Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.786
Filter
1.
J Clin Immunol ; 44(6): 139, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822857

ABSTRACT

We evaluated the impact of early recovery of mucosal-associated invariant T cells (MAIT) and gamma-delta (γδ) T cells, especially Vδ2+ T cells, on the clinical outcomes of 76 patients who underwent allogeneic hematopoietic cell transplantation (allo-HCT). MAIT cells were identified at day 20-30 post-transplant using flow cytometry and defined as CD3+ TCRVα7.2+CD161+. Two subsets of Vδ2+ T cells were analyzed according to the expression of CD26. The cytotoxicity profile of MAIT and Vδ2+ T cells was analyzed according to the intracellular expression of perforin and granzyme B, and intracellular IFN-γ was evaluated after in vitro activation. CD26+Vδ2+ T cells displayed higher intracellular levels of IFN-γ, whereas CD26- Vδ2+ T were found to be more cytotoxic. Moreover, MAIT cell frequency was correlated with the frequency of Vδ2+ T cells with a better correlation observed with Vδ2+CD26+ than with the Vδ2+CD26- T cell subset. By using the composite endpoint graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) as the primary endpoint, we found that patients with a higher MAIT cell frequency at day 20-30 after allo-HCT had a significantly increased GRFS and a better overall survival (OS) and disease-free survival (DFS). Moreover, patients with a low CD69 expression by MAIT cells had an increased cumulative incidence of grade 2-4 acute GvHD (aGvHD). These results suggest that MAIT cell reconstitution may provide mitigating effects early after allo-HCT depending on their activation markers and functional status. Patients with a high frequency of Vδ2+CD26+ T cells had a significantly higher GRFS, OS and DFS, but there was no impact on cumulative incidence of grade 2-4 aGVHD, non-relapse mortality and relapse. These results revealed that the impact of Vδ2+ T cells on the success of allo-HCT may vary according to the frequency of the CD26+ subset.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mucosal-Associated Invariant T Cells , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology , Mucosal-Associated Invariant T Cells/immunology , Young Adult , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adolescent , Aged , Treatment Outcome , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Dipeptidyl Peptidase 4/metabolism , Cytotoxicity, Immunologic
2.
Front Immunol ; 15: 1388721, 2024.
Article in English | MEDLINE | ID: mdl-38840926

ABSTRACT

The disaccharide (ß-D-glucopyranosyluronic acid)-(1→4)-ß-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.


Subject(s)
Interleukin-17 , Pneumococcal Vaccines , Serum Albumin, Bovine , Streptococcus pneumoniae , Animals , Interleukin-17/immunology , Interleukin-17/metabolism , Streptococcus pneumoniae/immunology , Mice , Serum Albumin, Bovine/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Disaccharides/immunology , Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Female , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Intraepithelial Lymphocytes/immunology , Serogroup , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism
3.
Front Immunol ; 15: 1385380, 2024.
Article in English | MEDLINE | ID: mdl-38827744

