Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
1.
Parasite Immunol ; 46(6): e13039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838041

ABSTRACT

Ticks are notorious blood-sucking ectoparasites that affect both humans and animals. They serve as a unique vector of various deadly diseases. Here, we have shown the roles of the receptor for advanced glycation end products (RAGE) during repeated infestations by the tick Haemaphysalis longicornis using RAGE-/- mice. In primary infestation, a large blood pool developed, which was flooded with numerous RBCs, especially during the rapid feeding phase of the tick both in wild-type (wt) and RAGE-/- mice. Very few inflammatory cells were detected around the zones of haemorrhage in the primary infestations. However, the number of inflammatory cells gradually increased in the subsequent tick infestations, and during the third infestations, the number of inflammatory cells reached to the highest level (350.3 ± 16.8 cells/focus). The site of attachment was totally occupied by the inflammatory cells in wt mice, whereas very few cells were detected at the ticks' biting sites in RAGE-/- mice. RAGE was highly expressed during the third infestation in wt mice. In the third infestation, infiltration of CD44+ lymphocytes, eosinophils and expression of S100A8 and S100B significantly increased at the biting sites of ticks in wt, but not in RAGE-/- mice. In addition, peripheral eosinophil counts significantly increased in wt but not in RAGE-/- mice. Taken together, our study revealed that RAGE-mediated inflammation and eosinophils played crucial roles in the tick-induced inflammatory reactions.


Subject(s)
Inflammation , Ixodidae , Mice, Knockout , Receptor for Advanced Glycation End Products , Tick Infestations , Animals , Ixodidae/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Mice , Tick Infestations/immunology , Mice, Inbred C57BL , Female , Feeding Behavior , Haemaphysalis longicornis
2.
Mol Med ; 30(1): 76, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840067

ABSTRACT

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Glycation End Products, Advanced , Lipoproteins, LDL , NF-kappa B , Osteogenesis , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Glycation End Products, Advanced/metabolism , NF-kappa B/metabolism , Humans , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/pathology , Cricetinae , Osteogenesis/drug effects , Male , Lipoproteins, LDL/metabolism , Disease Models, Animal , Female , Middle Aged , Glycated Proteins
3.
Nat Commun ; 15(1): 4985, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862515

ABSTRACT

Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.


Subject(s)
Atherosclerosis , F-Box-WD Repeat-Containing Protein 7 , Glycation End Products, Advanced , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , Receptor for Advanced Glycation End Products , Animals , Male , Mice , Glycation End Products, Advanced/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/genetics , Mice, Inbred C57BL , Ubiquitination , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Hyperglycemia/metabolism , Hyperglycemia/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/genetics , Apoptosis
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2188-2196, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812234

ABSTRACT

This study aims to investigate the protective effect of salidroside(SAL) on renal damage in diabetic nephropathy(DN) mice based on the receptor for advanced glycation end products/janus activated kinase 1/signal transduction and activator of transcription 3(RAGE/JAK1/STAT3) signaling pathway. The mouse DN model was established by high-fat/high-sucrose diets combined with intraperitoneal injection of streptozocin(STZ). Mice were randomly divided into normal group, model group, low-dose SAL group(20 mg·kg~(-1)), high-dose SAL group(100 mg·kg~(-1)), and metformin group(140 mg·kg~(-1)), with 12 mice in each group. After establishing the DN model, mice were given drugs or solvent intragastrically, once a day for consecutive 10 weeks. Body weight, daily water intake, and fasting blood glucose(FBG) were measured every two weeks. After the last dose, the glucose tolerance test was performed, and the samples of 24-hour urine, serum, and kidney tissue were collected. The levels of 24 hours urinary total protein(24 h-UTP), serum creatinine(Scr), blood urea nitrogen(BUN), triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), and high density lipoprotein cholesterol(HDL-C) were detected by biochemical tests. Periodic acid-schiff(PAS) staining was used to observe the pathological changes in the kidney tissue. The protein expressions of α-smooth muscle actin(α-SMA), vimentin, and advanced glycation end products(AGEs) in kidneys were detected by immunohistochemical staining. The activities of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GSH-PX), and the level of malondialdehyde(MDA) in kidneys were detected by using a corresponding detection kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of AGEs, carboxymethyllysine(CML), and carboxyethyllysine(CEL) in serum. The protein expressions of RAGE and the phosphorylation level of JAK1 and STAT3 in kidneys were detected by Western blot. Compared with the normal group, the levels of FBG, the area under the curve of glucose(AUCG), water intake, kidney index, 24 h-UTP, tubular injury score, extracellular matrix deposition ratio of the renal glomerulus, the serum levels of Scr, BUN, TG, LDL-C, AGEs, CEL, and CML, the level of MDA, the protein expressions of α-SMA, vimentin, AGEs, and RAGE, and the phosphorylation level of JAK1 and STAT3 in kidney tissue were increased significantly(P<0.01), while the level of HDL-C in serum and the activity of SOD, CAT, and GSH-PX in kidney tissue were decreased significantly(P<0.01). Compared with the model group, the above indexes of the high-dose SAL group were reversed significantly(P<0.05 or P<0.01). In conclusion, this study suggests that SAL can alleviate oxidative stress and renal fibrosis by inhibiting the activation of AGEs-mediated RAGE/JAK1/STAT3 signaling axis, thus playing a potential role in the treatment of DN.


