for brain penetration in human subjects, a critical profile for the development of 5-HT2B antagonists devoid of centrally-mediated adverse effects.


Subject(s)
Receptor, Serotonin, 5-HT2B , Serotonin , Humans
7.
Eur J Pharmacol ; 944: 175570, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36781042

ABSTRACT

Vascular Smooth Muscle Cells (VSMCs) are known to be the key drivers of intimal thickening which contribute to early progression of atherosclerosis. VSMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli they could modify the type of matrix proteins produced. Serotonin receptor 2B (5-HT2B receptor/HTR2B) has been implicated in several chronic fibrotic and vascular diseases. Although studies have successfully demonstrated the efficacy of HTR2B blockade in attenuating fibrotic disease, the role of 5-HT2B receptor in TGFß mediated VSMC differentiation remain largely unknown. In the present study, we investigated the potential of targeting the 5-HT2B receptor to prevent TGFß induced VSMCs differentiation. Our results showed that 5-HT2B receptors are expressed in human atherosclerotic lesion and HTR2B expression positively correlated to the VSMCs markers. We show that AM1125, a selective 5-HT2B receptor inhibitor, significantly inhibits TGFß1 induced production of collagen and CTGF. The investigation of underlying mechanisms indicated that 5-HT2B receptor antagonism blocks phospho-Smad2 mediated downstream signaling of TGFß1 in vascular smooth muscle cells. Collectively, the HTR2B/TGF-ß1/Phospho-Smad2 pathway plays a critical role in the regulation of VSMCs differentiation. Our findings might serve 5-HT2B receptor as a therapeutic target to limit TGF-ß1 induced VSMC differentiation.


Subject(s)
Atherosclerosis , Transforming Growth Factor beta , Humans , Atherosclerosis/pathology , Carrier Proteins/metabolism , Cell Differentiation , Cells, Cultured , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
8.
J Med Chem ; 66(2): 1509-1521, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36621987

ABSTRACT

Toxicity is a major cause of attrition in the development of pharmaceuticals, and the off-target effects are a frequent contributor. The 5-HT2B receptor agonism is known to be responsible for a variety of safety concerns including valvular heart disease which was the cause for the withdrawal of several compounds from the market. An early detection of potential binding to this receptor is thus desirable. Herein, we present the identification of key amino acid residues in the active site of 5-HT2B by molecular dynamics simulations, the development of pharmacophore models and their performance on in-house data, and a structurally highly diverse subset of Enamine REAL labeled for 5-HT2B activity by a machine learning model. These models may be used as filters employed on screening compound sets for the early filtration of compounds with potential 5-HT2B off-target liabilities.


Subject(s)
Pharmacophore , Serotonin , Molecular Dynamics Simulation , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Catalytic Domain , Receptor, Serotonin, 5-HT2B
9.
J Invest Dermatol ; 143(1): 142-153.e10, 2023 01.
Article in English | MEDLINE | ID: mdl-36049541

ABSTRACT

Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch through transient receptor potential channels signaling are poorly understood. In this study, we show that genetic deletion or pharmacological antagonism of TRPV4 attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several microRNAs, including the miR-203b-3p, which induced a calcium ion response in rodent dorsal root ganglion neurons and scratching behavior in mice through 5-HTR2B activation and the protein kinase C‒dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular microRNA that can behave as an itch promoter through 5-HTR2B and TRPV4.


Subject(s)
MicroRNAs , Pruritus , Receptor, Serotonin, 5-HT2B , TRPV Cation Channels , Animals , Humans , Mice , Computer Simulation , Ganglia, Spinal , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Pruritus/chemically induced , Pruritus/genetics , Pruritus/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Receptor, Serotonin, 5-HT2B/genetics , Receptor, Serotonin, 5-HT2B/metabolism
10.
Eur J Med Res ; 27(1): 203, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253869

