Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.140
Filter
1.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786072

ABSTRACT

Spermatogenesis is a highly regulated process dependent on androgen receptor (AR) signaling in Sertoli cells. However, the pathogenic mechanisms of spermatogenic failure, by which loss of AR impairs downstream target genes to affect Sertoli cell function, remain incompletely understood. By using microarray analysis, we identified several AR-regulated genes involved in the maturation of spermatogenesis, including chromodomain Y-like protein (CDYL) and transition proteins 1 (TNP-1), that were significantly decreased in ARKO mouse testes. AR and CDYL were found to co-localize and interact in Sertoli cells. The AR-CDYL complex bound to the promoter regions of TNP1 and modulated their transcriptional activity. CDYL acts as a co-regulator of AR transactivation, and its expression is decreased in the Sertoli cells of human testes from patients with azoospermia. The androgen receptor-chromodomain Y-like protein axis plays a crucial role in regulating a network of genes essential for spermatogenesis in Sertoli cells. Disruption of this AR-CDYL regulatory axis may contribute to spermatogenic failure. These findings provide insights into novel molecular mechanisms targeting the AR-CDYL signaling pathway, which may have implications for developing new therapeutic strategies for male infertility.


Subject(s)
Receptors, Androgen , Sertoli Cells , Signal Transduction , Spermatogenesis , Male , Sertoli Cells/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Spermatogenesis/genetics , Animals , Humans , Mice , Mice, Knockout , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Mice, Inbred C57BL , Transcription Factors , Homeodomain Proteins
2.
ESMO Open ; 9(5): 103448, 2024 May.
Article in English | MEDLINE | ID: mdl-38718704

ABSTRACT

BACKGROUND: The early identification of responsive and resistant patients to androgen receptor-targeting agents (ARTA) in metastatic castration-resistant prostate cancer (mCRPC) is not completely possible with prostate-specific antigen (PSA) assessment and conventional imaging. Considering its ability to determine metabolic activity of lesions, positron emission tomography (PET) assessment might be a promising tool. PATIENTS AND METHODS: We carried out a monocentric prospective study in patients with mCRPC treated with ARTA to evaluate the role of different PET radiotracers: 49 patients were randomized to receive 11C-Choline, Fluorine 18 fluciclovine (anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid - FACBC) (18F-FACBC), or Gallium-68-prostate-specific-membrane-antigen (68Ga-PSMA) PET, one scan before therapy and one 2 months later. The primary aim was to investigate the performance of three novel PET radiotracers for the early evaluation of response to ARTA in metastatic CRPC patients; the outcome evaluated was biochemical response (PSA reduction ≥50%). The secondary aim was to investigate the prognostic role of several semiquantitative PET parameters and their variations with the different radiotracers in terms of biochemical progression-free survival (bPFS) and overall survival (OS). The study was promoted by the Italian Department of Health (code RF-2016-02364809). RESULTS: Regarding the primary endpoint, at log-rank test a statistically significant correlation was found between metabolic tumor volume (MTV) (P = 0.018) and total lesion activity (TLA) (P = 0.025) percentage variation among the two scans with 68Ga-PSMA PET and biochemical response. As for the secondary endpoints, significant correlations with bPFS were found for 68Ga-PSMA total MTV and TLA at the first scan (P = 0.001 and P = 0.025, respectively), and MTV percentage variation (P = 0.031). For OS, statistically significant correlations were found for different 68Ga-PSMA and 18F-FACBC parameters and for major maximum standardized uptake value at the first 11C-Choline PET scan. CONCLUSIONS: Our study highlighted that 11C-Choline, 68Ga-PSMA, and 18F-FACBC semiquantitative PET parameters and their variations present a prognostic value in terms of OS and bPFS, and MTV and TLA variations with 68Ga-PSMA PET a correlation with biochemical response, which could help to assess the response to ARTA.