Subject(s)
Diabetic Nephropathies , Glucosides , Janus Kinase 1 , Kidney , Phenols , Receptor for Advanced Glycation End Products , STAT3 Transcription Factor , Signal Transduction , Animals , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glucosides/pharmacology , Glucosides/administration & dosage , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/drug effects , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Phenols/pharmacology , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Protective Agents/pharmacology , Protective Agents/administration & dosage , Humans , Mice, Inbred C57BL , Blood Glucose/metabolism , Blood Glucose/drug effects
5.
Sci Rep ; 14(1): 11567, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773223

ABSTRACT

The receptor for advanced glycation endproducts (RAGE) has pro-inflammatory and pro-atherogenic effects. Low plasma levels of soluble RAGE (sRAGE), a decoy receptor for RAGE ligands, have been associated with increased risk for major adverse coronary events (MACE) in the general population. We performed a genome-wide association study to identify genetic determinants of plasma sRAGE in 4338 individuals from the cardiovascular arm of the Malmö Diet and Cancer study (MDC-CV). Further, we explored the associations between these genetic variants, incident first-time MACE and mortality in 24,640 unrelated individuals of European ancestry from the MDC cohort. The minor alleles of four single nucleotide polymorphisms (SNPs): rs2070600, rs204993, rs116653040, and rs7306778 were independently associated with lower plasma sRAGE. The minor T (vs. C) allele of rs2070600 was associated with increased risk for MACE [HR 1.13 95% CI (1.02-1.25), P = 0.016]. Neither SNP was associated with mortality. This is the largest study to demonstrate a link between a genetic sRAGE determinant and CV risk. Only rs2070600, which enhances RAGE function by inducing a Gly82Ser polymorphism in the ligand-binding domain, was associated with MACE. The lack of associations with incident MACE for the other sRAGE-lowering SNPs suggests that this functional RAGE modification is central for the observed relationship.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Receptor for Advanced Glycation End Products , Humans , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/blood , Male , Female , Middle Aged , Aged , Genetic Predisposition to Disease , Risk Factors , Alleles , Glycine/blood , Coronary Disease/genetics , Coronary Disease/blood
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732159

ABSTRACT

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Subject(s)
Lung , Mice, Knockout , Receptor for Advanced Glycation End Products , Tobacco Smoke Pollution , Transcriptome , Animals , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Mice , Lung/metabolism , Lung/pathology , Lung/drug effects , Tobacco Smoke Pollution/adverse effects , Mice, Inbred C57BL , Signal Transduction/drug effects , Gene Expression Regulation/drug effects , Male , Gene Expression Profiling
7.
Gene ; 916: 148450, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38588932

