Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
J Orthop Surg Res ; 19(1): 329, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825706

ABSTRACT

BACKGROUND: Fibrosis is a significant pathological feature of chronic skeletal muscle injury, profoundly affecting muscle regeneration. Fibro-adipogenic progenitors (FAPs) have the ability to differentiate into myofibroblasts, acting as a primary source of extracellular matrix (ECM). the process by which FAPs differentiate into myofibroblasts during chronic skeletal muscle injury remains inadequately explored. METHOD: mouse model with sciatic nerve denervated was constructed and miRNA expression profiles between the mouse model and uninjured mouse were analyzed. qRT/PCR and immunofluorescence elucidated the effect of miR-27b-3p on fibrosis in vivo and in vitro. Dual-luciferase reporter identified the target gene of miR-27b-3p, and finally knocked down or overexpressed the target gene and phosphorylation inhibition of Smad verified the influence of downstream molecules on the abundance of miR-27b-3p and fibrogenic differentiation of FAPs. RESULT: FAPs derived from a mouse model with sciatic nerves denervated exhibited a progressively worsening fibrotic phenotype over time. Introducing agomiR-27b-3p effectively suppressed fibrosis both in vitro and in vivo. MiR-27b-3p targeted Transforming Growth Factor Beta Receptor 1 (TGF-ßR1) and the abundance of miR-27b-3p was negatively regulated by TGF-ßR1/Smad. CONCLUSION: miR-27b-3p targeting the TGF-ßR1/Smad pathway is a novel mechanism for regulating fibrogenic differentiation of FAPs. Increasing abundance of miR-27b-3p, suppressing expression of TGF-ßR1 and inhibiting phosphorylation of smad3 presented potential strategies for treating fibrosis in chronic skeletal muscle injury.


Subject(s)
Fibrosis , MicroRNAs , Muscle, Skeletal , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Chronic Disease , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Mice, Inbred C57BL , Smad Proteins/metabolism , Smad Proteins/genetics , Male , Disease Models, Animal , Cell Differentiation , Sciatic Nerve/injuries
2.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791596

ABSTRACT

Ovarian follicular fluid (FF) has a direct impact on oocyte quality, playing key roles in fertilization, implantation, and early embryo development. In our recent study, we found FF thromboxane (TX) to be a novel factor inversely correlated with oocyte maturation and identified thrombin, transforming growth factor ß (TGFß), TNF-α, and follicular granulosa cells (GCs) as possible contributors to FF TX production. Therefore, this study sought to investigate the role of TGFß3 in regulating TX generation in human ovarian follicular GCs. TGFß3 was differentially and significantly present in the FF of large and small follicles obtained from IVF patients with average concentrations of 68.58 ± 12.38 and 112.55 ± 14.82 pg/mL, respectively, and its levels were correlated with oocyte maturity. In an in vitro study, TGFß3 induced TX generation/secretion and the converting enzyme-COX-2 protein/mRNA expression both in human HO23 and primary cultured ovarian follicular GCs. While TGFßRI and Smad2/3 signaling was mainly required for COX-2 induction, ERK1/2 appeared to regulate TX secretion. The participation of Smad2/3 and COX-2 in TGFß3-induced TX generation/secretion could be further supported by the observations that Smad2/3 phosphorylation and nuclear translocation and siRNA knockdown of COX-2 expression compromised TX secretion in GCs challenged with TGFß3. Taken together, the results presented here first demonstrated that FF TGFß3 levels differ significantly in IVF patients' large preovulatory and small mid-antral follicles and are positively associated with oocyte maturation. TGFß3 can provoke TX generation by induction of COX-2 mRNA/protein via a TGFßR-related canonical Smad2/3 signaling pathway, and TX secretion possibly by ERK1/2. These imply that TGFß3 is one of the inducers for yielding FF TX in vivo, which may play a role in folliculogenesis and oocyte maturation.


Subject(s)
Cyclooxygenase 2 , Follicular Fluid , Granulosa Cells , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta3 , Humans , Female , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Granulosa Cells/metabolism , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Follicular Fluid/metabolism , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/genetics , Adult , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Ovarian Follicle/metabolism , Oocytes/metabolism , Cells, Cultured
3.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744219

ABSTRACT

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Subject(s)
Collagen Type I , Down-Regulation , Mesenchymal Stem Cells , Osteogenesis Imperfecta , Osteogenesis , Pyrazoles , Quinolines , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/drug therapy , Osteogenesis/drug effects , Osteogenesis/genetics , Animals , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Down-Regulation/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Quinolines/pharmacology , Mice , Child , Pyrazoles/pharmacology , Male , Cell Differentiation/drug effects , Mutation , Disease Models, Animal , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Child, Preschool , Cells, Cultured , Transforming Growth Factor beta/metabolism , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
4.
Sci Transl Med ; 16(746): eadg6298, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718134

ABSTRACT

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.