ABSTRACT

Introduction: Depending on the microenvironment, γδ T cells may assume characteristics similar to those of Th1, Th2, Th17, regulatory T cells or antigen presenting cells. Despite the wide documentation of the effect of Th1/Th2 balance on pregnancy associated malaria and outcomes, there are no reports on the relationship between γδ T cell phenotype change and Placental Malaria (PM) with pregnancy outcomes. This study sought to investigate the involvement of γδ T cells and its subsets in placental Plasmodium falciparum malaria. Methods: In a case-control study conducted in Yaoundé, Cameroon from March 2022 to May 2023, peripheral, placental and cord blood samples were collected from 50 women at delivery (29 PM negative: PM- and 21 PM positive: PM+; as diagnosed by light microscopy). Hemoglobin levels were measured using hemoglobinometer. PBMCs, IVBMCs and CBMCs were isolated using histopaque-1077 and used to characterize total γδ T cell populations and subsets (Vδ1+, Vδ2+, Vδ1-Vδ2-) by flow cytometry. Results: Placental Plasmodium falciparum infection was associated with significant increase in the frequency of total γδ T cells in IVBMC and of the Vδ1+ subset in PBMC and IVBMC, but decreased frequency of the Vδ2+ subset in PBMC and IVBMC. The expression of the activation marker: HLA-DR, and the exhaustion markers (PD1 and TIM3) within total γδ T cells and subsets were significantly up-regulated in PM+ compared to PM- group. The frequency of total γδ T cells in IVBMC, TIM-3 expression within total γδ T cells and subsets in IVBMC, as well as HLA-DR expression within total γδ T cells and Vδ2+ subset in IVBMC were negatively associated with maternal hemoglobin levels. Furthermore, the frequency of total γδ T cells in PBMC and PD1 expression within the Vδ2+ subset in CBMC were negatively associated with birth weight contrary to the frequency of Vδ1-Vδ2- subset in PBMC and HLA-DR expression within the Vδ2+ subset in IVBMC which positively associated with maternal hemoglobin level and birth weight, respectively. Conclusion: The data indicate up-regulation of activated and exhausted γδ T cells in Plasmodium falciparum placental malaria, with effects on pregnancy outcomes including maternal hemoglobin level and birth weight.


Subject(s)
Malaria, Falciparum , Placenta , Plasmodium falciparum , Pregnancy Complications, Parasitic , Pregnancy Outcome , Receptors, Antigen, T-Cell, gamma-delta , Humans , Female , Pregnancy , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Cameroon , Adult , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Plasmodium falciparum/immunology , Pregnancy Complications, Parasitic/immunology , Case-Control Studies , Young Adult , Placenta/immunology , Placenta/parasitology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Phenotype
5.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Article in English | MEDLINE | ID: mdl-38703051

ABSTRACT

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid-Derived Suppressor Cells/immunology , Intraepithelial Lymphocytes/immunology , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Immune Tolerance , Animals , Tumor-Associated Macrophages/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Myeloid Cells/immunology
6.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38753245

ABSTRACT

Preterm infants are at high risk of developing neonatal sepsis. γδ T cells are thought to be an important set of effector cells in neonates. Here, γδ T cells were investigated in a longitudinal cohort of preterm neonates using next-generation sequencing, flow cytometry, and functional assays. During the first year of life, the Vγ9Vδ2 T cell subset showed dynamic phenotypic changes and elevated levels of fetal-derived Vγ9Vδ2 T cells were evident in infants with sepsis. Single-cell transcriptomics identified HLA-DRhiCD83+ γδ T cells in neonatal sepsis, which expressed genes related to antigen presentation. In vitro assays showed that CD83 was expressed on activated Vγ9Vδ2 T cells in preterm and term neonates, but not in adults. In contrast, activation of adult Vγ9Vδ2 T cells enhanced CD86 expression, which was presumably the key receptor to induce CD4 T cell proliferation. Together, we provide a map of the maturation of γδ T cells after preterm birth and highlight their phenotypic diversity in infections.


Subject(s)
Antigens, CD , CD83 Antigen , Infant, Premature , Receptors, Antigen, T-Cell, gamma-delta , Humans , Infant, Newborn , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Infant, Premature/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Female , Male , Sepsis/immunology , Cohort Studies , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adult , Lymphocyte Activation/immunology , Neonatal Sepsis/immunology , Infant
7.
Nat Commun ; 15(1): 4248, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762584