ABSTRACT

BACKGROUND: Although the implication of receptor of advanced glycation endproducts (RAGE) has been reported in coronary artery disease, its roles in coronary artery ectasia (CAE) have remained undetermined. Furthermore, the effect of RAGE polymorfisms were not well-defined in scope of soluble RAGE (sRAGE) levels. Thus, we aimed to investigate the influence of the functional polymorphisms of RAGE -374T > A (rs1800624) and G82S (rs2070600) in CAE development. METHODS: This prospective observational study was conducted in 2 groups selected of 2452 patients who underwent elective coronary angiography (CAG) for evaluation after positive noninvasive heart tests. Group-I included 98 patients with non-obstructive coronary artery disease and CAE, and Group-II (control) included 100 patients with normal coronary arteries. SNPs were genotyped by real-time PCR using Taqman® genotyping assay. Serum sRAGE and soluble lectin-like oxidized receptor-1 (sOLR1) were assayed by ELISA and serum lipids were measured enzymatically. RESULTS: The frequencies of the RAGE -374A allele and -374AA genotype were significantly higher in CAE patients compared to controls (p < 0.001). sRAGE levels were not different between study groups, while sOLR1 levels were elevated in CAE (p = 0.004). In controls without systemic disease, -374A allele was associated with low sRAGE levels (p < 0.05), but this association was not significant in controls with HT. Similarly, sRAGE levels of CAE patients with both HT and T2DM were higher than those no systemic disease (p = 0.02). The -374A allele was also associated with younger patient age and higher platelet count in the CAE group in both total and subgroup analyses. In the correlation analyses, the -374A allele was also negatively correlated with age and positively correlated with Plt in all of these CAE groups. In the total CAE group, sRAGE levels also showed a positive correlation with age and a negative correlation with HDL-cholesterol levels. On the other hand, a negative correlation was observed between sRAGE and Plt in the total, hypertensive and no systemic disease control subgroups. Multivariate logistic regression analysis confirmed that the -374A allele (p < 0.001), hyperlipidemia (p < 0.05), and high sOLR1 level (p < 0.05) are risk factors for CAE. ROC curve analysis shows that RAGE -374A allele has AUC of 0.713 (sensitivity: 83.7 %, specificity: 59.0 %), which is higher than HLD (sensitivity: 59.2 %, specificity: 69.0 %), HT (sensitivity: 62.4 %, specificity: 61.1 %) and high sOLR1 level (≥0.67 ng/ml)) (sensitivity: 59.8 %, specificity: 58.5 %). CONCLUSION: Beside the demonstration of the relationship between -374A allele and increased risk of CAE for the first time, our results indicate that antihypertensive and antidiabetic treatment in CAE patients causes an increase in sRAGE levels. The lack of an association between the expected -374A allele and low sRAGE levels in total CAE group was attributed to the high proportion of hypertensive patients and hence to antihypertensive treatment. Moreover, the RAGE -374A allele is associated with younger age at CAE and higher Plt, suggesting that -374A may also be associated with platelet activation, which plays a role in the pathogenesis of CAE. However, our data need to be confirmed in a large study for definitive conclusions.


Subject(s)
Coronary Artery Disease , Polymorphism, Single Nucleotide , Receptor for Advanced Glycation End Products , Humans , Female , Male , Middle Aged , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/blood , Coronary Artery Disease/genetics , Coronary Artery Disease/blood , Prospective Studies , Aged , Dilatation, Pathologic/genetics , Genetic Predisposition to Disease , Scavenger Receptors, Class E/genetics , Coronary Vessels/metabolism , Coronary Vessels/pathology , Case-Control Studies , Alleles , Coronary Angiography , Gene Frequency , Genotype , LDL-Receptor Related Proteins , Membrane Transport Proteins
8.
PLoS One ; 19(3): e0299567, 2024.
Article in English | MEDLINE | ID: mdl-38457412