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and repetitive stereotyped behaviors. Previous studies have reported an association of serotonin or 5-hydroxytryptamine (5-HT) with ASD, but the specific receptors and neurons by which serotonin modulates autistic behaviors have not been fully elucidated. METHODS: RNAi-mediated knockdown was done to destroy the function of tryptophan hydroxylase (Trh) and all the five serotonin receptors. Given that ubiquitous knockdown of 5-HT2B showed significant defects in social behaviors, we applied the CRISPR/Cas9 system to knock out the 5-HT2B receptor gene. Social space assays and grooming assays were the major methods used to understand the role of serotonin and related specific receptors in autism-like behaviors of Drosophila melanogaster. RESULTS: A close relationship was identified between serotonin and autism-like behaviors reflected by increased social space distance and high-frequency repetitive behavior in Drosophila. We further utilized the binary expression system to knock down all the five 5-HT receptors, and observed the 5-HT2B receptor as the main receptor responsible for the normal social space and repetitive behavior in Drosophila for the specific serotonin receptors underlying the regulation of these two behaviors. Our data also showed that neurons in the dorsal fan-shaped body (dFB), which expressed 5-HT2B, were functionally essential for the social behaviors of Drosophila. CONCLUSIONS: Collectively, our data suggest that serotonin levels and the 5-HT2B receptor are closely related to the social interaction and repetitive behavior of Drosophila. Of all the 5 serotonin receptors, 5-HT2B receptor in dFB neurons is mainly responsible for serotonin-mediated regulation of autism-like behaviors.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Drosophila Proteins , Animals , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Disease Models, Animal , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neurons/metabolism , Receptor, Serotonin, 5-HT2B , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Serotonin/metabolism , Transcription Factors , Tryptophan Hydroxylase/genetics
11.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Article in English | MEDLINE | ID: mdl-35697176

ABSTRACT

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Subject(s)
Dorsal Raphe Nucleus , Receptor, Serotonin, 5-HT2B , Serotonergic Neurons , Animals , Dorsal Raphe Nucleus/metabolism , Mice , Rats , Receptor, Serotonin, 5-HT2B/metabolism , Serotonergic Neurons/metabolism , Serotonin/pharmacology
12.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163491

ABSTRACT

Uveal melanoma (UM) remains the most common intraocular malignancy among diseases affecting the adult eye. The primary tumor disseminates to the liver in half of patients and leads to a 6 to 12-month survival rate, making UM a particularly aggressive type of cancer. Genomic analyses have led to the development of gene-expression profiles that can efficiently predict metastatic progression. Among these genes, that encoding the serotonin receptor 2B (HTR2B) represents the most discriminant from this molecular signature, its aberrant expression being the hallmark of UM metastatic progression. Recent evidence suggests that expression of HTR2B might be regulated through the Janus kinase/Signal Transducer and Activator of Transcription proteins (JAK/STAT) intracellular signalization pathway. However, little is actually known about the molecular mechanisms involved in the abnormally elevated expression of the HTR2B gene in metastatic UM and whether activated STAT proteins participates to this mechanism. In this study, we determined the pattern of STAT family members expressed in both primary tumors and UM cell-lines, and evaluated their contribution to HTR2B gene expression. Examination of the HTR2B promoter sequence revealed the presence of a STAT putative target site (5'-TTC (N)3 GAA3') located 280 bp upstream of the mRNA start site that is completely identical to the high affinity binding site recognized by these TFs. Gene profiling on microarrays provided evidence that metastatic UM cell lines with high levels of HTR2B also express high levels of STAT proteins whereas low levels of these TFs are observed in non-metastatic UM cells with low levels of HTR2B, suggesting that STAT proteins contribute to HTR2B gene expression in UM cells. All UM cell lines tested were found to express their own pattern of STAT proteins in Western blot analyses. Furthermore, T142 and T143 UM cells responded to interleukins IL-4 and IL-6 by increasing the phosphorylation status of STAT1. Most of all, expression of HTR2B also considerably increased in response to both IL-4 and IL-6 therefore providing evidence that HTR2B gene expression is modulated by STAT proteins in UM cells. The binding of STAT proteins to the -280 HTR2B/STAT site was also demonstrated by electrophoretic mobility shift assay (EMSA) analyses and site-directed mutation of that STAT site also abolished both IL-4 and IL-6 responsiveness in in vitro transfection analyses. The results of this study therefore demonstrate that members from the STAT family of TFs positively contribute to the expression of HTR2B in uveal melanoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Receptor, Serotonin, 5-HT2B/genetics , STAT Transcription Factors/metabolism , Uveal Neoplasms/metabolism , 5' Flanking Region/genetics , Cell Line, Tumor , DNA/metabolism , Humans , Interleukin-4/pharmacology , Interleukin-6/pharmacology , Nuclear Proteins/metabolism , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , Protein Isoforms/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , STAT Transcription Factors/genetics
13.
Sci Rep ; 11(1): 23582, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880312