ABSTRACT

The naked mole-rat (Heterocephalus glaber) is a long-lived rodent species showing resistance to the development of cancer. Although naked mole-rats have been reported to lack natural killer (NK) cells, γδ T cell-based immunity has been suggested in this species, which could represent an important arm of the immune system for antitumor responses. Here, we investigate the biology of these unconventional T cells in peripheral tissues (blood, spleen) and thymus of the naked mole-rat at different ages by TCR repertoire profiling and single-cell gene expression analysis. Using our own TCR annotation in the naked mole-rat genome, we report that the γδ TCR repertoire is dominated by a public invariant Vγ4-2/Vδ1-4 TCR, containing the complementary-determining-region-3 (CDR3)γ CTYWDSNYAKKLF / CDR3δ CALWELRTGGITAQLVF that are likely generated by short-homology-repeat-driven DNA rearrangements. This invariant TCR is specifically found in γδ T cells expressing genes associated with NK cytotoxicity and is generated in both the thoracic and cervical thymus of the naked mole-rat until adult life. Our results indicate that invariant Vγ4-2/Vδ1-4 NK-like effector T cells in the naked mole-rat can contribute to tumor immunosurveillance by γδ TCR-mediated recognition of a common molecular signal.


Subject(s)
Mole Rats , Receptors, Antigen, T-Cell, gamma-delta , Thymus Gland , Animals , Mole Rats/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland/immunology , Thymus Gland/cytology , Killer Cells, Natural/immunology , Spleen/immunology , Complementarity Determining Regions/genetics , Natural Killer T-Cells/immunology
9.
Sci Transl Med ; 16(749): eadg9814, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809963

ABSTRACT

T cell-based cancer immunotherapy has typically relied on membrane-bound cytotoxicity enhancers such as chimeric antigen receptors expressed in autologous αß T cells. These approaches are limited by tonic signaling of synthetic constructs and costs associated with manufacturing. γδ T cells are an emerging alternative for cellular therapy, having innate antitumor activity, potent antibody-dependent cellular cytotoxicity, and minimal alloreactivity. We present an immunotherapeutic platform technology built around the innate properties of the Vγ9Vδ2 T cell, harnessing specific characteristics of this cell type and offering an allocompatible cellular therapy that recruits bystander immunity. We engineered γδ T cells to secrete synthetic tumor-targeting opsonins in the form of an scFv-Fc fusion protein and a mitogenic IL-15Rα-IL-15 fusion protein (stIL15). Using GD2 as a model antigen, we show that GD2-specific opsonin-secreting Vγ9Vδ2 T cells (stIL15-OPS-γδ T cells) have enhanced cytotoxicity and promote bystander activity of other lymphoid and myeloid cells. Secretion of stIL-15 abrogated the need for exogenous cytokine supplementation and further mediated activation of bystander natural killer cells. Compared with unmodified γδ T cells, stIL15-OPS-γδ T cells exhibited superior in vivo control of subcutaneous tumors and persistence in the blood. Moreover, stIL15-OPS-γδ T cells were efficacious against patient-derived osteosarcomas in animal models and in vitro, where efficacy could be boosted with the addition of zoledronic acid. Together, the data identify stIL15-OPS-γδ T cells as a candidate allogeneic cell therapy platform combining direct cytolysis with bystander activation to promote tumor control.


Subject(s)
Osteosarcoma , Receptors, Antigen, T-Cell, gamma-delta , Animals , Osteosarcoma/therapy , Osteosarcoma/immunology , Osteosarcoma/pathology , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Mice , T-Lymphocytes/immunology , Zoledronic Acid/pharmacology , Bystander Effect , Interleukin-15 , Cell Engineering
10.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741147

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Subject(s)
Antigens, Bacterial , Cell Proliferation , Mycobacterium tuberculosis , T-Lymphocytes , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Tumor Necrosis Factor-alpha/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology
11.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38819378

ABSTRACT

A distinct CD83-expressing subset of γδ T cells are enriched in preterm infants with sepsis, providing insights into their functional maturation dynamics in settings of homeostasis and disease (León-Lara et al. https://doi.org/10.1084/jem.20231987).