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease characterized by a progressive loss of motor neurons resulting in paralysis and muscle atrophy. One of the most prospective hypothesis on the ALS pathogenesis suggests that excessive inflammation and advanced glycation end-products (AGEs) accumulation play a crucial role in the development of ALS in patients and SOD1 G93A mice. Hence, we may speculate that RAGE, receptor for advanced glycation end-products and its proinflammatory ligands such as: HMGB1, S100B and CML contribute to ALS pathogenesis. The aim of our studies was to decipher the role of RAGE as well as provide insight into RAGE signaling pathways during the progression of ALS in SOD1 G93A and RAGE-deficient SOD1 G93A mice. In our study, we observed alternations in molecular pattern of proinflammatory RAGE ligands during progression of disease in RAGE KO SOD1 G93A mice compared to SOD1 G93A mice. Moreover, we observed that the amount of beta actin (ACTB) as well as Glial fibrillary acidic protein (GFAP) was elevated in SOD1 G93A mice when compared to mice with deletion of RAGE. These data contributes to our understanding of implications of RAGE and its ligands in pathogenesis of ALS and highlight potential targeted therapeutic interventions at the early stage of this devastating disease. Moreover, inhibition of the molecular cross-talk between RAGE and its proinflammatory ligands may abolish neuroinflammation, gliosis and motor neuron damage in SOD1 G93A mice. Hence, we hypothesize that attenuated interaction of RAGE with its proinflammatory ligands may improve well-being and health status during ALS in SOD1 G93A mice. Therefore, we emphasize that the inhibition of RAGE signaling pathway may be a therapeutic target for neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Superoxide Dismutase-1 , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Disease Models, Animal , Disease Progression , Mice, Transgenic , Prospective Studies , Receptor for Advanced Glycation End Products/genetics , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
9.
Complement Ther Med ; 81: 103027, 2024 May.
Article in English | MEDLINE | ID: mdl-38336011

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a common complication of type 2 diabetes. Okra (Abelmoschus esculentus L) is reported to have anti-diabetic effects. The present study aimed to investigate the effects of dried okra extract (DOE) supplementation on lipid profile, renal function indices, and expression of inflammatory genes, as well as serum level of soluble Receptor for Advanced glycation end products (sRAGE) in patients with DN. METHODS: In this triple-blind randomized placebo-controlled clinical trial, 64 eligible patients with DN received either 125 mg of DOE or placebo daily along with DN-related nutritional recommendations for 10 weeks. Changes in kidney indices including proteinuria and estimated glomerular filtration rate (eGFR), lipid profile, serum SRAGE, as well as the expression of RAGE, ICAM-1, and IL-1 genes were measured over 10 weeks. RESULTS: After adjustment for the potential confounders, between-group analyses showed no significant differences in terms of lipid profile, kidney function indices, sRAGE, and RAGE-related inflammatory genes expression after 10 weeks. CONCLUSION: Daily 125 mg DOE along with nutritional recommendations on top of usual care did not lead to significant changes in renal function indices, lipid profile, and inflammatory genes expression in patients with DN.


Subject(s)
Abelmoschus , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Abelmoschus/metabolism , Diabetes Mellitus, Type 2/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/therapeutic use , Kidney/metabolism , Lipids
10.
FEBS J ; 291(9): 1944-1957, 2024 May.
Article in English | MEDLINE | ID: mdl-38335056

ABSTRACT

The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and ß-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.


Subject(s)
Astrocytes , Coculture Techniques , NADPH Oxidases , Neurons , Reactive Oxygen Species , Receptor for Advanced Glycation End Products , Astrocytes/metabolism , Astrocytes/drug effects , Neurons/metabolism , Neurons/drug effects , Animals , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Reactive Oxygen Species/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Neuroprotection , Cells, Cultured , Oxidation-Reduction , Signal Transduction , Mice , Lipid Peroxidation/drug effects , Rats , Enzyme Activation/drug effects , Glutathione/metabolism
11.
Respir Res ; 25(1): 93, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378600

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.