ABSTRACT

Degeneration of brainstem serotonin neurons has been demonstrated in ALS patients and mouse models and was found responsible for the development of spasticity. Consistent with involvement of central serotonin pathways, 5-HT2B receptor (5-HT2BR) was upregulated in microglia of ALS mice. Its deletion worsened disease outcome in the Sod1G86R mouse model and led to microglial degeneration. In ALS patients, a polymorphism in HTR2B gene leading to higher receptor expression in CNS, was associated with increased survival in patients as well as prevention of microglial degeneration. Thus, the aim of our study was to determine the effect of a 5-HT2BR agonist : BW723C86 (BW), in the Sod1G86R mouse model. Despite good pharmacokinetic and pharmacological profiles, BW did not ameliorate disease outcome or motor neuron degeneration in a fast progressing mouse model of ALS despite evidence of modulation of microglial gene expression.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Indoles/pharmacology , Receptor, Serotonin, 5-HT2B/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin/metabolism , Thiophenes/pharmacology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Motor Neurons/drug effects , Motor Neurons/metabolism , Nerve Degeneration/drug therapy , Nerve Degeneration/metabolism , Superoxide Dismutase-1/metabolism
14.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34618686

ABSTRACT

Insulin resistance is a cornerstone of obesity-related complications such as type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease. A high rate of lipolysis is known to be associated with insulin resistance, and inhibiting adipose tissue lipolysis improves obesity-related insulin resistance. Here, we demonstrate that inhibition of serotonin (5-hydroxytryptamine [5-HT]) signaling through serotonin receptor 2B (HTR2B) in adipose tissues ameliorates insulin resistance by reducing lipolysis in visceral adipocytes. Chronic high-fat diet (HFD) feeding increased Htr2b expression in epididymal white adipose tissue, resulting in increased HTR2B signaling in visceral white adipose tissue. Moreover, HTR2B expression in white adipose tissue was increased in obese humans and positively correlated with metabolic parameters. We further found that adipocyte-specific Htr2b-knockout mice are resistant to HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Enhanced 5-HT signaling through HTR2B directly activated lipolysis through phosphorylation of hormone-sensitive lipase in visceral adipocytes. Moreover, treatment with a selective HTR2B antagonist attenuated HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Thus, adipose HTR2B signaling could be a potential therapeutic target for treatment of obesity-related insulin resistance.


Subject(s)
Insulin Resistance , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Serotonin/metabolism , Adipocytes/cytology , Adipocytes, White , Adipose Tissue , Adipose Tissue, White/metabolism , Adult , Animals , Diet, High-Fat , Epididymis , Female , Glycerol/metabolism , Humans , Inflammation , Insulin/metabolism , Lipolysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phosphorylation , Signal Transduction , Young Adult
15.
J Am Heart Assoc ; 10(17): e015868, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34472367

ABSTRACT

Background Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex-specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. Methods and Results Genomewide studies show that glucocorticoids inhibit estrogen-mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5-HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5-HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5-HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5-HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. Conclusions These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion.


Subject(s)
Estrogens/metabolism , Glucocorticoids , Myocardial Infarction , Myocardial Reperfusion Injury , Receptor, Serotonin, 5-HT2B , Apoptosis , Cell Death , Estrogen Receptor alpha , Female , Glucocorticoids/pharmacology , Humans , Hypoxia , Male , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac , Receptors, Glucocorticoid/genetics
16.
J Neuroimmunol ; 356: 577608, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34000471

ABSTRACT

Fluoxetine is a selective serotonin reuptake inhibitor, which also has an immunomodulatory effect. We investigated the effects of fluoxetine and serotonin (5-HT) on the pro-inflammatory Th17- and Th1-cells in 30 patients with relapsing-remitting MS and 20 healthy subjects. Fluoxetine and 5-HT suppressed IL-17, IFN-γ and GM-CSF production by stimulated СD4+ T-cells in both groups. Blockade of 5-HT2B-receptors decreased the inhibitory effect of fluoxetine on cytokine production in MS patients. Finally, 5-HT2B-receptor activation inhibits IL-17, IFN-γ and GM-CSF production in both groups. These data suggest an anti-inflammatory role for fluoxetine in MS, which could be mediated by the activation of 5-HT2B-receptors.