Subject(s)
Carbon Radioisotopes , Carboxylic Acids , Choline , Cyclobutanes , Gallium Radioisotopes , Positron-Emission Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prospective Studies , Aged , Carboxylic Acids/pharmacology , Carboxylic Acids/therapeutic use , Gallium Radioisotopes/pharmacology , Choline/pharmacology , Cyclobutanes/pharmacology , Cyclobutanes/therapeutic use , Carbon Radioisotopes/pharmacology , Positron-Emission Tomography/methods , Middle Aged , Gallium Isotopes , Radiopharmaceuticals/pharmacology , Aged, 80 and over , Receptors, Androgen/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731844

ABSTRACT

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732080

ABSTRACT

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Subject(s)
Cell Movement , Cell Proliferation , Dihydrotestosterone , Endothelial Progenitor Cells , Neovascularization, Physiologic , Receptors, Androgen , Dihydrotestosterone/pharmacology , Humans , Cell Movement/drug effects , Receptors, Androgen/metabolism , Neovascularization, Physiologic/drug effects , Cell Proliferation/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/cytology , Animals , Cells, Cultured , Mice , Cell Survival/drug effects , Androgens/pharmacology , Androgens/metabolism , Male
5.
Life Sci ; 348: 122697, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38710280

ABSTRACT

The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Drug Discovery , Receptors, Androgen , Signal Transduction , Humans , Receptors, Androgen/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Signal Transduction/drug effects , Biomarkers, Tumor/metabolism , Drug Discovery/methods
6.
J Immunother Cancer ; 12(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38772685

ABSTRACT

RATIONALE: Androgen deprivation therapy (ADT) is the primary treatment for recurrent and metastatic prostate cancer. In addition to direct antitumor effects, ADT has immunomodulatory effects such as promoting T-cell infiltration and enhancing antigen processing/presentation. Previous studies in our laboratory have demonstrated that ADT also leads to increased expression of the androgen receptor (AR) and increased recognition of prostate tumor cells by AR-specific CD8+T cells. We have also demonstrated that ADT combined with a DNA vaccine encoding the AR significantly slowed tumor growth and improved the survival of prostate tumor-bearing mice. The current study aimed to investigate the impact of the timing and sequencing of ADT with vaccination on the tumor immune microenvironment in murine prostate cancer models to further increase the antitumor efficacy of vaccines. METHODS: Male FVB mice implanted with Myc-CaP tumor cells, or male C57BL/6 mice implanted with TRAMP-C1 prostate tumor cells, were treated with a DNA vaccine encoding AR (pTVG-AR) and ADT. The sequence of administration was evaluated for its effect on tumor growth, and tumor-infiltrating immune populations were characterized. RESULTS: Vaccination prior to ADT (pTVG-AR → ADT) significantly enhanced antitumor responses and survival. This was associated with increased tumor infiltration by CD4+ and CD8+ T cells, including AR-specific CD8+T cells. Depletion of CD8+T cells prior to ADT significantly worsened overall survival. Following ADT treatment, however, Gr1+ myeloid-derived suppressor cells (MDSCs) increased, and this was associated with fewer infiltrating T cells and reduced tumor growth. Inhibiting Gr1+MDSCs recruitment, either by using a CXCR2 antagonist or by cycling androgen deprivation with testosterone replacement, improved antitumor responses and overall survival. CONCLUSION: Vaccination prior to ADT significantly improved antitumor responses, mediated in part by increased infiltration of CD8+T cells following ADT. Targeting MDSC recruitment following ADT further enhanced antitumor responses. These findings suggest logical directions for future clinical trials to improve the efficacy of prostate cancer vaccines.


Subject(s)
Cancer Vaccines , Prostatic Neoplasms , Receptors, Androgen , Male , Animals , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Cancer Vaccines/therapeutic use , Cancer Vaccines/pharmacology , Cancer Vaccines/immunology , Vaccines, DNA/therapeutic use , Vaccines, DNA/pharmacology , Androgen Antagonists/therapeutic use , Androgen Antagonists/pharmacology , Cell Line, Tumor , Mice, Inbred C57BL , Vaccination , Humans , Tumor Microenvironment , Disease Models, Animal , CD8-Positive T-Lymphocytes/immunology
7.
BMC Cancer ; 24(1): 554, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698344

ABSTRACT

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-1 , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Animals , Octamer Transcription Factor-1/metabolism , Octamer Transcription Factor-1/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Up-Regulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Tumor Microenvironment , Signal Transduction
8.
Sci Rep ; 14(1): 11115, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750183