Subject(s)
MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Lung/metabolism , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Reactive Oxygen Species/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
12.
Int J Biol Sci ; 20(3): 880-896, 2024.
Article in English | MEDLINE | ID: mdl-38250151

ABSTRACT

Osteosarcoma is an extremely aggressive bone cancer with poor prognosis. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), can link to cancer progression, tumorigenesis and metastasis, although the underlying mechanism remains unclear. The role of CML in osteosarcoma progression is still unclear. We hypothesized that CML could promote migration, invasion, and stemness in osteosarcoma cells. CML and its receptor (RAGE; receptor for AGE) were higher expressed at advanced stages in human osteosarcoma tissues. In mouse models, which streptozotocin was administered to induce CML accumulation in the body, the subcutaneous tumor growth was not affected, but the tumor metastasis using tail vein injection model was enhanced. In cell models (MG63 and U2OS cells), CML enhanced tumor sphere formation and acquisition of cancer stem cell characteristics, induced migration and invasion abilities, as well as triggered the epithelial-mesenchymal transition process, which were associated with RAGE expression and activation of downstream signaling pathways, especially the ERK/NFκB pathway. RAGE inhibition elicited CML-induced cell migration, invasion, and stemness through RAGE-mediated ERK/NFκB pathway. These results revealed a crucial role for CML in driving stemness and metastasis in osteosarcoma. These findings uncover a potential CML/RAGE connection and mechanism to osteosarcoma progression and set the stage for further investigation.


Subject(s)
Bone Neoplasms , Osteosarcoma , Receptor for Advanced Glycation End Products , Animals , Humans , Mice , Bone Neoplasms/genetics , Carcinogenesis , Glycation End Products, Advanced , Lysine , Osteosarcoma/genetics , Signal Transduction/genetics , Receptor for Advanced Glycation End Products/genetics
13.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38180084

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Subject(s)
COVID-19 , Melphalan , SARS-CoV-2 , gamma-Globulins , Cricetinae , Humans , Mice , Animals , Mesocricetus , Receptor for Advanced Glycation End Products/genetics , Post-Acute COVID-19 Syndrome , Mice, Transgenic , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Lung
14.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38175729

ABSTRACT

Intrahepatic macrophages in nonalcoholic steatohepatitis (NASH) are heterogenous and include proinflammatory recruited monocyte-derived macrophages. The receptor for advanced glycation endproducts (RAGE) is expressed on macrophages and can be activated by damage associated molecular patterns (DAMPs) upregulated in NASH, yet the role of macrophage-specific RAGE signaling in NASH is unclear. Therefore, we hypothesized that RAGE-expressing macrophages are proinflammatory and mediate liver inflammation in NASH. Compared with healthy controls, RAGE expression was increased in liver biopsies from patients with NASH. In a high-fat, -fructose, and -cholesterol-induced (FFC)-induced murine model of NASH, RAGE expression was increased, specifically on recruited macrophages. FFC mice that received a pharmacological inhibitor of RAGE (TTP488), and myeloid-specific RAGE KO mice (RAGE-MKO) had attenuated liver injury associated with a reduced accumulation of RAGE+ recruited macrophages. Transcriptomics analysis suggested that pathways of macrophage and T cell activation were upregulated by FFC diet, inhibited by TTP488 treatment, and reduced in RAGE-MKO mice. Correspondingly, the secretome of ligand-stimulated BM-derived macrophages from RAGE-MKO mice had an attenuated capacity to activate CD8+ T cells. Our data implicate RAGE as what we propose to be a novel and potentially targetable mediator of the proinflammatory signaling of recruited macrophages in NASH.


Subject(s)
Hepatitis , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
15.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069998

ABSTRACT

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Rats , Mice , Animals , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/genetics , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Inflammation
16.
CNS Neurosci Ther ; 30(3): e14449, 2024 03.
Article in English | MEDLINE | ID: mdl-37665158