Subject(s)
Blood Vessel Prosthesis , Collagen , Induced Pluripotent Stem Cells , Receptor, Transforming Growth Factor-beta Type I , Animals , Humans , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Induced Pluripotent Stem Cells/metabolism , Collagen/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats, Nude , Disease Models, Animal , Rats , Bioengineering , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Gene Editing , Loeys-Dietz Syndrome/genetics , Loeys-Dietz Syndrome/pathology , Male
5.
Bioorg Med Chem Lett ; 108: 129797, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759932

ABSTRACT

TGF-ß is an immunosuppressive cytokine and plays a key role in progression of cancer by inducing immunosuppression in tumor microenvironment. Therefore, inhibition of TGF-ß signaling pathway may provide a potential therapeutic intervention in treating cancers. Herein, we report the discovery of a series of novel thiazole derivatives as potent inhibitors of ALK5, a serine-threonine kinase which is responsible for TGF-ß signal transduction. Compound 29b was identified as a potent inhibitor of ALK5 with an IC50 value of 3.7 nM with an excellent kinase selectivity.


Subject(s)
Drug Design , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , Thiazoles , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism , Molecular Structure , Dose-Response Relationship, Drug
6.
PLoS Comput Biol ; 20(5): e1012072, 2024 May.
Article in English | MEDLINE | ID: mdl-38753874

ABSTRACT

Cells use signaling pathways to sense and respond to their environments. The transforming growth factor-ß (TGF-ß) pathway produces context-specific responses. Here, we combined modeling and experimental analysis to study the dependence of the output of the TGF-ß pathway on the abundance of signaling molecules in the pathway. We showed that the TGF-ß pathway processes the variation of TGF-ß receptor abundance using Liebig's law of the minimum, meaning that the output-modifying factor is the signaling protein that is most limited, to determine signaling responses across cell types and in single cells. We found that the abundance of either the type I (TGFBR1) or type II (TGFBR2) TGF-ß receptor determined the responses of cancer cell lines, such that the receptor with relatively low abundance dictates the response. Furthermore, nuclear SMAD2 signaling correlated with the abundance of TGF-ß receptor in single cells depending on the relative expression levels of TGFBR1 and TGFBR2. A similar control principle could govern the heterogeneity of signaling responses in other signaling pathways.


Subject(s)
Signal Transduction , Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism , Humans , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Smad2 Protein/metabolism , Computational Biology , Models, Biological , Cell Line, Tumor , Smad Proteins/metabolism , Receptors, Transforming Growth Factor beta/metabolism
7.
Eur J Med Chem ; 271: 116395, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38626523

ABSTRACT

The transforming growth factor ß1 (TGFß1)/SMAD signaling pathway regulates many vital physiological processes. The development of potent inhibitors targeting activin receptor-like kinase 5 (ALK5) would provide potential treatment reagents for various diseases. A significant number of ALK5 inhibitors have been discovered, and they are currently undergoing clinical evaluation at various stages. However, the clinical demands were far from being met. In this study, we utilized an alternative conformation-similarity-based virtual screening (CSVS) combined with a fragment-based drug designing (FBDD) strategy to efficiently discover a potent and active hit with a novel chemical scaffold. After structural optimization in the principle of group replacement, compound 57 was identified as the most promising ALK5 inhibitor. Compound 57 demonstrated significant inhibitory effects against the TGF-ß1/SMAD signaling pathway. It could markedly attenuate the production of extracellular matrix (ECM) and deposition of collagen. Also, the lead compound showed adequate pharmacokinetic (PK) properties and good in vivo tolerance. Moreover, treatment with compound 57 in two different xerograph models showed significant inhibitory effects on the growth of pancreatic cancer cells. These results suggested that lead compound 57 refers as a promising ALK5 inhibitor both in vitro and in vivo, which merits further validation.