ABSTRACT

Androgen deprivation therapy (ADT) is the core treatment for advanced prostate cancer (PCa), with a proven survival benefit. ADT lowers circulating testosterone levels throughout the body, but with it comes a variety of reported side effects including fatigue, muscle wastage, weight gain, hot flushes and importantly cognitive impairment, depression, and mood swings. Testosterone has a key role in brain masculinization, but its direct effects are relatively poorly understood, due both to the brain's extreme complexity and the fact that some of testosterone activities are driven via local conversion to oestrogen, especially during embryonic development. The exact roles, function, and location of the androgen receptor (AR) in the adult male brain are still being discovered, and therefore the cognitive side effects of ADT may be unrecognized or under-reported. The age of onset of several neurological diseases overlap with PCa, therefore, there is a need to separate ADT side effects from such co-morbidities. Here we analysed the activity and expression level of the AR in the adult mouse brain, using an ARE-Luc reporter mouse and immunohistochemical staining for AR in all the key brain regions via coronal slices. We further analysed our data by comparing to the Allen Mouse Brain Atlas. AR-driven luciferase activity and distinct nuclear staining for AR were seen in several key brain areas including the thalamus, hypothalamus, olfactory bulb, cerebral cortex, Purkinje cells of the cerebellum and the hindbrain. We describe and discuss the potential role of AR in these areas, to inform and enable extrapolation to potential side effects of ADT in humans.


Subject(s)
Brain , Receptors, Androgen , Receptors, Androgen/metabolism , Animals , Mice , Brain/metabolism , Brain/drug effects , Male
9.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Article in English | MEDLINE | ID: mdl-38745948

ABSTRACT

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Subject(s)
Endometrium , Polycystic Ovary Syndrome , Receptors, Androgen , WT1 Proteins , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Endometrium/metabolism , Endometrium/pathology , WT1 Proteins/metabolism , WT1 Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Adult , Regulatory Sequences, Nucleic Acid
10.
Sci Rep ; 14(1): 11278, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760384

ABSTRACT

In our previous study, we developed a triple-negative breast cancer (TNBC) subtype classification that correlated with the TNBC molecular subclassification. In this study, we aimed to evaluate the predictor variables of this subtype classification on the whole slide and to validate the model's performance by using an external test set. We explored the characteristics of this subtype classification and investigated genomic alterations, including genomic scar signature scores. First, TNBC was classified into the luminal androgen receptor (LAR) and non-luminal androgen receptor (non-LAR) subtypes based on the AR Allred score (≥ 6 and < 6, respectively). Then, the non-LAR subtype was further classified into the lymphocyte-predominant (LP), lymphocyte-intermediate (LI), and lymphocyte-depleted (LD) groups based on stromal tumor-infiltrating lymphocytes (TILs) (< 20%, > 20% but < 60%, and ≥ 60%, respectively). This classification showed fair agreement with the molecular classification in the test set. The LAR subtype was characterized by a high rate of PIK3CA mutation, CD274 (encodes PD-L1) and PDCD1LG2 (encodes PD-L2) deletion, and a low homologous recombination deficiency (HRD) score. The non-LAR LD TIL group was characterized by a high frequency of NOTCH2 and MYC amplification and a high HRD score.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Receptors, Androgen , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/classification , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/immunology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Mutation , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism
11.
Cancer J ; 30(3): 142-152, 2024.
Article in English | MEDLINE | ID: mdl-38753748

ABSTRACT

ABSTRACT: Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.


Subject(s)
Breast Neoplasms , Molecular Imaging , Positron-Emission Tomography , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Female , Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, Steroid/metabolism , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Radiopharmaceuticals/metabolism , Receptors, Androgen/metabolism
12.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38718206

ABSTRACT

Paxillin is a ubiquitously expressed adaptor protein integral to focal adhesions, cell motility, and apoptosis. Paxillin has also recently been implicated as a mediator of nongenomic androgen receptor (AR) signaling in prostate cancer and other cells. We sought to investigate the relationship between paxillin and AR in granulosa cells (GCs), where androgen actions, apoptosis, and focal adhesions are of known importance, but where the role of paxillin is understudied. We recently showed that paxillin knockout in mouse GCs increases fertility in older mice. Here, we demonstrate that paxillin knockdown in human granulosa-derived KGN cells, as well as knockout in mouse primary GCs, results in reduced AR protein but not reduced mRNA expression. Further, we find that both AR protein and mRNA half-lives are reduced by approximately one-third in the absence of paxillin, but that cells adapt to chronic loss of paxillin by upregulating AR gene expression. Using co-immunofluorescence and proximity ligation assays, we show that paxillin and AR co-localize at the plasma membrane in GCs in a focal adhesion kinase-dependent way, and that disruption of focal adhesions leads to reduced AR protein level. Our findings suggest that paxillin recruits AR to the GC membrane, where it may be sequestered from proteasomal degradation and poised for nongenomic signaling, as reported in other tissues. To investigate the physiological significance of this in disorders of androgen excess, we tested the effect of GC-specific paxillin knockout in a mouse model of polycystic ovary syndrome (PCOS) induced by chronic postnatal dihydrotestosterone (DHT) exposure. While none of the control mice had estrous cycles, 33% of paxillin knockout mice were cycling, indicating that paxillin deletion may offer partial protection from the negative effects of androgen excess by reducing AR expression. Paxillin-knockout GCs from mice with DHT-induced PCOS also produced more estradiol than GCs from littermate controls. Thus, paxillin may be a novel target in the management of androgen-related disorders in women, such as PCOS.