Subject(s)
Fluoxetine/therapeutic use , Multiple Sclerosis/drug therapy , Receptor, Serotonin, 5-HT2B/metabolism , Selective Serotonin Reuptake Inhibitors/therapeutic use , Th1 Cells/drug effects , Th17 Cells/drug effects , Adult , Female , Fluoxetine/pharmacology , Humans , Male , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Receptor, Serotonin, 5-HT2B/immunology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Young Adult
17.
Gastroenterology ; 161(2): 608-622.e7, 2021 08.
Article in English | MEDLINE | ID: mdl-33895170

ABSTRACT

BACKGROUND & AIMS: Constipation is commonly associated with diabetes. Serotonin (5-HT), produced predominantly by enterochromaffin (EC) cells via tryptophan hydroxylase 1 (TPH1), is a key modulator of gastrointestinal (GI) motility. However, the role of serotonergic signaling in constipation associated with diabetes is unknown. METHODS: We generated EC cell reporter Tph1-tdTom, EC cell-depleted Tph1-DTA, combined Tph1-tdTom-DTA, and interstitial cell of Cajal (ICC)-specific Kit-GCaMP6 mice. Male mice and surgically ovariectomized female mice were fed a high-fat high-sucrose diet to induce diabetes. The effect of serotonergic signaling on GI motility was studied by examining 5-HT receptor expression in the colon and in vivo GI transit, colonic migrating motor complexes (CMMCs), and calcium imaging in mice treated with either a 5-HT2B receptor (HTR2B) antagonist or agonist. RESULTS: Colonic transit was delayed in males with diabetes, although colonic Tph1+ cell density and 5-HT levels were increased. Colonic transit was not further reduced in diabetic mice by EC cell depletion. The HTR2B protein, predominantly expressed by colonic ICCs, was markedly decreased in the colonic muscles of males and ovariectomized females with diabetes. Ca2+ activity in colonic ICCs was decreased in diabetic males. Treatment with an HTR2B antagonist impaired CMMCs and colonic motility in healthy males, whereas treatment with an HTR2B agonist improved CMMCs and colonic motility in males with diabetes. Colonic transit in ovariectomized females with diabetes was also improved significantly by the HTR2B agonist treatment. CONCLUSIONS: Impaired colonic motility in mice with diabetes was improved by enhancing HTR2B signaling. The HTR2B agonist may provide therapeutic benefits for constipation associated with diabetes.


Subject(s)
Colon/drug effects , Constipation/prevention & control , Diabetes Complications/prevention & control , Gastrointestinal Motility/drug effects , Indoles/pharmacology , Interstitial Cells of Cajal/drug effects , Myoelectric Complex, Migrating/drug effects , Receptor, Serotonin, 5-HT2B/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Thiophenes/pharmacology , Animals , Calcium Signaling , Colon/metabolism , Colon/physiopathology , Constipation/etiology , Constipation/metabolism , Constipation/physiopathology , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Disease Models, Animal , Female , Genes, Reporter , Interstitial Cells of Cajal/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Ovariectomy , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Serotonin/metabolism , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
18.
Pathol Res Pract ; 220: 153379, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33721619

ABSTRACT

Colorectal cancer (CRC) is a heterogeneous disease with different genetic and molecular backgrounds, leading to a diverse patient prognosis and treatment response. Four consensus molecular subtypes (CMS 1-4) have recently been proposed based on transcriptome profiling. A clinically practical immunohistochemistry (IHC) based CMS classifier consisting of the four markers FRMD6, ZEB1, HTR2B, and CDX2 was then demonstrated. However, the IHC-CMS classifier did not distinguish between CMS2 and CMS3 tumours. In this study, we have applied the proposed transcriptome based and IHC-based CMS classifiers in a CRC cohort of 65 patients and found a concordance of 77.5 %. Further, we modified the IHC-CMS classifier by analysing the differentially expressed genes between CMS2 and CMS3 tumours using RNA-sequencing data from the TCGA dataset. The result showed that WNT signalling was among the most upregulated pathways in CMS2 tumours, and the expression level of CTNNB1 (encoding ß-catenin), a WNT pathway hallmark, was significantly upregulated (P = 1.15 × 10-6). We therefore introduced nuclear ß-catenin staining to the IHC-CMS classifier. Using the modified classifier in our cohort, we found a 71.4 % concordance between the IHC and RNA-sequencing based CMS classifiers. Moreover, ß-catenin staining could classify 16 out of the 19 CMS2/3 tumours into CMS2 or CMS3, thereby showing an 84.2 % concordance with the RNA-sequencing-based classifier. In conclusion, we evaluated CMS classifiers based on transcriptome and IHC analysis. We present a modified IHC panel that categorizes CRC tumours into the four CMS groups. To our knowledge, this is the first study using IHC to identify all four CMS groups.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/chemistry , Immunohistochemistry , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , CDX2 Transcription Factor/analysis , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cytoskeletal Proteins/analysis , Female , Gene Expression Profiling , Humans , Male , Membrane Proteins/analysis , Middle Aged , Predictive Value of Tests , Receptor, Serotonin, 5-HT2B/analysis , Reproducibility of Results , Sequence Analysis, RNA , Transcriptome , Wnt Signaling Pathway , Zinc Finger E-box-Binding Homeobox 1/analysis , beta Catenin/analysis
19.
ACS Chem Neurosci ; 12(7): 1133-1149, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33739808

