Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.373
Filter
1.
Commun Biol ; 7(1): 685, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834758

ABSTRACT

Memory T cells demonstrate superior in vivo persistence and antitumor efficacy. However, methods for manufacturing less differentiated T cells are not yet well-established. Here, we show that producing chimeric antigen receptor (CAR)-T cells using berbamine (BBM), a natural compound found in the Chinese herbal medicine Berberis amurensis, enhances the antitumor efficacy of CAR-T cells. BBM is identified through cell-based screening of chemical compounds using induced pluripotent stem cell-derived T cells, leading to improved viability with a memory T cell phenotype. Transcriptomics and metabolomics using stem cell memory T cells reveal that BBM broadly enhances lipid metabolism. Furthermore, the addition of BBM downregulates the phosphorylation of p38 mitogen-activated protein kinase and enhanced mitochondrial respiration. CD19-CAR-T cells cultured with BBM also extend the survival of leukaemia mouse models due to their superior in vivo persistence. This technology offers a straightforward approach to enhancing the antitumor efficacy of CAR-T cells.


Subject(s)
Benzylisoquinolines , Receptors, Chimeric Antigen , Animals , Benzylisoquinolines/pharmacology , Mice , Humans , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Immunotherapy, Adoptive/methods , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Cell Culture Techniques/methods
2.
Zhonghua Nei Ke Za Zhi ; 63(6): 587-592, 2024 Jun 01.
Article in Chinese | MEDLINE | ID: mdl-38825927

ABSTRACT

Objective: To evaluate the effect of autologous hematopoietic stem cell transplantation (ASCT) on the treatment of relapsed/refractory multiple myeloma (RRMM) with chimeric antigen receptor T cell (CAR-T) therapy. Methods: A retrospective cohort study. The clinical data of 168 patients with RRMM who underwent CAR-T therapy at the Department of Hematology, Xuzhou Medical University Hospital from 3 January 2020 to 13 September 2022 were analyzed. Patients were classified into a transplantation group (TG; n=47) and non-transplantation group (NTG; n=121) based on whether or not they had undergone ASCT previously. The objective response rate (ORR), progression-free survival (PFS), overall survival (OS) and the levels of CD3, CD4, CD8, CD19, CD56 and natural killer (NK) cells before CAR-T infusion were analyzed by χ2 test, Kaplan-Meier method and independent sample t-test. Results: Among 168 patients with RRMM, 98 (58.3%) were male. The median age of onset was 57 (range 30-70) years. After CAR-T therapy, the ORR of patients was 89.3% (92/103) in the NTG and 72.9% (27/73) in the TG. The ORR of the NTG was better than that of the TG (χ2=5.71, P=0.017). After 1 year of CAR-T therapy, the ORR of the NTG was 78.1% (75/96), and that of the TG was 59.4% (19/32). The ORR of the NTG was better than that of the TG (χ2=4.32, P=0.038). The median OS and PFS in the NTG were significantly longer than those in the TG (OS, 30 vs. 20 months; PFS, 26 vs. 12 months; both P<0.05). The CD4 level before CAR-T infusion in the TG was significantly lower than that in the NTG (25.65±13.56 vs. 32.64±17.21; t=-2.15, P=0.034), and there were no significant differences in the counts of CD3, CD8, CD19, CD56, and NK cells between the TG and NTG (all P>0.05). Conclusion: Among patients suffering from RRMM who received CAR-T therapy, patients who did not receive ASCT had significantly better outcomes than those who had received ASCT previously, which may have been related to the CD4 level before receiving CAR-T therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Multiple Myeloma , Transplantation, Autologous , Humans , Multiple Myeloma/therapy , Hematopoietic Stem Cell Transplantation/methods , Male , Middle Aged , Retrospective Studies , Female , Immunotherapy, Adoptive/methods , Aged , Adult , Treatment Outcome , Receptors, Chimeric Antigen
3.
Sci Transl Med ; 16(750): eadk7640, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838132

ABSTRACT

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.


