Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(2): 575-584, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27895119

ABSTRACT

Biased agonism at G protein-coupled receptors constitutes a promising area of research for the identification of new therapeutic molecules. In this study we identified two novel biased ligands for the chemokine receptors CCR2 and CCR5 and characterized their functional properties. We showed that J113863 and its enantiomer UCB35625, initially identified as high affinity antagonists for CCR1 and CCR3, also bind with low affinity to the closely related receptors CCR2 and CCR5. Binding of J113863 and UCB35625 to CCR2 or CCR5 resulted in the full or partial activation of the three Gi proteins and the two Go isoforms. Unlike chemokines, the compounds did not activate G12 Binding of J113863 to CCR2 or CCR5 also induced the recruitment of ß-arrestin 2, whereas UCB35625 did not. UCB35625 induced the chemotaxis of L1.2 cells expressing CCR2 or CCR5. In contrast, J113863 induced the migration of L1.2-CCR2 cells but antagonized the chemokine-induced migration of L1.2-CCR5 cells. We also showed that replacing the phenylalanine 3.33 in CCR5 TM3 by the corresponding histidine of CCR2 converts J113863 from an antagonist for cell migration and a partial agonist in other assays to a full agonist in all assays. Further analyses indicated that F3.33H substitution strongly increased the activation of G proteins and ß-arrestin 2 by J113863. These results highlight the biased nature of the J113863 and UCB35625 that act either as antagonist, partial agonist, or full agonist according to the receptor, the enantiomer, and the signaling pathway investigated.


Subject(s)
Cell Movement/drug effects , Receptors, CCR2/metabolism , Receptors, CCR5/metabolism , Signal Transduction/drug effects , Xanthenes/pharmacology , Amino Acid Substitution , Animals , CHO Cells , Cricetinae , Cricetulus , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Mutation, Missense , Protein Binding/drug effects , Receptors, CCR2/agonists , Receptors, CCR2/chemistry , Receptors, CCR2/genetics , Receptors, CCR5/agonists , Receptors, CCR5/chemistry , Receptors, CCR5/genetics , Xanthenes/chemistry , beta-Arrestin 2/chemistry , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism
2.
Eur J Immunol ; 46(3): 634-46, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26631626

ABSTRACT

The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1ß isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all encoding CCR2 agonists. CN inhibitors block the CCR2-dependent recruitment of inflammatory monocytes (IM) to the peritoneal cavities of S. cerevisiae infected mice. In myeloid cells, NFATc1/ß proteins represent the most prominent NFATc1 isoforms. NFATc1/ß ablation leads to a decrease of CCR2 chemokines, impaired mobilization of IMs, and delayed clearance of infection. We show that, upon binding to a composite NFAT/BCL6 regulatory element within the Ccl2 promoter, NFATc1/ß proteins release the BCL6-dependent repression of Ccl2 gene in macrophages. These findings suggest a novel CN-dependent cross-talk between NFAT and BCL6 transcription factors, which may affect the outcome of opportunistic fungal infections in immunocompromised patients.


Subject(s)
Macrophages, Peritoneal/metabolism , NFATC Transcription Factors/immunology , NFATC Transcription Factors/physiology , Proto-Oncogene Proteins c-bcl-6/metabolism , Receptors, CCR2/agonists , Receptors, CCR2/immunology , Saccharomyces cerevisiae/immunology , Animals , Calcineurin/metabolism , Calcineurin Inhibitors , Chemokine CCL2/genetics , Chemokine CCL7/genetics , Macrophages, Peritoneal/microbiology , Mice , Monocyte Chemoattractant Proteins/genetics , Monocytes/immunology , NF-kappa B/metabolism , NFATC Transcription Factors/deficiency , NFATC Transcription Factors/genetics , Opportunistic Infections/immunology , Opportunistic Infections/virology , Promoter Regions, Genetic , Protein Isoforms , Protein Transport , Proto-Oncogene Proteins c-bcl-6/genetics
3.
J Neurosci ; 35(2): 748-60, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25589768

ABSTRACT

Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. Following injury, there is uncertainty regarding the role that accumulating CCR2(+) macrophages play in the injury-induced neuroinflammatory sequelae and cognitive dysfunction. Using CX3CR1(GFP/+)CCR2(RFP/+) reporter mice, we show that TBI initiated a temporally restricted accumulation of peripherally derived CCR2(+) macrophages, which were concentrated in the hippocampal formation, a region necessary for learning and memory. Multivariate analysis delineated CCR2(+) macrophages' neuroinflammatory response while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2(+) macrophages with CCX872, a novel Phase I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2(+) subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI.