ABSTRACT

AIMS: Chronic hyperglycemia-induced inflammation of the hippocampus is an important cause of cognitive deficits in diabetic patients. The receptor for advanced glycation end products (RAGE), which is widely expressed in the hippocampus, is a crucial factor in this inflammation and the associated cognitive deficits. We aimed to reveal the underlying mechanism by which RAGE regulates neuroinflammation in the pathogenesis of diabetes-induced cognitive impairment. METHODS: We used db/db mice as a model for type 2 diabetes to investigate whether receptor-interacting serine/threonine protein kinase 1 (RIPK1), which is expressed in microglia in the hippocampal region, is a key protein partner for RAGE. GST pull-down assays and AutoDock Vina simulations were performed to identify the key structural domain in RAGE that binds to RIPK1. Western blotting, co-immunoprecipitation (Co-IP), and immunofluorescence (IF) were used to detect the levels of key proteins or interaction between RAGE and RIPK1. Cognitive deficits in the mice were assessed with the Morris water maze (MWM) and new object recognition (NOR) and fear-conditioning tests. RESULTS: RAGE binds directly to RIPK1 via the amino acid sequence (AAs) 362-367, thereby upregulating phosphorylation of RIPK1, which results in activation of the NLRP3 inflammasome in microglia and ultimately leads to cognitive impairments in db/db mice. We mutated RAGE AAs 362-367 to reverse neuroinflammation in the hippocampus and improve cognitive function, suggesting that RAGE AAs 362-367 is a key structural domain that binds directly to RIPK1. These results also indicate that hyperglycemia-induced inflammation in the hippocampus is dependent on direct binding of RAGE and RIPK1. CONCLUSION: Direct interaction of RAGE and RIPK1 via AAs 362-367 is an important mechanism for enhanced neuroinflammation in the hyperglycemic environment and is a key node in the development of cognitive deficits in diabetes.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Mice , Cognition , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hyperglycemia/complications , Inflammation , Neuroinflammatory Diseases , Receptor for Advanced Glycation End Products/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
17.
Apoptosis ; 29(5-6): 849-864, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38117373

ABSTRACT

Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs' effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.


Subject(s)
Extracellular Vesicles , Inflammation , Multiple Myeloma , Muscular Atrophy , Receptor for Advanced Glycation End Products , Signal Transduction , Toll-Like Receptor 4 , Transcription Factor RelA , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Cell Line, Tumor , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male , Female
18.
J Ethnopharmacol ; 322: 117573, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38110133

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM: This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS: Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS: SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION: Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Syzygium , Humans , NF-kappa B/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Fibronectins , Vascular Endothelial Growth Factor A , Maillard Reaction , Interleukin-6 , HEK293 Cells , Tumor Necrosis Factor-alpha
19.
In Vivo ; 38(1): 474-481, 2024.
Article in English | MEDLINE | ID: mdl-38148054

ABSTRACT

BACKGROUND/AIM: Lung cancer is a major cause of cancer-related deaths worldwide, and chronic inflammation caused by cigarette smoke plays a crucial role in the development and progression of this disease. S100A8/9 and RAGE are associated with chronic inflammatory diseases and cancer. This study aimed to investigate the expression of S100A8/9, HMBG1, and other related pro-inflammatory molecules and clinical characteristics in patients with non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: We obtained serum and bronchoalveolar lavage (BAL) fluid samples from 107 patients and categorized them as never or ever-smokers. We measured the levels of S100A8/9, RAGE, and HMGB1 in the collected samples using enzyme-linked immunosorbent kits. Immunohistochemical staining was also performed to assess the expression of S100A8/9, CD11b, and CD8 in lung cancer tissues. The correlation between the expression of these proteins and the clinical characteristics of patients with NSCLC was also explored. RESULTS: The expression of S100A8/A9, RAGE, and HMGB was significantly correlated with smoking status and was higher in people with a history of smoking or who were currently smoking. There was a positive correlation between serum and BAL fluid S100A8/9 levels. The expression of S100A8/A9 and CD8 in lung tumor tissues was significantly correlated with smoking history in patients with NSCLC. Ever-smokers, non-adenocarcinoma histology, and high PD-L1 expression were significant factors predicting high serum S100A8/9 levels in multivariate analysis. CONCLUSION: The S100A8/9-RAGE pathway and CD8 expression were increased in smoking-related NSCLC patients. The S100A8/9-RAGE pathway could be a promising biomarker for chronic airway inflammation and carcinogenesis in smoking-related lung diseases.


Subject(s)
Calgranulin A , Calgranulin B , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Inflammation , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Smoking/adverse effects
20.
Cell Rep Med ; 4(11): 101266, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37944530

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


Subject(s)
COVID-19 , Humans , Monocytes , Pandemics , Receptor for Advanced Glycation End Products/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...