Subject(s)
Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Proto-Oncogene Proteins c-bcl-2 , Receptors, Chimeric Antigen , Sulfonamides , Humans , Animals , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Chimeric Antigen/metabolism , Sulfonamides/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Xenograft Model Antitumor Assays , Mice , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Cell Line, Tumor , Immunotherapy, Adoptive/methods , bcl-X Protein/metabolism , Peptide Fragments , Proto-Oncogene Proteins
4.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831106

ABSTRACT

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Tumor Microenvironment , Animals , Humans , Immunotherapy, Adoptive/methods , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Mice , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , Signal Transduction , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Mice, Knockout
6.
PLoS One ; 19(6): e0303057, 2024.
Article in English | MEDLINE | ID: mdl-38843256

ABSTRACT

As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20µL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.


Subject(s)
Formaldehyde , Hepatitis B Virus, Woodchuck , Receptors, Antigen, T-Cell , Humans , Hepatitis B Virus, Woodchuck/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tissue Fixation/methods , Immunotherapy, Adoptive/methods , Real-Time Polymerase Chain Reaction/methods
7.
J Hematol Oncol ; 17(1): 42, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845015

ABSTRACT

Idecabtagene vicleucel (Ide-cel) has demonstrated excellent efficacy and durable responses in patients with relapsed/refractory multiple myeloma (RRMM). However, the outcomes with ide-cel in patients with extramedullary disease (EMD) remain incompletely characterized. We included patients with RRMM treated with ide-cel between May 2021 and April 2023 across 11 US academic institutions. Visceral or soft tissue lesions non-contiguous from bone was classified as EMD. Time-to-event analyses were performed from date of ide-cel infusion. Among 351 patients, 84 (24%) had EMD prior to infusion. The median follow-up from ide-cel infusion was 18.2 months (95% CI: 17-19.3). The day 90 overall response rates (ORR) were 52% vs. 82% for the EMD and non-EMD cohorts, respectively (p < 0.001). The median progression-free survival (PFS) was 5.3 months (95% CI: 4.1-6.9) for the EMD cohort vs. 11.1 months (95% CI: 9.2-12.6; p < 0.0001) for the non-EMD cohort. In a multivariable analysis, EMD was an independent predictor of inferior PFS [hazard ratio 1.5 (1.1-2.2), p = 0.02]. The median overall survival was 14.8 months [95% CI: 9-Not reached (NR)] vs. 26.9 months (26.3 vs. NR, p = 0.006) for the EMD and non-EMD cohorts, respectively. Extramedullary disease represents an independent predictor of inferior day 90 ORR and PFS among patients treated with ide-cel.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Male , Female , Middle Aged , Aged , Adult , Aged, 80 and over , Tissue Extracts/therapeutic use , Treatment Outcome , Biological Products/therapeutic use , Retrospective Studies , Immunotherapy, Adoptive/methods , Progression-Free Survival , Receptors, Chimeric Antigen
8.
Oncoimmunology ; 13(1): 2362454, 2024.
Article in English | MEDLINE | ID: mdl-38846084

ABSTRACT

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Subject(s)
Antigens, CD20 , Immunotherapy , Lymphoma, B-Cell , Rituximab , Tetraspanins , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Antigens, CD20/genetics , Rituximab/pharmacology , Rituximab/therapeutic use , Tetraspanins/genetics , Tetraspanins/metabolism , Cell Line, Tumor , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/drug therapy , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Gene Expression Regulation, Neoplastic
9.
Front Immunol ; 15: 1369406, 2024.
Article in English | MEDLINE | ID: mdl-38835760