Subject(s)
Brain Injuries/drug therapy , Cognition , Macrophage Activation , Macrophages/drug effects , Receptors, CCR2/agonists , Animals , CX3C Chemokine Receptor 1 , Female , Hippocampus/cytology , Hippocampus/physiopathology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism
4.
Mol Pharmacol ; 84(4): 551-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23877010

ABSTRACT

The chemokine receptor CCR2 is a G protein-coupled receptor that is activated primarily by the endogenous CC chemokine ligand 2 (CCL2). Many different small-molecule antagonists have been developed to inhibit this receptor, as it is involved in a variety of diseases characterized by chronic inflammation. Unfortunately, all these antagonists lack clinical efficacy, and therefore a better understanding of their mechanism of action is warranted. In this study, we examined the pharmacological properties of small-molecule CCR2 antagonists in radioligand binding and functional assays. Six structurally different antagonists were selected for this study, all of which displaced the endogenous agonist (125)I-CCL2 from CCR2 with nanomolar affinity. Two of these antagonists, INCB3344 [N-(2-(((3S,4S)-1-((1r,4S)-4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxycyclohexyl)-4-ethoxypyrrolidin-3-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide] and CCR2-RA, were radiolabeled to study the binding site in greater detail. We discovered that [(3)H]INCB3344 and [(3)H]CCR2-RA bind to distinct binding sites at CCR2, the latter being the first allosteric radioligand for CCR2. Besides the binding properties of the antagonists, we examined CCR2 inhibition in multiple functional assays, including a novel label-free whole-cell assay. INCB3344 competitively inhibited CCL2-induced G protein activation, whereas CCR2-RA showed a noncompetitive or allosteric mode of inhibition. These findings demonstrated that the CCR2 antagonists examined in this study can be classified into two groups with different binding sites and thereby different modes of inhibition. We have provided further insights in CCR2 antagonism, and these insights are important for the development of novel CCR2 inhibitors.


Subject(s)
Pyrrolidines/metabolism , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Binding Sites/physiology , Cell Line , Chemokine CCL2/metabolism , Chemokine CCL2/pharmacology , Chemokines/metabolism , Chemokines/pharmacology , Humans , Protein Binding/physiology , Pyrrolidines/pharmacology , Receptors, CCR2/agonists
5.
Bioorg Med Chem Lett ; 21(9): 2626-30, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21315584

ABSTRACT

We describe the systematic optimization, focused on the improvement of CV-TI, of a series of CCR2 antagonists. This work resulted in the identification of 10 (((1S,3R)-1-isopropyl-3-((3S,4S)-3-methoxy-tetrahydro-2H-pyran-4-ylamino)cyclopentyl)(4-(5-(trifluoromethyl)pyridazin-3-yl)piperazin-1-yl)methanone) which possessed a low projected human dose 35-45mg BID and a CV-TI=3800-fold.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Models, Molecular , Piperazines/chemistry , Piperazines/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Receptors, CCR2/agonists , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Biological Assay , Humans , Inhibitory Concentration 50 , Microsomes/drug effects , Microsomes/metabolism , Molecular Structure , Piperazines/pharmacokinetics , Protein Binding/drug effects , Pyridazines/pharmacokinetics , Receptors, CCR2/blood , Structure-Activity Relationship
6.
BMC Biol ; 7: 87, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20017911