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Humans , Infant, Newborn , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Sepsis/immunology , T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology , Infant, Premature/immunology
12.
Nat Commun ; 15(1): 4286, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769332

ABSTRACT

The function and phenotype of γδ T cells in the context of common variable immunodeficiency (CVID) has not been explored. CVID is a primary immunodeficiency disorder characterized by impaired antibody responses resulting in increased susceptibility to infections. γδ T cells are a subset of unconventional T cells that play crucial roles in host defence against infections. In this study, we aim to determine the roles and functions of γδ T cells in CVID. We observe a higher frequency of Vδ1+ γδ T cells compared to healthy controls, particularly in older patients. We also find a higher proportion of effector-memory Vδ1+ γδ T cells and a more clonal T cell receptor (TCR) repertoire in CVID. The most significant driver of the Vδ1+ γδ T cell expansion and phenotype in CVID patients is persistent cytomegalovirus (CMV) viremia. These findings provide valuable insights into γδ T cell biology and their contribution to immune defence in CVID.


Subject(s)
Common Variable Immunodeficiency , Cytomegalovirus Infections , Cytomegalovirus , Receptors, Antigen, T-Cell, gamma-delta , Humans , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/virology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Male , Female , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Adult , Cytomegalovirus/immunology , Middle Aged , Aged , Young Adult , T-Lymphocyte Subsets/immunology , Viremia/immunology , Adolescent , Case-Control Studies
13.
Front Immunol ; 15: 1321126, 2024.
Article in English | MEDLINE | ID: mdl-38711501

ABSTRACT

Introduction: γδ T cells recognize and exert cytotoxicity against tumor cells. They are also considered potential immune cells for immunotherapy. Our previous study revealed that the altered expression of immune checkpoint T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on γδ T cells may result in immunosuppression and is possibly associated with a poor overall survival in acute myeloid leukemia (AML). However, whether γδ T-cell memory subsets are predominantly involved and whether they have a relationship with clinical outcomes in patients with AML under the age of 65 remain unclear. Methods: In this study, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of γδ T-cell subsets, including central memory γδ T cells (TCM γδ), effector memory γδ T cells (TEM γδ), and TEM expressing CD45RA (TEMRA γδ), in peripheral blood from 30 young (≤65 years old) patients with newly diagnosed non-acute promyelocytic leukemia (also known as M3) AML (AMLy-DN), 14 young patients with AML in complete remission (AMLy-CR), and 30 healthy individuals (HIs). Results: Compared with HIs, patients with AMLy-DN exhibited a significantly higher differentiation of γδ T cells, which was characterized by decreased TCM γδ cells and increased TEMRA γδ cells. A generally higher TIGIT expression was observed in γδ T cells and relative subsets in patients with AMLy-DN, which was partially recovered in patients with AMLy-CR. Furthermore, 17 paired bone marrow from patients with AMLy-DN contained higher percentages of γδ and TIGIT+ γδ T cells and a lower percentage of TCM γδ T cells. Multivariate logistic regression analyses revealed the association of high percentage of TIGIT+ TCM γδ T cells with an increased risk of poor induction chemotherapy response. Conclusions: In this study, we investigated the distribution of γδ T cells and their memory subsets in patients with non-M3 AML and suggested TIGIT+ TCM γδ T cells as potential predictive markers of induction chemotherapy response.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Male , Female , Adult , Middle Aged , Prognosis , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Young Adult , Aged , Memory T Cells/immunology , Memory T Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/diagnosis , Immunologic Memory , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/mortality , Immunophenotyping
15.
Front Immunol ; 15: 1369202, 2024.
Article in English | MEDLINE | ID: mdl-38774876

ABSTRACT

Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.


