Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.735
Filter
1.
Front Immunol ; 15: 1345381, 2024.
Article in English | MEDLINE | ID: mdl-38736890

ABSTRACT

Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4ß7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-ß, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-ß receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.


Subject(s)
Chemokines , Sjogren's Syndrome , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Humans , Chemokines/metabolism , Chemokines/immunology , Signal Transduction , Animals , Receptors, Lymphocyte Homing/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Chemokine/metabolism , Receptors, Chemokine/immunology
2.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38782603

ABSTRACT

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Subject(s)
Chemotaxis , Monocytes , Receptors, Chemokine , Receptors, Vasopressin , Humans , Monocytes/metabolism , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , THP-1 Cells , Protein Multimerization , HEK293 Cells , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , CRISPR-Cas Systems , Signal Transduction , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-1/genetics , Ligands
3.
Int Immunopharmacol ; 134: 112172, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38703566

ABSTRACT

BACKGROUND: The clinical significance and comprehensive characteristics of chemokines and chemokine receptors in colorectal cancer (CRC) have not been previously reported. Our study aims to investigate the expression profiles of chemokines and chemokine receptors, as well as establish subtypes in CRC. METHODS: 1009 CRC samples were enrolled in our study. Consensus unsupervised clustering analysis was conducted to establish subtypes, and a risk score model was developed using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses. 36 pairs of tissue specimens of CRC patients and two CRC cell lines were used to validate the subtypes and risk score in vitro. Quantitative real-time PCR and western blotting were employed to validate mRNA and protein expression levels, respectively. Flow cytometry was utilized for analyzing cell apoptosis, while cell viability assay and EdU assay were conducted to assess cell proliferation ability. RESULTS: The Cluster B group shares similarities with the low-risk group in terms of exhibiting a higher level of immune cell infiltration and belonging to hot tumor. Patients CRC in the Cluster B group demonstrate a more favorable prognosis and exhibit better response to immunotherapy and chemotherapy. On the other hand, the Cluster A group resembles the high-risk group as it displays lower levels of immune cell infiltration, indicating a cold tumor phenotype. CRC patients in the Cluster A group have poorer prognoses and show less therapeutic efficacy towards immunotherapy and chemotherapy. Furthermore, we utilized a total of 36 pairs of tissue samples obtained from patients with CRC, along with two CRC cell lines for validation in vitro. This comprehensive approach further enhances the scientific validity and reliability of the identified subtypes and risk score in their ability to predict prognosis, response to immunotherapy, and response to chemotherapy among CRC patients. CONCLUSION: We first established robust prognostic subtypes based on chemokines and chemokine receptors, which could potentially serve as a novel biomarker for guiding individualized treatment in patients with CRC undergoing immunotherapy and chemotherapy.


Subject(s)
Chemokines , Colorectal Neoplasms , Immunotherapy , Receptors, Chemokine , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy , Immunotherapy/methods , Prognosis , Female , Male , Chemokines/metabolism , Chemokines/genetics , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Middle Aged , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Aged , Gene Expression Regulation, Neoplastic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects
4.
Medicine (Baltimore) ; 103(16): e37803, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640336

ABSTRACT

An increase in CD4+ T cells in the synovium is closely linked to the pathogenesis of rheumatoid arthritis (RA). We aimed to identify the possible causes of the elevated CD4+ T cell levels and to explore the factors influencing disease activity in RA. Fifty-five RA patients, including 28 with active RA (ARA), 27 with inactive RA, and 22 healthy controls, were recruited for this study. The proportion of CCR9+CD4+ T cells and the expression of chemokine receptor 9 (CCR9) on CD4+ T cells were analyzed by flow cytometry. Enzyme-linked immunosorbent assay and chemiluminescent immunoassay were used to evaluate interleukin (IL)-17A and IL-6 levels, respectively. The proportion of CCR9+CD4+ T cells and the expression of CCR9 on CD4+ T cells increased significantly in peripheral blood (PB) and synovial fluid (SF) in ARA compared to those in inactive RA. Furthermore, SF contained more CCR9+CD4+ T cells, IL-6, and IL-17A than PB in RA patients. Moreover, CD4+ T cells in the PB of patients with RA, especially ARA, expressed more CCR9 and secreted more IL-6 and IL-17A after activation. Here, we also demonstrated that both the percentage of CCR9+ cells in CD4+ T cells and the expression of CCR9 on circulating CD4+ T cells were positively correlated with erythrocyte sedimentation rate, hypersensitive C-reactive protein, rheumatoid factor, and anti-cyclic citrullinated peptide antibody. CCR9+CD4+ T cells are elevated in PB and SF, and are associated with disease activity in patients with RA.