ABSTRACT

BACKGROUND: Obesity is a chronic low inflammatory state. In the obesity condition the white adipose tissue (WAT) is massively infiltrated with monocytes/macrophages, and the nature of the signals recruiting these inflammatory cells has yet to be fully elucidated. Haptoglobin (Hp) is an inflammatory marker and its expression is induced in the WAT of obese subjects. In an effort to elucidate the biological significance of Hp presence in the WAT and of its upregulation in obesity we formulated the hypothesis that Hp may serve as a macrophage chemoattractant. RESULTS: We demonstrated by chemotaxis assay that Hp is able to attract chemokine (C-C motif) receptor 2 (CCR2)-transfected pre-B lymphocytes and monocytes in a dose-dependent manner. Moreover, Hp-mediated migration of monocytes is impaired by CCR2-specific inhibition or previous cell exposure to monocyte chemoattractant protein 1 (MCP1) (also known as CCR2 ligand or chemokine (C-C motif) ligand 2 (CCL2)). Downstream effects of Hp/CCR2 interaction were also investigated: flow cytometry proved that monocytes treated with Hp show reduced CCR2 expression on their surface; Hp interaction induces calcium release that is reduced upon pretreatment with CCR2 antagonist; extracellular signal-regulated kinase (ERK)1/2, a signal transducer activated by CCR2, is phosphorylated following Hp treatment and this phosphorylation is reduced when cells are pretreated with a specific CCR2 inhibitor. Consistently, blocking the ERK1/2 pathway with U0126, the selective inhibitor of the ERK upstream mitogen-activated protein (MAP)-ERK kinase (MEK), results in a dramatic reduction (by almost 100%) of the capability of Hp to induce monocyte migration. CONCLUSIONS: Our data show that Hp is a novel monocyte chemoattractant and that its chemotactic potential is mediated, at least in part. by its interaction with CCR2.


Subject(s)
Chemotaxis/physiology , Haptoglobins/metabolism , Monocytes/physiology , Receptors, CCR2/metabolism , Adult , B-Lymphocytes/drug effects , B-Lymphocytes/physiology , Butadienes/pharmacology , Calcium/metabolism , Cell Line , Cell Membrane/drug effects , Cell Membrane/physiology , Cell Movement/drug effects , Cell Movement/physiology , Chemokine CCL2/metabolism , Chemotaxis/drug effects , Enzyme Inhibitors/pharmacology , Humans , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Monocytes/drug effects , Nitriles/pharmacology , Phosphorylation/drug effects , Receptors, CCR2/agonists , Receptors, CCR2/antagonists & inhibitors , U937 Cells , Young Adult
7.
Eur J Immunol ; 39(4): 1118-28, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19291700

ABSTRACT

The migration of monocytes to sites of inflammation is largely determined by their response to chemokines. Although the chemokine specificities and expression patterns of chemokine receptors are well defined, it is still a matter of debate how cells integrate the messages provided by different chemokines that are concomitantly produced in physiological or pathological situations in vivo. We present evidence for one regulatory mechanism of human monocyte trafficking. Monocytes can integrate stimuli provided by inflammatory chemokines in the presence of homeostatic chemokines. In particular, migration and cell responses could occur at much lower concentrations of the CCR2 agonists, in the presence of chemokines (CCL19 and CCL21) that per se do not act on monocytes. Binding studies on CCR2(+) cells showed that CCL19 and CCL21 do not compete with the CCR2 agonist CCL2. Furthermore, the presence of CCL19 or CCL21 could influence the degradation of CCL2 and CCL7 on cells expressing the decoy receptor D6. These findings disclose a new scenario to further comprehend the complexity of chemokine-based monocyte trafficking in a vast variety of human inflammatory disorders.


Subject(s)
Cell Movement/immunology , Chemotaxis, Leukocyte/immunology , Inflammation/immunology , Monocytes/immunology , Receptors, CCR2/immunology , Receptors, CCR7/immunology , Amino Acid Sequence , Cell Movement/drug effects , Chemokine CCL19/chemistry , Chemokine CCL19/immunology , Chemokine CCL19/pharmacology , Chemokine CCL2/immunology , Chemokine CCL2/pharmacology , Chemokine CCL21/chemistry , Chemokine CCL21/immunology , Chemokine CCL21/pharmacology , Chemokine CCL7/immunology , Chemokine CCL7/pharmacology , Chemotaxis, Leukocyte/drug effects , Extracellular Signal-Regulated MAP Kinases/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycosaminoglycans/immunology , Glycosaminoglycans/metabolism , Humans , Inflammation/metabolism , Ligands , Molecular Sequence Data , Monocytes/drug effects , Monocytes/metabolism , Phosphorylation/immunology , Protein Structure, Tertiary , Receptors, CCR10/immunology , Receptors, CCR10/metabolism , Receptors, CCR2/agonists , Receptors, CCR2/chemistry , Receptors, CCR7/agonists , Receptors, CCR7/chemistry , Chemokine Receptor D6
8.
Allergy ; 63(10): 1317-23, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18782110