Subject(s)
Atherosclerosis , Receptors, Antigen, T-Cell, gamma-delta , Humans , Atherosclerosis/immunology , Atherosclerosis/metabolism , Animals , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Macrophages/immunology , Macrophages/metabolism , Plaque, Atherosclerotic/immunology , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Immunity, Innate , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Inflammation/immunology , Adaptive Immunity
16.
Front Biosci (Landmark Ed) ; 29(4): 146, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38682193

ABSTRACT

The ocular surface microenvironment, containing the cornea, conjunctiva, and lacrimal gland, constitutes the mucosal frontline of the eye and houses a myriad of immune cells. As a part of unconventional T cells, gamma delta (γδ) T cells differ in the development and functions from canonical alpha beta (αß) T cells. They are predominantly situated in mucosal sites throughout the body, including ocular surface tissues. Recent research has elucidated that γδ T cells serve as the primary interleukin-17A (IL-17A) source in the conjunctiva. They play a pivotal role in preserving ocular surface homeostasis and exhibit both protective and pathogenic roles in ocular surface diseases. This review delves into the general profiles of γδ T cells, their distribution in ocular surface tissues, and consolidates current insights into their functions in different conditions including dry eye disease, infectious keratitis, corneal wound healing, anterior chamber-associated immune deviation, allergic conjunctival disease, and diabetic ocular surface disease. The aim is to provide a systemic perspective on γδ T cells in the ocular surface microenvironment and outline potential directions for future studies.


Subject(s)
Homeostasis , Humans , Homeostasis/immunology , Conjunctiva/immunology , Animals , Eye Diseases/immunology , Intraepithelial Lymphocytes/immunology , Cornea/immunology , Dry Eye Syndromes/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism
17.
Int Immunopharmacol ; 132: 112054, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608477

ABSTRACT

γδT cells are unconventional T cells only accounting for 1-5 % of circulating T lymphocytes. Their potent anti-tumor capability has been evidenced by accumulating studies. However, the prognostic value of γδT cells remains not well documented in head and neck squamous cell carcinoma (HNSCC). In this study, we utilized the TCGA HNSCC database to evaluate the infiltration of γδT cells and the association between γδT cells and clinicopathological factors by related gene signature, which were then validated by a total of 100 collected tumor samples from HNSCC patient cohort. Heterogeneity and functional characteristics of distinct infiltrating γδT cell profiles in HNSCC were then investigated based on the scRNA-seq data from the GEO database. We found higher γδT cell gene signature score was significantly associated with longer survival. Cox regression models showed that γδT cell gene signature could serve as an independent prognostic indicator for HNSCC patients. A high level of γδT cell-related gene signature was positively correlated with the infiltration of tumor-infiltrating lymphocytes and immune score. Through scRNA-seq analysis, we identified that γδ+ Trm cells and γδ+ CTL cells possessed anti-tumor and immunoregulatory properties. Notably, we found a significant association between the presence of these cells and improved survival outcomes. In our cell-cell communication analyses, we identified that γδT cells have the potential to eliminate tumor cells through the secretion of interferon-gamma and granzyme. Collectively, the infiltration of γδT cells may serve as a promising prognostic tool, prompting the consideration of treatment options for patients with HNSCC.


Subject(s)
Head and Neck Neoplasms , Lymphocytes, Tumor-Infiltrating , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/mortality , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Female , Male , Middle Aged , Transcriptome , Intraepithelial Lymphocytes/immunology , Gene Expression Regulation, Neoplastic , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Aged
18.
Cancer Res Commun ; 4(5): 1253-1267, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38592213