Subject(s)
Arthritis, Rheumatoid , CD4-Positive T-Lymphocytes , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Receptors, Chemokine/metabolism , Synovial Fluid
5.
PLoS Negl Trop Dis ; 18(4): e0012112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669292

ABSTRACT

Visceral leishmaniasis (VL) is a potentially fatal parasitic infection caused by Leishmania donovani in India. L. donovani is an obligate intracellular protozoan residing mostly in macrophages of the reticuloendothelial system throughout chronic infection. Monocytic phagocytes are critical in the pathogenesis of different forms of leishmaniasis. Subsets of monocytes are distinguished by their surface markers into CD14+CD16- classical monocytes, CD14+CD16+ intermediate monocytes, and CD16++CD14low non-classical monocyte subsets. During cutaneous leishmaniasis (CL), intermediate monocyte are reported to be a source of inflammatory cytokines IL-1ß and TNF, and they express CCR2 attracting them to sites of inflammatory pathology. We examined monocyte subsets in the blood and bone marrow of patients with VL from an endemic site in Bihar, India, and found these contrasted with the roles of monocytes in CL. During VL, intermediate and non-classical CD16+ monocyte subsets expressed instead a non-inflammatory phenotype with low CCR2, high CX3CR1 and low microbicidal oxidant generation, making them more similar to patrolling monocytes than inflammatory cells. Bone marrow CD16+ monocyte subsets expressed a phenotype that might be more similar to the inflammatory subsets of CL, although our inability to obtain bone marrow from healthy donors in the endemic region hampered this interpretation Overall the data suggest that CD16+ intermediate monocyte subsets in VL patients express a phenotypes that contributes to an immunosuppressed pathologic immune state, but in contrast to CL, these do not mediate localized inflammatory responses.


Subject(s)
Bone Marrow , Leishmaniasis, Visceral , Monocytes , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Humans , Monocytes/immunology , India , Adult , Male , Bone Marrow/parasitology , Female , Receptors, IgG/analysis , Receptors, IgG/metabolism , Leishmania donovani/immunology , Leishmania donovani/physiology , Young Adult , Adolescent , Receptors, CCR2/metabolism , Middle Aged , Child , Receptors, Chemokine/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cytokines/metabolism
6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673909

ABSTRACT

Recruitment and accumulation of reactive astrocytes around senile plaques are common pathological features of Alzheimer's disease (AD), with unclear mechanisms. Chemerin, an adipokine implicated in neuroinflammation, acts through its receptor, chemokine-like receptor 1 (CMKLR1), which also functions as a receptor for amyloid ß (Aß). The impact of the chemerin/CMKLR1 axis on astrocyte migration towards Aß plaques is unknown. Here we investigated the effect of CMKLR1 on astrocyte migration around Aß deposition in APP/PS1 mice with Cmklr1 knockout (APP/PS1-Cmklr1-/-). CMKLR1-expressed astrocytes were upregulated in the cortices and hippocampi of 9-month-old APP/PS1 mice. Chemerin mainly co-localized with neurons, and its expression was reduced in the brains of APP/PS1 mice, compared to WT mice. CMKLR1 deficiency decreased astrocyte colocalization with Aß plaques in APP/PS1-Cmklr1-/- mice, compared to APP/PS1 mice. Activation of the chemerin/CMKLR1 axis promoted the migration of primary cultured astrocytes and U251 cells, and reduced astrocyte clustering induced by Aß42. Mechanistic studies revealed that chemerin/CMKLR1 activation induced STING phosphorylation. Deletion of STING attenuated the promotion of the chemerin/CMKLR1 axis relative to astrocyte migration and abolished the inhibitory effect of chemerin on Aß42-induced astrocyte clustering. These findings suggest the involvement of the chemerin/CMKLR1/STING pathway in the regulation of astrocyte migration and recruitment to Aß plaques/Aß42.


Subject(s)
Alzheimer Disease , Astrocytes , Chemokines , Intercellular Signaling Peptides and Proteins , Plaque, Amyloid , Receptors, Chemokine , Animals , Astrocytes/metabolism , Chemokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mice , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Amyloid beta-Peptides/metabolism , Mice, Knockout , Cell Movement , Signal Transduction , Mice, Transgenic , Mice, Inbred C57BL
7.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629806

ABSTRACT

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Subject(s)
CX3C Chemokine Receptor 1 , Colon , Enterococcus faecalis , Macrophages , Receptors, CCR2 , Receptors, Chemokine , Animals , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Macrophages/microbiology , Macrophages/immunology , Mice , Colon/microbiology , Colon/immunology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Mice, Inbred C57BL , Lymph Nodes/microbiology , Lymph Nodes/immunology , Receptors, CCR7/metabolism , Receptors, CCR7/genetics
8.
Reprod Toxicol ; 126: 108599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679149

ABSTRACT

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.