ABSTRACT

BACKGROUND: Modulation of leukocyte recruitment through blocking of chemokine receptors has been proposed as an attractive therapeutic strategy. We have previously demonstrated that n-Nonanoyl-CC chemokine ligand 14 (NNY-CCL14), a modified analog of the naturally occurring chemokine CCL14(9-74) internalizes and desensitizes human CCR3 resulting in the inactivation of eosinophils. However, inhibitory effects of NNY-CCL14 in murine models of allergic airway inflammation are assigned to its interaction with CCR1 and CCR5. AIM OF THE STUDY: As CCL2 and its receptor CCR2 have been shown to play important roles in the development of Th2 inflammation, we further evaluated the effects of NNY-CCL14 treatment on CCL2-mediated activation of CCR2. METHODS: Effects of NNY-CCL14 treatment were studied on cell lines transfected with human CCR2 and primary leukocytes. Functional effects were assessed by calcium efflux assays, flow cytometry and chemotaxis. RESULTS: Prestimulation with NNY-CCL14 desensitized CCR2-mediated responses to further stimulation with its selective ligand CCL2. No significant internalization of CCR2 was observed when the cells were stimulated with NNY-CCL14, even at concentrations eliciting maximal [Ca(2+)]i mobilization. Above all, NNY-CCL14 pretreatment blocked CCL2-induced chemotaxis of monocytes. CONCLUSIONS: This study demonstrates that NNY-CCL14 is a partial agonist of CCR2, inhibiting responses of monocytes to the CCR2-selective ligand CCL2. NNY-CCL14 attenuates CCR2-mediated responses by rapidly desensitizing the receptor and preventing chemotaxis, although it is able to induce calcium mobilization but does not lead to CCR2 internalization. Hence this study provides further insights into the possible mechanisms of action of NNY-CCL14, which interacts with multiple chemokine receptors inhibiting the migration and activation of different cell populations involved, thus acting as a potential therapeutic compound to alleviate allergic inflammation.


Subject(s)
Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Chemokine CCL11/therapeutic use , Chemokines, CC/therapeutic use , Inflammation Mediators/therapeutic use , Receptors, CCR2/agonists , Respiratory Hypersensitivity/drug therapy , Animals , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , Cell Migration Inhibition/drug effects , Cells, Cultured , Chemokine CCL11/chemistry , Chemokine CCL11/physiology , Chemokines, CC/chemistry , Chemokines, CC/physiology , Humans , Inflammation Mediators/physiology , Mice , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/biosynthesis , Respiratory Hypersensitivity/pathology
9.
J Leukoc Biol ; 84(4): 1202-12, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18586982

ABSTRACT

IL-17-producing Th cells (Th17) are a distinct subset of effector cells that bridge the innate and adaptive immune system and are implicated in autoimmune disease processes. CD4(+) splenocytes from DO11.10 mice were activated with OVA peptide(323-339) and maintained under Th17 polarization conditions, resulting in significantly higher proportions of IL-17(+) T cells compared with nonpolarized (Th0) cells. Th17-polarizing conditions significantly increased the proportion of cells expressing the chemokine receptors CCR2, CCR6, and CCR9 when compared with Th0 cells. In contrast, there was a significant decrease in the proportion of cells expressing CXCR3 under Th17-polarizing conditions compared with nonpolarizing conditions. The respective chemokine agonists for CCR2 (CCL2 and CCL12), CCR6 (CCL20), and CCR9 (CCL25) elicited migration and PI-3K-dependent signaling events in Th17-polarized cells, thus indicating that all three receptors were functionally and biochemically responsive. Furthermore, postmigration phenotypic analysis demonstrated that the agonists for CCR2 and CCR6, but not CCR9, stimulated a modest enrichment of IL-17(+) cells compared with the premigration population. Pan-isoform inhibitors of PI-3K/Akt signaling prevented CCR2- and CCR6-mediated, polarized Th17 cell migration in a concentration-dependent manner. The unique chemokine receptor expression pattern of Th17 cells and their corresponding PI-3K-dependent migratory responses are important for understanding the pathogenesis of autoimmune diseases and may provide opportunities for the application of CCR2 and CCR6 antagonists and PI-3K isoform-selective inhibitors in defined inflammatory settings.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CCR2/physiology , Receptors, CCR6/physiology , T-Lymphocytes, Helper-Inducer/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Cell Movement , Cell Separation , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases/immunology , Receptors, CCR2/agonists , Receptors, CCR6/agonists , Receptors, Chemokine/genetics , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Helper-Inducer/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...