Subject(s)
Drug Design , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Humans , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Animals , Molecular Structure , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Mice , Cell Line, Tumor , Drug Screening Assays, Antitumor , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism
8.
Bioorg Chem ; 147: 107332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581966

ABSTRACT

Activin receptor­like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-ß (TGF-ß) family. (TGF-ß) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors , Receptor, Transforming Growth Factor-beta Type I , Humans , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Molecular Structure , Animals
9.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672477

ABSTRACT

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Subject(s)
Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
10.
Adv Sci (Weinh) ; 11(21): e2306486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588050

ABSTRACT

Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFß causing proliferation arrest. TSPYL1, another TSPYL family member, has been poorly characterized and is the only TSPYL family member known to be causal of a lethal recessive disease in humans. This study shows that TSPYL1 and TSPYL2 play an opposite role in TGFß signaling. TSPYL1 partners with the transcription factor FOXA1 and histone methyltransferase EZH2, and at the same time represses TGFBR1 and epithelial-mesenchymal transition (EMT). Depletion of TSPYL1 increases TGFBR1 expression, upregulates TGFß signaling, and elevates the protein stability of TSPYL2. Intriguingly, TSPYL2 forms part of the SMAD2/3/4 signal transduction complex upon stimulation by TGFß to execute the transcriptional responses. Depletion of TSPYL2 rescues the EMT phenotype of TSPYL1 knockdown in A549 lung carcinoma cells. The data demonstrates the prime role of TSPYL2 in causing the dramatic defects in TSPYL1 deficiency. An intricate counter-balancing role of TSPYL1 and TSPYL2 in regulating TGFß signaling is also unraveled.


Subject(s)
Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Transforming Growth Factor beta , Humans , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor
11.
Pharmacol Res ; 203: 107156, 2024 May.
Article in English | MEDLINE | ID: mdl-38522762

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.


Subject(s)
Atherosclerosis , Cyclic AMP Response Element-Binding Protein , Epithelial-Mesenchymal Transition , Mice, Inbred C57BL , Receptor, Adenosine A2A , Receptor, Transforming Growth Factor-beta Type I , Animals , Humans , Male , Mice , Adenosine A2 Receptor Antagonists/pharmacology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Mice, Knockout , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction
12.
Nat Commun ; 15(1): 2509, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509075

ABSTRACT

The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.


Subject(s)
Embryonic Development , Genitalia , Animals , Mice , Cell Communication , Gene Regulatory Networks , Hindlimb , Receptor, Transforming Growth Factor-beta Type I/metabolism
13.
Eur J Pharmacol ; 968: 176422, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38365108

ABSTRACT

Vascular smooth muscle cells (VSMCs) contribute to neointimal hyperplasia (NIH) after vascular injury, a common feature of vascular remodelling disorders. Suramin is known to exert antitumour effects by inhibiting the proliferation of various tumour cells; however, its effects and mechanism on VSMCs remain unclear. This study investigated the effects of suramin on human aortic smooth muscle cells (HASMCs), rat aortic smooth muscle cells (RASMCs) and NIH to examine its suitability for the prevention of vascular remodelling disorders. In vitro, suramin administration reduced platelet-derived growth factor type BB (PDGF-BB)-stimulated proliferation, migration, and dedifferentiation of VSMCs through a transforming growth factor beta receptor 1 (TGFBR1)/Smad2/3-dependent pathway. Suramin dramatically inhibited NIH ligation in the left common carotid artery (LCCA) vivo. Therefore, our results indicate that suramin protects against the development of pathological vascular remodelling by attenuating VSMCs proliferation, migration, and phenotypic transformation and may be used as a potential medicine for the treatment of NIH.


Subject(s)
Neointima , Suramin , Rats , Humans , Animals , Hyperplasia/pathology , Cell Proliferation , Suramin/pharmacology , Suramin/metabolism , Neointima/pathology , Muscle, Smooth, Vascular , Receptor, Transforming Growth Factor-beta Type I/metabolism , Vascular Remodeling , Becaplermin/pharmacology , Myocytes, Smooth Muscle , Cell Movement , Cells, Cultured
14.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38407425