Subject(s)
Aflatoxin B1 , Autism Spectrum Disorder , Brain , Disease Models, Animal , Spleen , Animals , Autism Spectrum Disorder/chemically induced , Aflatoxin B1/toxicity , Brain/metabolism , Brain/drug effects , Spleen/drug effects , Spleen/metabolism , Male , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Mice , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism
9.
Dig Dis Sci ; 69(5): 1562-1570, 2024 May.
Article in English | MEDLINE | ID: mdl-38580886

ABSTRACT

Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.


Subject(s)
Chemokines , Esophageal Neoplasms , Tumor Microenvironment , Humans , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Chemokines/metabolism , Receptors, Chemokine/metabolism , Biomarkers, Tumor/metabolism , Prognosis
10.
Int Immunopharmacol ; 133: 112047, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38631221

ABSTRACT

BACKGROUND: Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS: A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS: This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION: The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/mortality , Glioma/immunology , Glioma/metabolism , Prognosis , Brain Neoplasms/mortality , Brain Neoplasms/immunology , Biomarkers, Tumor/metabolism , Chemokines/metabolism , Receptors, Chemokine/metabolism , Receptors, CXCR4/metabolism
11.
Int J Biol Macromol ; 268(Pt 1): 131679, 2024 May.
Article in English | MEDLINE | ID: mdl-38641274

ABSTRACT

Over the past few decades, significant strides have been made in understanding the pivotal roles that chemokine networks play in tumor biology. These networks, comprising chemokines and their receptors, wield substantial influence over cancer immune regulation and therapeutic outcomes. As a result, targeting these chemokine systems has emerged as a promising avenue for cancer immunotherapy. However, therapies targeting chemokines face significant challenges in solid tumor treatment, due to the complex and fragile of the chemokine networks. A nuanced comprehension of the complicacy and functions of chemokine networks, and their impact on the tumor microenvironment, is essential for optimizing their therapeutic utility in oncology. This review elucidates the ways in which chemokine networks interact with cancer immunity and tumorigenesis. We particularly elaborate on recent innovations in manipulating these networks for cancer treatment. The review also highlights future challenges and explores potential biomaterial strategies for clinical applications.


Subject(s)
Chemokines , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Chemokines/metabolism , Animals , Immunotherapy/methods , Drug Carriers/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Receptors, Chemokine/metabolism
12.
Front Immunol ; 15: 1330995, 2024.
Article in English | MEDLINE | ID: mdl-38515741

ABSTRACT

Introduction: Stress may pose a serious challenge to immune homeostasis. Stress however also may prepare the immune system for challenges such as wounding or infection, which are likely to happen during a fight or flight stress response. Methods: In common carp (Cyprinus carpio L.) we studied the stress-induced redistribution of neutrophils into circulation, and the expression of genes encoding CXC chemokines known to be involved in the regulation of neutrophil retention (CXCL12) and redistribution (CXCL8), and their receptors (CXCR4 and CXCR1-2, respectively) in blood leukocytes and in the fish hematopoietic organ - the head kidney. The potential involvement of CXC receptors and stress hormone receptors in stress-induced neutrophil redistribution was determined by an in vivo study with selective CXCR inhibitors and antagonists of the receptors involved in stress regulation: glucocorticoid/mineralocorticoid receptors (GRs/MRs), adrenergic receptors (ADRs) and the melanocortin 2 receptor (MC2R). Results: The stress-induced increase of blood neutrophils was accompanied by a neutrophil decrease in the hematopoietic organs. This increase was cortisol-induced and GR-dependent. Moreover, stress upregulated the expression of genes encoding CXCL12 and CXCL8 chemokines, their receptors, and the receptor for granulocytes colony-stimulation factor (GCSFR) and matrix metalloproteinase 9 (MMP9). Blocking of the CXCR4 and CXCR1 and 2 receptors with selective inhibitors inhibited the stress-induced neutrophil redistribution and affected the expression of genes encoding CXC chemokines and CXCRs as well as GCSFR and MMP9. Discussion: Our data demonstrate that acute stress leads to the mobilization of the immune system, characterized by neutrophilia. CXC chemokines and CXC receptors are involved in this stress-induced redistribution of neutrophils from the hematopoietic tissue into the peripheral blood. This phenomenon is directly regulated by interactions between cortisol and the GR/MR. Considering the pivotal importance of neutrophilic granulocytes in the first line of defense, this knowledge is important for aquaculture, but will also contribute to the mechanisms involved in the stress-induced perturbation in neutrophil redistribution as often observed in clinical practice.


