Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 43(11): 1799-1803, 2020.
Article in English | MEDLINE | ID: mdl-33132326

ABSTRACT

Adrenomedullin (AM) improves colitis in animal models and patients with inflammatory bowel disease. We have developed a PEGylated AM derivative (PEG-AM) for clinical application because AM has a short half-life in the blood. However, modification by addition of polyethylene glycol (PEG) may compromise the function of the original peptide. In this paper, we examined the time course of cAMP accumulation induced by 5 and 60 kDa PEG-AM and compared the activation of calcitonin gene-related peptide (CGRP), AM1 and AM2 receptors by AM, 5 and 60 kDa PEG-AM. We also evaluated the effects of antagonists on the action of 5 and 60 kDa PEG-AM. PEG-AM stimulated cAMP production induced by these receptors; the increase in cAMP levels resulting from application of PEG-AM peaked at 15 min. Moreover, PEG-AM activity was antagonized by CGRP (8-37) or AM (22-52) (antagonists of CGRP and AM receptors, respectively) and the maximal response was not suppressed. These findings indicate that the effects of PEG-AM are similar to those of native AM.


Subject(s)
Adrenomedullin/pharmacology , Receptor Activity-Modifying Protein 1/agonists , Receptor Activity-Modifying Protein 2/agonists , Receptor Activity-Modifying Protein 3/agonists , Adrenomedullin/analogs & derivatives , HEK293 Cells , Half-Life , Humans , Polyethylene Glycols/chemistry , Receptor Activity-Modifying Protein 1/genetics , Receptor Activity-Modifying Protein 1/metabolism , Receptor Activity-Modifying Protein 2/genetics , Receptor Activity-Modifying Protein 2/metabolism , Receptor Activity-Modifying Protein 3/genetics , Receptor Activity-Modifying Protein 3/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Biochemistry ; 56(26): 3380-3393, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28614667

ABSTRACT

The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI- cells, which yield core N-glycans (Man5GlcNAc2). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.


Subject(s)
Asparagine/metabolism , Calcitonin/metabolism , Islet Amyloid Polypeptide/metabolism , Models, Molecular , Protein Processing, Post-Translational , Receptor Activity-Modifying Protein 2/metabolism , Receptors, Calcitonin/metabolism , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Amino Acid Substitution , Asparagine/chemistry , Binding Sites , Calcitonin/chemistry , Glycosylation , HEK293 Cells , Humans , Islet Amyloid Polypeptide/chemistry , Kinetics , Ligands , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Molecular Conformation , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Protein Interaction Domains and Motifs , Receptor Activity-Modifying Protein 2/agonists , Receptor Activity-Modifying Protein 2/chemistry , Receptor Activity-Modifying Protein 2/genetics , Receptors, Calcitonin/agonists , Receptors, Calcitonin/chemistry , Receptors, Calcitonin/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
3.
Biol Reprod ; 91(3): 65, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25061099

ABSTRACT

Accumulating data suggest that adrenomedullin (ADM) regulates the trophoblast cell growth, migration, and invasion. However, the effect of ADM on trophoblast differentiation is poorly understood. In this study, we hypothesized that ADM promotes the differentiation of trophoblast stem cells (TSCs) into trophoblast giant cells (TGCs). Using rat TSCs, Rcho-1 cells, we investigated the effect of ADM on TSC differentiation into TGCs in differentiation or stem cell media, respectively, and explored the effect of ADM on the mechanistic target of rapamycin (MTOR) signaling in trophoblast cell differentiation. The results include: 1) in the presence of differentiation medium, 10⁻7 M ADM, but not lower doses, elevated (P < 0.05) Prl3b1/Esrrb (i.e., the ratio of mRNA levels) by 1.7-fold compared to that in control; 2) the supplementation of ADM antagonist, regardless of the concentration of ADM, reduced (P < 0.05) Prl3b1/Esrrb by 2-fold, compared to control group, while the supplementation of CGRP antagonist, regardless of the concentration of ADM, did not change Prl3b1/Esrrb; 3) in the presence of stem cell medium, ADM did not alter the expression of TSC and TGC marker genes, however, the ratio of Prl3b1/Esrrb was reduced (P < 0.05) by ADM antagonist compared to that in control; and 4) ADM increased (P < 0.05) phosphorylated MTOR proteins and the ratio of phosphorylated to total MTOR proteins by 2.0- and 1.7-fold, respectively. The results indicate that ADM promotes but does not induce the differentiation of TSCs to TGCs in a dose-dependent manner and MTOR signaling may play a role in this process.


Subject(s)
Adrenomedullin/metabolism , Calcitonin Receptor-Like Protein/agonists , Receptor Activity-Modifying Protein 2/agonists , Receptors, Adrenomedullin/agonists , Signal Transduction , Stem Cells/metabolism , Trophoblasts/metabolism , Adrenomedullin/antagonists & inhibitors , Adrenomedullin/pharmacology , Animals , Antigens, Differentiation/metabolism , Biomarkers/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Receptor-Like Protein/antagonists & inhibitors , Calcitonin Receptor-Like Protein/metabolism , Cell Differentiation/drug effects , Cell Line , Cell Size/drug effects , Gene Expression Regulation/drug effects , Peptide Fragments/pharmacology , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Rats , Receptor Activity-Modifying Protein 2/metabolism , Receptors, Adrenomedullin/antagonists & inhibitors , Receptors, Adrenomedullin/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Trophoblasts/cytology , Trophoblasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...