Subject(s)
Focal Adhesions , Granulosa Cells , Mice, Knockout , Paxillin , Receptors, Androgen , Paxillin/metabolism , Paxillin/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Female , Focal Adhesions/metabolism , Animals , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Mice , Humans , Gene Expression Regulation , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781215

ABSTRACT

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Subject(s)
Androgens , Oryzias , Receptors, Androgen , Sexual Behavior, Animal , Signal Transduction , Animals , Male , Oryzias/metabolism , Oryzias/physiology , Sexual Behavior, Animal/physiology , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Androgens/metabolism , Aggression/physiology
14.
Scand J Med Sci Sports ; 34(6): e14668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802727

ABSTRACT

Multiple intramuscular variables have been proposed to explain the high variability in resistance training induced muscle hypertrophy across humans. This study investigated if muscular androgen receptor (AR), estrogen receptor α (ERα) and ß (ERß) content and fiber capillarization are associated with fiber and whole-muscle hypertrophy after chronic resistance training. Male (n = 11) and female (n = 10) resistance training novices (22.1 ± 2.2 years) trained their knee extensors 3×/week for 10 weeks. Vastus lateralis biopsies were taken at baseline and post the training period to determine changes in fiber type specific cross-sectional area (CSA) and fiber capillarization by immunohistochemistry and, intramuscular AR, ERα and ERß content by Western blotting. Vastus lateralis volume was quantified by MRI-based 3D segmentation. Vastus lateralis muscle volume significantly increased over the training period (+7.22%; range: -1.82 to +18.8%, p < 0.0001) but no changes occurred in all fiber (+1.64%; range: -21 to +34%, p = 0.869), type I fiber (+1.33%; range: -24 to +41%, p = 0.952) and type II fiber CSA (+2.19%; range: -23 to +29%, p = 0.838). However, wide inter-individual ranges were found. Resistance training increased the protein expression of ERα but not ERß and AR, and the increase in ERα content was positively related to changes in fiber CSA. Only for the type II fibers, the baseline capillary-to-fiber-perimeter index was positively related to type II fiber hypertrophy but not to whole muscle responsiveness. In conclusion, an upregulation of ERα content and an adequate initial fiber capillarization may be contributing factors implicated in muscle fiber hypertrophy responsiveness after chronic resistance training.


Subject(s)
Estrogen Receptor alpha , Estrogen Receptor beta , Muscle Fibers, Skeletal , Quadriceps Muscle , Receptors, Androgen , Resistance Training , Humans , Male , Resistance Training/methods , Female , Estrogen Receptor beta/metabolism , Estrogen Receptor alpha/metabolism , Young Adult , Receptors, Androgen/metabolism , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply , Quadriceps Muscle/diagnostic imaging , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Adult , Hypertrophy , Capillaries , Magnetic Resonance Imaging
15.
J Nanobiotechnology ; 22(1): 145, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566211

ABSTRACT

Resistance to androgen receptor (AR) inhibitors, including enzalutamide (Enz), as well as bone metastasis, are major challenges for castration-resistant prostate cancer (CRPC) treatment. In this study, we identified that miR26a can restore Enz sensitivity and inhibit bone metastatic CRPC. To achieve the highest combination effect of miR26a and Enz, we developed a cancer-targeted nano-system (Bm@PT/Enz-miR26a) using bone marrow mesenchymal stem cell (BMSC) membrane and T140 peptide to co-deliver Enz and miR26a. The in vitro/in vivo results demonstrated that miR26a can reverse Enz resistance and synergistically shrink tumor growth, invasion, and metastasis (especially secondary metastasis) in both subcutaneous and bone metastatic CRPC mouse models. We also found that the EZH2/SFRP1/WNT5A axis may be involved in this role. These findings open new avenues for treating bone metastatic and Enz-resistant CRPC.