ABSTRACT

Transforming growth factor ß (TGF-ß) and HER2 signaling collaborate to promote breast cancer progression. However, their molecular interplay is largely unclear. TGF-ß can activate mitogen-activated protein kinase (MAPK) and AKT, but the underlying mechanism is not fully understood. In this study, we report that TGF-ß enhances HER2 activation, leading to the activation of MAPK and AKT. This process depends on the TGF-ß type I receptor TßRI kinase activity. TßRI phosphorylates HER2 at Ser779, promoting Y1248 phosphorylation and HER2 activation. Mice with HER2 S779A mutation display impaired mammary morphogenesis, reduced ductal elongation, and branching. Furthermore, wild-type HER2, but not S779A mutant, promotes TGF-ß-induced epithelial-mesenchymal transition, cell migration, and lung metastasis of breast cells. Increased HER2 S779 phosphorylation is observed in human breast cancers and positively correlated with the activation of HER2, MAPK, and AKT. Our findings demonstrate the crucial role of TGF-ß-induced S779 phosphorylation in HER2 activation, mammary gland development, and the pro-oncogenic function of TGF-ß in breast cancer progression.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Transforming Growth Factor beta , Animals , Humans , Mice , Lung Neoplasms/secondary , Mitogen-Activated Protein Kinases/metabolism , Morphogenesis , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta/metabolism , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Breast/growth & development
15.
Transl Res ; 265: 36-50, 2024 03.
Article in English | MEDLINE | ID: mdl-37931653

ABSTRACT

Diabetic kidney disease (DKD) is one of the leading causes to develop end-stage kidney disease worldwide. Pericytes are implicated in the development of tissue fibrosis. However, the underlying mechanisms of pericytes in DKD remain largely unknown. We isolated and cultured primary pericytes and rat mesangial cells (HBZY-1). Western blot and qRT-PCR analysis were used to explore the role and regulatory mechanism of Integrin ß8/transforming growth factor beta 1 (TGF-ß1) pathway. We also constructed pericyte-specific Integrin ß8 knock-in mice as the research objects to determine the role of Integrin ß8 in vivo. We discovered that reduced Integrin ß8 expression was closely associated with pericyte transition in DKD. Overexpressed Integrin ß8 in pericytes dramatically suppressed TGF-ß1/TGF beta receptor 1 (TGFBR1)/Smad3 signaling pathway and protected glomerular endothelial cells (GECs) in vitro. In vivo, pericyte-specific Integrin ß8 knock-in ameliorated pericyte transition, endothelium injury and renal fibrosis in STZ-induced diabetic mice. Mechanistically, Murine double minute 2 (MDM2) was found to increase the degradation of Integrin ß8 and caused TGF-ß1 release and activation. Knockdown MDM2 could partly reverse the decline of Integrin ß8 and suppress pericytes transition. In conclusion, the present findings suggested that upregulated MDM2 expression contributes to the degradation of Integrin ß8 and activation of TGF-ß1/TGFBR1/Smad3 signaling pathway, which ultimately leads to pericyte transition during DKD progression. These results indicate MDM2/Integrin ß8 might be considered as therapeutic targets for DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Integrin beta Chains , Animals , Mice , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Fibrosis , Kidney/pathology , Myofibroblasts/pathology , Pericytes/metabolism , Pericytes/pathology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta1/metabolism
16.
Cells ; 12(23)2023 11 27.
Article in English | MEDLINE | ID: mdl-38067144

ABSTRACT

The transforming growth factor ß (TGFß) superfamily, consisting of protein ligands, receptors, and intracellular SMAD transducers, regulates fundamental biological processes and cancer development. Our previous study has shown that sustained activation of TGFß receptor 1 (TGFBR1) driven by anti-Mullerian hormone receptor type 2 (Amhr2)-Cre in the mouse testis induces the formation of testicular granulosa cell tumors (TGCTs). As Amhr2-Cre is expressed in both Sertoli cells and Leydig cells, it remains unclear whether the activation of TGFBR1 in Sertoli cells alone is sufficient to induce TGCT formation. Therefore, the objective of this study was to determine whether Sertoli cell-activation of TGFBR1 drives oncogenesis in the testis. Our hypothesis was that overactivation of TGFBR1 in Sertoli cells would promote their transdifferentiation into granulosa-like cells and the formation of TGCTs. To test this hypothesis, we generated mice harboring constitutive activation of TGFBR1 in Sertoli cells using anti-Mullerian hormone (Amh)-Cre. Disorganized seminiferous tubules and tumor nodules were found in TGFBR1CA; Amh-Cre mice. A histological analysis showed that Sertoli cell-specific activation of TGFBR1 led to the development of neoplasms resembling granulosa cell tumors, which derailed spermatogenesis. Moreover, TGCTs expressed granulosa cell markers including FOXL2, FOXO1, and INHA. Using a dual fluorescence reporter line, the membrane-targeted tdTomato (mT)/membrane-targeted EGFP (mG) mouse, we provided evidence that Sertoli cells transdifferentiated toward a granulosa cell fate during tumorigenesis. Thus, our findings indicate that Sertoli cell-specific activation of TGFBR1 leads to the formation of TGCTs, supporting a key contribution of Sertoli cell reprogramming to the development of this testicular malignancy in our model.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Testicular Neoplasms , Male , Humans , Female , Mice , Animals , Sertoli Cells/metabolism , Granulosa Cell Tumor/metabolism , Granulosa Cell Tumor/pathology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Testicular Neoplasms/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Anti-Mullerian Hormone/metabolism , Transforming Growth Factor beta/metabolism , Ovarian Neoplasms/pathology
17.
Biomed Res ; 44(6): 245-255, 2023.
Article in English | MEDLINE | ID: mdl-38008423