Subject(s)
Carps , Neutrophils , Animals , Matrix Metalloproteinase 9/metabolism , Hydrocortisone/pharmacology , Hydrocortisone/metabolism , Granulocytes , Receptors, Chemokine/metabolism
13.
J Cell Mol Med ; 28(7): e18193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38506205

ABSTRACT

Colorectal cancer (CRC) liver metastasis, albeit a stage-IV disease, is completely curable by surgical resection in selected patients. In addressing the molecular basics of this phenomenon, differentially expressed genes at primary and liver metastatic sites were screened by RNA sequencing with the use of paraffin-embedded surgical specimens. Chemokine C-C motif ligand 1 (CCL1), a chemotactic factor for a ligand of the chemokine C-C motif receptor 8 (CCR8), was isolated as one of the differentially expressed genes. Histological analysis revealed that the number of CCL1-positive cells, mainly tumour associated macrophages (TAMs) located in the stroma of CRC, decreased significantly at liver metastatic sites, while the expression level of CCR8 on CRC remained unchanged. To explore the biological significance of the CCL1-CCR8 axis in CRC, CCR8-positive CRC cell line Colo320DM was used to assess the effect of the CCL1-CCR8 axis on major signalling pathways, epithelial mesenchymal transition induction and cell motility. Upon stimulation of recombinant CCL1 (rCCL1), phosphorylation of AKT was observed in Colo320DM cells; on the other hand, the corresponding significant increase in MMP-2 levels demonstrated by RT-qPCR was nullified by siRNA (siCCR8). In the scratch test, rCCL1 treatment significantly increased the motility of Colo320DM cells, which was similarly nullified by siCCR8. Thus, the activation of the CCL1-CCR8 axis is a positive regulator of CRC tumour progression. Reduced CCL1 expression of TAMs at liver metastatic sites may partly explain the unique slow tumour progression of CRC, thus providing for a grace period for radical resection of metastatic lesions.


Subject(s)
Colorectal Neoplasms , Liver , Humans , Chemokine CCL1 , Ligands , Liver/metabolism , Chemokines , Receptors, Chemokine/metabolism , Colorectal Neoplasms/genetics
14.
Cell Mol Immunol ; 21(6): 533-545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532043

ABSTRACT

The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.


Subject(s)
Chemokines , Immunity, Innate , Intercellular Signaling Peptides and Proteins , Keratinocytes , Receptors, Chemokine , Staphylococcus aureus , Animals , Keratinocytes/immunology , Keratinocytes/metabolism , Staphylococcus aureus/immunology , Chemokines/metabolism , Receptors, Chemokine/metabolism , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Humans , Signal Transduction , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/pathology , Staphylococcal Infections/immunology , Neutrophils/immunology , Neutrophils/metabolism , Skin/immunology , Skin/pathology , Skin/microbiology , Mice, Knockout
15.
Cells ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474365

ABSTRACT

Obesity is associated with low-grade chronic inflammation and impaired glucose metabolism, both of which are detrimental to wound healing. C-C motif chemokine receptor 2 (CCR2) plays an important role in cell recruitment during healing, and our recent studies revealed the significance of CCR2-CCL2 signaling in promoting the proliferation of pro-inflammatory monocytes/macrophages in wounds. Therefore, we sought to determine whether diet-induced obesity increases monocyte/macrophage proliferation and their accumulation in skin wounds. We first confirmed that wound closure was delayed in obese CCR2RFP/+ mice fed with a high-fat diet (HFD) compared to mice fed with a normal diet (ND). Using in vivo imaging and flow cytometry analysis, we found that HFD mice had significantly increased accumulation of CCR2+ monocytes/macrophages, particularly pro-inflammatory CCR2+Ly6C+ cells in wounds compared to their ND counterparts. Importantly, HFD mice exhibited an increased proliferation of wound CCR2+Ly6C+ compared to ND mice. Together, our data suggest that obesity leads to an increased proliferation and accumulation of pro-inflammatory CCR2+Ly6C+ monocytes/macrophages in skin wounds, which may contribute to delayed healing.