ABSTRACT

Exercise mobilizes cytotoxic lymphocytes to blood which may allow superior cell products to be harvested and manufactured for cancer therapy. Gamma-Delta (γδ) T-cells have shown promise for treating solid tumors, but there is a need to increase their potency against hematologic malignancies. Here, we show that human γδ T-cells mobilized to blood in response to just 20 minutes of graded exercise have surface phenotypes and transcriptomic profiles associated with cytotoxicity, adhesion, migration, and cytokine signaling. Following 14 days ex vivo expansion with zoledronic acid and IL2, exercise mobilized γδ T-cells had surface phenotypes and transcriptomic profiles associated with enhanced effector functions and demonstrated superior cytotoxic activity against multiple hematologic tumors in vitro and in vivo in leukemia-bearing xenogeneic mice. Infusing humans with the ß1+ß2-agonist isoproterenol and administering ß1 or ß1+ß2 antagonists prior to exercise revealed these effects to be ß2-adrenergic receptor (AR) dependent. Antibody blocking of DNAM-1 on expanded γδ T-cells, as well as the DNAM-1 ligands PVR and Nectin-2 on leukemic targets, abolished the enhanced antileukemic effects of exercise. These findings provide a mechanistic link between exercise, ß2-AR activation, and the manufacture of superior γδ T-cell products for adoptive cell therapy against hematologic malignancies. SIGNIFICANCE: Exercise mobilizes effector γδ T-cells to blood via ß2-adrenergic signaling which allows for generation of a potent expanded γδ T-cell product that is highly cytotoxic against hematologic malignancies.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Receptors, Adrenergic, beta-2 , Humans , Animals , Receptors, Adrenergic, beta-2/metabolism , Mice , Antigens, Differentiation, T-Lymphocyte/metabolism , Cell Adhesion Molecules/metabolism , Exercise/physiology , Up-Regulation/drug effects , Xenograft Model Antitumor Assays , Leukemia/therapy , Leukemia/drug therapy , Leukemia/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Male , Cell Line, Tumor
19.
Cell Mol Immunol ; 21(6): 546-560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641698

ABSTRACT

γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.


Subject(s)
AMP-Activated Protein Kinases , Hepatitis, Autoimmune , Interleukin-17 , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Receptors, Antigen, T-Cell, gamma-delta , Animals , Interleukin-17/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/pathology , Mice , AMP-Activated Protein Kinases/metabolism , Mice, Knockout , Cell Differentiation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/immunology , Thymus Gland/pathology , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism
20.
Eur J Pharmacol ; 974: 176602, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38677538

ABSTRACT

BACKGROUND: The interleukin (IL) -12 p40 subunit is the common subunit of IL-12 and IL-23. It affects the immune inflammatory response, which may be closely related to cardiac remodeling. In this study, the regulatory effect of IL-12p40 knockout (KO) on cardiac remodeling was investigated, and the underlying mechanism was explored. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) to establish a model of cardiac remodeling. First, IL-12p40 was deleted to observe its effects on cardiac remodeling and cardiac inflammation, and the results showed that IL-12p40 deletion reduced both T helper 17 (Th17) and γδT17 cell differentiation, decreased proinflammatory macrophage differentiation, alleviated cardiac remodeling, and relieved cardiac dysfunction in TAC mice. Next, we explored whether IL-17 regulated TAC-induced cardiac remodeling, and the results showed that IL-17 neutralization alleviated proinflammatory macrophage differentiation and cardiac remodeling in IL-12p40 knockout mice and WT mice. Neutralization with cluster of differentiation 4 receptor (CD4) and γδ T-cell receptor (γδTCR) antibodies inhibited pro-inflammatory macrophage polarization and improved cardiac remodeling, and CD4 neutralizing antibody (NAb) had more significant effects. Finally, adoptive transfer of Th17 cells aggravated proinflammatory macrophage differentiation and cardiac remodeling in TAC-treated CD4 KO mice, while neutralization with the IL-12p40 antibody alleviated these pathological changes. CONCLUSION: Mainly Th17 cells but not γδT17 cells secrete IL-17, which mediates IL-12p40, promotes the polarization of proinflammatory macrophages, and exacerbates cardiac remodeling in TAC mice. IL-12p40 may be a potential target for the prevention and treatment of cardiac remodeling.


Subject(s)
Cell Differentiation , Interleukin-12 Subunit p40 , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells , Ventricular Remodeling , Animals , Male , Mice , Cell Polarity/drug effects , Gene Deletion , Interleukin-12 Subunit p40/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-17/metabolism , Macrophages/immunology , Macrophages/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...