ABSTRACT

This study mainly used human VSMCs and ECs cultured in vitro to investigate whether exosomes (Exos) are involved in the communication between ECs and VSMCs under hypoxia, and to explore the role and mechanism of ECs-derived exosomes in the abnormal proliferation of VSMCs. VSMCs proliferation and migration were assessed by a series of cell function assays after culturing VSMCs alone or co-culturing ECs under hypoxia or normoxia. Next, exosomes were extracted from ECs under hypoxia or normoxia and characterized. We then introduced ECs-Exos to observe their effects on VSMCs proliferation and migration, and further evaluated the expression of transforming growth factor-beta receptor 1 (TGFBR1) pathway-related proteins. Finally, the effect of ECs-Exos on VSMCs function was evaluated after knocking down TGFBR1 in ECs. VSMCs treated with ECs-Exos exhibited increased proliferation and migration ability in hypoxic environment, and the expression of TGFBR1 pathway-related proteins was upregulated. Administration of ECs-Exos with TGFß1 knockdown conspicuously reversed the promoting effects of ECs-Exos on cell proliferation and migration under hypoxia. In summary, hypoxia affected the secretion of extracellular vesicles by endothelial cells, which can be internalized by VSMCs and accelerate the abnormal proliferation and migration of VSMCs by delivering TGFBR1.


Subject(s)
Exosomes , Muscle, Smooth, Vascular , Humans , Muscle, Smooth, Vascular/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Exosomes/metabolism , Endothelial Cells/metabolism , Cell Proliferation , Cells, Cultured , Myocytes, Smooth Muscle/metabolism
18.
Phytomedicine ; 121: 155118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801895

ABSTRACT

BACKGROUND: With an increasing number of myocardial infarction (MI) patients, myocardial fibrosis is becoming a widespread health concern. It's becoming more and more urgent to conduct additional research and investigations into efficient treatments. Ethyl ferulate (EF) is a naturally occurring substance with cardioprotective properties. However, the extent of its impact and the underlying mechanism of its treatment for myocardial fibrosis after MI remain unknown. PURPOSE: The goal of this study was to look into how EF affected the signaling of the TGF-receptor 1 (TGFBR1) in myocardial fibrosis after MI. METHODS: Echocardiography, hematoxylin-eosin (HE) and Masson trichrome staining were employed to assess the impact of EF on heart structure and function in MI-affected mice in vivo. Cell proliferation assay (MTS), 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques were employed to examine the influence of EF on native cardiac fibroblast (CFs) proliferation and collagen deposition. Molecular simulation and surface plasmon resonance imaging (SPRi) were utilized to explore TGFBR1 and EF interaction. Cardiac-specific Tgfbr1 knockout mice (Tgfbr1ΔMCK) were utilized to testify to the impact of EF. RESULTS: In vivo experiments revealed that EF alleviated myocardial fibrosis, improved cardiac dysfunction after MI and downregulated the TGFBR1 signaling in a dose-dependent manner. Moreover, in vitro experiments revealed that EF significantly inhibited CFs proliferation, collagen deposition and TGFBR1 signaling followed by TGF-ß1 stimulation. More specifically, molecular simulation, molecular dynamics, and SPRi collectively showed that EF directly targeted TGFBR1. Lastly, knocking down of Tgfbr1 partially reversed the inhibitory activity of EF on myocardial fibrosis in MI mice. CONCLUSION: EF attenuated myocardial fibrosis post-MI by directly suppressing TGFBR1 and its downstream signaling pathway.