Subject(s)
Macrophages , Monocytes , Mice , Animals , Monocytes/metabolism , Macrophages/metabolism , Obesity/metabolism , Diet, High-Fat , Receptors, Chemokine/metabolism , Wound Healing , Cell Proliferation
16.
Environ Sci Technol ; 58(11): 4914-4925, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38436231

ABSTRACT

Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aß deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.


Subject(s)
Neuroinflammatory Diseases , Olfactory Bulb , Mice , Animals , Olfactory Bulb/metabolism , Particulate Matter/toxicity , Signal Transduction , Receptors, Chemokine/metabolism , NF-kappa B/metabolism , NF-kappa B/pharmacology
17.
Medicine (Baltimore) ; 103(11): e37484, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489730

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent types of malignant tumors. It's vital to explore new biomarkers and potential therapeutic targets in CRC lung metastasis through adopting integrated bioinformatics tools. Multiple cohort datasets and databases were integrated to clarify and verify potential key candidate biomarkers and signal transduction pathways in CRC lung metastasis. DAVID, STRING, UALCAN, GEPIA, TIMER, cBioPortal, THE HUMAN PROTEIN ATLAS, GSEA 4.3.2, FUNRICH 3.1.3, and R 4.2.3 were utilized in this study. The enriched biological processes and pathways modulated by the differentially expressed genes (DEGs) were determined with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes. The search tool Retrieval of Interacting Genes and Cytoscape were used to construct a protein-protein interaction network among DEGs. Four hundred fifty-nine colorectal primary cancer and lung metastatic gene expression profiles were screened from 3 gene expression profiles (GSE41258, GSE68468, and GSE41568). Forty-one upregulated genes and 8 downregulated genes were identified from these 3 gene expression profiles and verified by the transcriptional levels of hub genes in other GEO datasets and The Cancer Genome Atlas database. Two pathways (immune responses and chemokine receptors bind chemokines), 13 key DEGs, 6 hub genes (MMP3, SFTPD, ABCA3, CLU, APOE, and SPP1), and 2 biomarkers (APOE, SPP1) with significantly prognostic values were screened. Forty-nine DEGs were identified as potential candidate diagnostic biomarkers for patients with CRC lung metastasis in present study. Enrichment analysis indicated that immune responses and chemokine receptors bind chemokines may play a leading role in lung metastasis of CRC, and further studies are needed to validate these findings.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Humans , Prognosis , Gene Expression Profiling , Biomarkers , Lung Neoplasms/genetics , Colorectal Neoplasms/genetics , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Chemokines/metabolism , Apolipoproteins E/genetics , Computational Biology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic
18.
Sci Adv ; 10(5): eadj7500, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306437

ABSTRACT

The human CC chemokine receptor 8 (CCR8) is an emerging therapeutic target for cancer immunotherapy and autoimmune diseases. Understanding the molecular recognition of CCR8, particularly with nonpeptide ligands, is valuable for drug development. Here, we report three cryo-electron microscopy structures of human CCR8 complexed with Gi trimers in the ligand-free state or activated by nonpeptide agonists LMD-009 and ZK 756326. A conserved Y1.39Y3.32E7.39 motif in the orthosteric binding pocket is shown to play a crucial role in the chemokine and nonpeptide ligand recognition. Structural and functional analyses indicate that the lack of conservation in Y1143.33 and Y1724.64 among the CC chemokine receptors could potentially contribute to the selectivity of the nonpeptide ligand binding to CCR8. These findings present the characterization of the molecular interaction between a nonpeptide agonist and a chemokine receptor, aiding the development of therapeutics targeting related diseases through a structure-based approach.


Subject(s)
Chemokines, CC , Receptors, CCR8 , Humans , Cryoelectron Microscopy , Ligands , Receptors, CCR8/chemistry , Receptors, CCR8/metabolism , Receptors, Chemokine/metabolism
19.
Bioorg Chem ; 145: 107181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354503

ABSTRACT

The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.


Subject(s)
Chemokines, CC , Receptors, Chemokine , Humans , Chemokines, CC/metabolism , Chemokine CCL1/metabolism , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Amides , Receptors, CCR8 , Sulfonamides/pharmacology , Naphthalenes/pharmacology
20.
Eur J Pharmacol ; 967: 176357, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309677

ABSTRACT

The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.


Subject(s)
Pancreatic Neoplasms , Receptors, Chemokine , Humans , Receptors, Chemokine/metabolism , Ligands , Proto-Oncogene Proteins c-akt , Chemokines/metabolism , Pancreatic Neoplasms/therapy , Carcinogenesis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...