ABSTRACT

The serotonin 2B (5-HT2B) receptor coupled to Gq-protein contributes to the control of neuronal excitability and is implicated in various psychiatric disorders. The mechanisms underlying its brain function are not fully described. Using peptide affinity chromatography combined with mass spectrometry, we found that the PDZ binding motif of the 5-HT2B receptor located at its C-terminal end interacts with the scaffolding protein channel interacting PDZ protein (CIPP). We then showed, in COS-7 cells, that the association of the 5-HT2B receptor to CIPP enhanced receptor-operated inositol phosphate (IP) production without affecting its cell surface and intracellular levels. Co-immunoprecipitation experiments revealed that CIPP, the 5-HT2B receptor, and the NR1 subunit of the NMDA receptor form a macromolecular complex. CIPP increased 5-HT2B receptor clustering at the surface of primary cultured hippocampal neurons and prevented receptor dispersion following agonist stimulation, thus potentiating IP production and intracellular calcium mobilization in dendrites. CIPP or 5-HT2B receptor stimulation in turn dispersed NR1 clusters colocalized with 5-HT2B receptors and increased the density and maturation of dendritic spines. Collectively, our results suggest that the 5-HT2B receptor, the NMDA receptor, and CIPP may form a signaling platform by which serotonin can influence structural plasticity of excitatory glutamatergic synapses.


Subject(s)
Receptor, Serotonin, 5-HT2B , Receptors, N-Methyl-D-Aspartate , Hippocampus/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
20.
Sci Rep ; 11(1): 1670, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462318

ABSTRACT

The serotonin transporter (SLC6A4), 5-HT2A (HTR2A) and 5-HT2B (HTR2B) recepter genes, express proteins that are important regulators of serotonin reuptake and signaling, and thereby may contribute to the pathogenesis of aggressive criminal behavior. 370 sentenced murderers in Pakistani prisons and 359 men without any history of violence or criminal delinquency were genotyped for six candidate polymorphisms in SLC6A4, HTR2A and HTR2B genes. An association of higher expressing L/L and LA/LA variants of the 5-HTTLPR polymorphism was observed with homicidal behavior (bi-allelic: OR = 1.29, p = 0.016, tri-allelic: OR = 1.32, p = 0.015) and in the murderer group only with response to verbal abuse (OR = 2.11, p = 0.015), but not with other measures of self-reported aggression. L/L and LA/LA genotypes of the 5-HTTLPR polymorphism were associated with higher aggression scores on STAX1 scale of aggression compared to lower expressing genotypes (S/S, S/LG, LG/LG) in prison inmates. No associations were apparent for other serotonergic gene polymorphisms analyzed. Using the Braineac and GTEx databases, we demonstrated significant eQTL based functional effects for rs25531 in HTTLPR and other serotonergic polymorphisms analyzed in different brain regions and peripheral tissues. In conclusion, these findings implicate SLC6A4* HTTLPR as a major genetic determinant associated with criminal aggression. Future studies are needed to replicate this finding and establish the biologic intermediate phenotypes mediating this relationship.


Subject(s)
Aggression/physiology , Criminal Behavior/physiology , Homicide/statistics & numerical data , Prisoners/statistics & numerical data , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin/metabolism , Adult , Aggression/psychology , Homicide/psychology , Humans , Male , Pakistan , Polymorphism, Single Nucleotide , Prisoners/psychology , Prisons , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2B/genetics , Receptor, Serotonin, 5-HT2B/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...