Subject(s)
Myocardial Infarction , Myocardium , Humans , Mice , Animals , Myocardium/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/therapeutic use , Fibroblasts/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Collagen/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism
19.
J Dermatol Sci ; 112(1): 31-38, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37743142

ABSTRACT

BACKGROUND: Inflammation and fibrosis of the skin are characteristics of localized scleroderma (LS). Emerging evidence has demonstrated that exosomes from human adipose tissue-derived mesenchymal stem cells (ADSC-Exo) could alleviate skin fibrosis. OBJECTIVE: The impact and potential mechanism of ADSC-Exo on LS fibrosis was examined. METHODS: ADSC-Exo was isolated and identified. The effects of ADSC-Exo on the abilities of proliferation and migration of LS-derived fibroblasts (LSFs) were assessed by CCK-8 and scratch assays, respectively. qRT-PCR, western blot, and immunofluorescence were conducted to detect LSFs stimulated with ADSC-Exo, ADSC-ExoAnti-let-7a-5p, let-7a-5p mimic/TGF-ßR1 shRNA virus, and negative controls. The impact of ADSC-Exo on C57BL/6j LS mice was evaluated by photographic morphology, hematoxylin-eosin (H&E), Masson's trichrome, and immunohistochemical staining. RESULTS: The verified ADSC-Exo limited the proliferation and migration of LSFs and reduced the expression of COL1, COL3, α-SMA, TGF-ßR1, and p-Smad2/ 3 in vitro and in vivo. TGF-ßR1 knockdown and let-7a-5p mimic in LSFs reduced the expression of COL1, COL3, α-SMA, and p-Smad2/3. However, compared with the ADSC-ExoNC group, the dermal thickness was increased, collagen arrangement was disordered, and α-SMA and TGF-ßR1 levels were increased after exposure to ADSC-ExoAnti-let-7a-5p. CONCLUSIONS: In this study, it might show that ADSC-Exo may successfully prevent LSF bioactivity, collagen deposition, and myofibroblast trans-differentiation. Additionally, we confirmed that let-7a-5p in ADSC-Exo could directly target TGF-R1 to control the Smad pathway and reduce fibrosis in LSFs. Our work offered a brand-new therapeutic approach and clarified the unique mechanism for the clinical management of LS.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Scleroderma, Localized , Animals , Humans , Mice , Collagen/metabolism , Exosomes/metabolism , Fibrosis , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Scleroderma, Localized/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Smad Proteins/metabolism
20.
Int J Biol Macromol ; 247: 125670, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37406898

ABSTRACT

Osteoarthritis (OA) is the most common age-related joint disorder with no effective therapy, and its specific pathological mechanism remains to be fully clarified. Adhesion-regulating molecule 1 (ADRM1) has been proven to be involved in OA progression as a favorable gene. However, the exact mechanism of ADRM1 involved in OA were unknown. Here, we showed that the ADRM1 expression decreased in human OA cartilage, destabilization of the medial meniscus (DMM)-induced mouse OA cartilage, and interleukin (IL)-1ß-induced primary mouse articular chondrocytes. Global knockout (KO) ADRM1 in cartilage or ADRM1 inhibitor (RA190) could accelerate the disorders of extracellular matrix (ECM) homeostasis, thereby accelerated DMM-induced cartilage degeneration, whereas overexpression of ADRM1 protected mice from DMM-induced OA development by maintaining the homeostasis of articular cartilage. The molecular mechanism study revealed that ADRM1 could upregulate ubiquitin carboxy-terminal hydrolase 37 (UCH37) expression and bind to UCH37 to activate its deubiquitination activity. Subsequently, increased and activated UCH37 enhanced activin receptor-like kinase 5 (ALK5) deubiquitination to stabilize ALK5 expression, thereby maintaining ECM homeostasis and attenuating cartilage degeneration. These findings indicated that ADRM1 could attenuate cartilage degeneration via enhancing UCH37-mediated ALK5 deubiquitination. Overexpression of ADRM1 in OA cartilage may provide a promising OA therapeutic strategy.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Mice , Animals , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/therapeutic use , Ubiquitin Thiolesterase , Chondrocytes , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Extracellular Matrix/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...