Subject(s)
Benzamides , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Drug Resistance, Neoplasm , Cell Proliferation , Cell Line, Tumor , Nitriles/pharmacology
16.
Sci Adv ; 10(14): eadm7098, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569039

ABSTRACT

Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Neoplasm Recurrence, Local , Transcription Factors/metabolism , Protein Biosynthesis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
17.
Cell Commun Signal ; 22(1): 219, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589887

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is a prevalent malignancy in men worldwide, ranking as the second leading cause of cancer-related death in Western countries. Various PCa hormone therapies, such as androgen receptor (AR)-antagonists or supraphysiological androgen level (SAL) reduce cancer cell proliferation. However, treated cells may influence the growth of neighboring cells through secreted exosomes in the tumor microenvironment (TME). Here, the change of protein content of exosomes secreted from PCa cells through treatment with different AR-antagonists or SAL has been analyzed. METHODS: Isolation of exosomes via ultracentrifugation of treated human PCa LNCaP cells with AR-agonist and various AR-antagonists; analysis of cellular senescence by detection of senescence associated beta galactosidase activity (SA ß-Gal); Western blotting and immunofluorescence staining; Mass spectrometry (MS-spec) of exosomes and bioinformatic analyses to identify ligand-specific exosomal proteins. Growth assays to analyze influence of exosomes on non-treated cells. RESULTS: MS-spec analysis identified ligand-specific proteins in exosomes. One thousand seventy proteins were up- and 52 proteins downregulated by SAL whereas enzalutamide upregulated 151 proteins and downregulated 42 exosomal proteins. The bioinformatic prediction indicates an up-regulation of pro-proliferative pathways. AR ligands augment hub factors in exosomes that include AKT1, CALM1, PAK2 and CTNND1. Accordingly, functional assays confirmed that the isolated exosomes from AR-ligand treated cells promote growth of untreated PCa cells. CONCLUSION: The data suggest that the cargo of exosomes is controlled by AR-agonist and -antagonists and distinct among the AR-antagonists. Further, exosomes promote growth that might influence the TME. This finding sheds light into the complex interplay between AR signaling and exosome-mediated communication between PCa cells.


Subject(s)
Exosomes , Prostatic Neoplasms , Male , Humans , Androgen Receptor Antagonists , Receptors, Androgen/metabolism , Exosomes/metabolism , Ligands , Cell Line, Tumor , Prostatic Neoplasms/pathology , Androgens , Tumor Microenvironment
18.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627648

ABSTRACT

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Subject(s)
Cell-Free Nucleic Acids , Exosomes , Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Exosomes/genetics , Exosomes/metabolism , Neoplastic Cells, Circulating/pathology , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Isoforms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , RNA, Messenger/genetics
19.
Biosensors (Basel) ; 14(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38667168

ABSTRACT

Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (ECM-M) culture model, enhancing cellular tracking during bioluminescence single-cell imaging while improving cell viability. ECM-M notably tripled the traceability of poorly adherent PCa cells, facilitating robust single-cell tracking, without impeding substrate permeability or AR response. This model effectively monitored AR modulation by antiandrogens across various PCa cell lines. Single-cell imaging unveiled heterogeneous antiandrogen responses within populations, correlating non-responsive cell proportions with drug IC50 values. Integrating ECM-M culture with the PSEBC-TSTA biosensor enabled precise characterization of ARi responsiveness within diverse cell populations. Our ECM-M model stands as a promising tool to assess heterogeneous single-cell treatment responses in cancer, offering insights to link drug responses to intracellular signaling dynamics. This approach enhances our comprehension of the nuanced and dynamic nature of PCa treatment responses.


Subject(s)
Extracellular Matrix , Prostatic Neoplasms , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Extracellular Matrix/metabolism , Male , Cell Line, Tumor , Androgen Antagonists/pharmacology , Receptors, Androgen/metabolism , Single-Cell Analysis , Microscopy , Biosensing Techniques , Luminescent Measurements
20.
Genes (Basel) ; 15(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38674385

ABSTRACT

Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.


Subject(s)
Prostatic Neoplasms , Transcription Factors , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...