ABSTRACT

Epigenetic mechanisms are involved in several cellular functions, and their role in the immune system is of prime importance. Histone deacetylases (HDACs) are an important set of enzymes that regulate and catalyze the deacetylation process. HDACs have been proven beneficial targets for improving the efficacy of immunotherapies. HDAC11 is an enzyme involved in the negative regulation of T cell functions. Here, we investigated the potential of HDAC11 downregulation using RNA interference in CAR-T cells to improve immunotherapeutic outcomes against prostate cancer. We designed and tested four distinct short hairpin RNA (shRNA) sequences targeting HDAC11 to identify the most effective one for subsequent analyses. HDAC11-deficient CAR-T cells (shD-NKG2D-CAR-T) displayed better cytotoxicity than wild-type CAR-T cells against prostate cancer cell lines. This effect was attributed to enhanced activation, degranulation, and cytokine release ability of shD-NKG2D-CAR-T when co-cultured with prostate cancer cell lines. Our findings reveal that HDAC11 interference significantly enhances CAR-T cell proliferation, diminishes exhaustion markers PD-1 and TIM3, and promotes the formation of T central memory TCM populations. Further exploration into the underlying molecular mechanisms reveals increased expression of transcription factor Eomes, providing insight into the regulation of CAR-T cell differentiation. Finally, the shD-NKG2D-CAR-T cells provided efficient tumor control leading to improved survival of tumor-bearing mice in vivo as compared to their wild-type counterparts. The current study highlights the potential of HDAC11 downregulation in improving CAR-T cell therapy. The study will pave the way for further investigations focused on understanding and exploiting epigenetic mechanisms for immunotherapeutic outcomes.


Subject(s)
Histone Deacetylases , Immunotherapy, Adoptive , Prostatic Neoplasms , RNA, Small Interfering , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/immunology , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Animals , Mice , RNA, Small Interfering/genetics , Cell Line, Tumor , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Silencing , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays
10.
J Cell Mol Med ; 28(11): e18362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837666

ABSTRACT

Chimeric antigen receptor- (CAR-)modified T cells have been successfully used to treat blood cancer. With the improved research on anti-tumour adoptive cell therapy, researchers have focused on immune cells other than T lymphocytes. Natural killer (NK) cells have received widespread attention as barriers to natural immunity. Compared to T lymphocyte-related adoptive cell therapy, the use of NK cells to treat tumours does not cause graft-versus-host disease, significantly improving immunity. Moreover, NK cells have more sources than T cells, and the related modified cells are less expensive. NK cells function through several pathways in anti-tumour mechanisms. Currently, many anti-tumour clinical trials have used NK cell-related adoptive cell therapies. In this review, we have summarized the recent progress in NK cell-related adoptive cellular immunotherapy for tumour treatment and propose the current challenges faced by CAR-NK cell therapy.


Subject(s)
Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Animals
11.
Mol Cancer ; 23(1): 117, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824567

ABSTRACT

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods
12.
Oncol Res ; 32(6): 1109-1118, 2024.
Article in English | MEDLINE | ID: mdl-38827326

ABSTRACT

Background: Chimeric antigen receptor T (CAR-T) cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies. However, there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T (CAR-T) cell therapy, as well as the optimal timing for CAR-T cell infusion post-chemotherapy. Materials and Methods: We employed cell-derived tumor xenograft (CDX) murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment. Furthermore, transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen. Results: Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine, followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy, exerts the most efficacious therapeutic effect in B-cell hematological malignancies. Concurrently, RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism, primarily through the inhibition of key mitochondrial targets, such as C-Jun Kinase enzyme (C-JUN). Conclusion: In summary, the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.


Subject(s)
Antigens, CD19 , Cyclophosphamide , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Vidarabine , Xenograft Model Antitumor Assays , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Cyclophosphamide/therapeutic use , Cyclophosphamide/pharmacology , Animals , Mice , Humans , Immunotherapy, Adoptive/methods , Antigens, CD19/immunology , Receptors, Chimeric Antigen/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/drug therapy , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Combined Modality Therapy
14.
Haematologica ; 109(6): 1656-1667, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832421

ABSTRACT

Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Child , Clinical Trials as Topic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment/immunology , Animals
15.
Haematologica ; 109(6): 1677-1688, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832423

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is a new and effective treatment for patients with hematologic malignancies. Clinical responses to CAR T cells in leukemia, lymphoma, and multiple myeloma have provided strong evidence of the antitumor activity of these cells. In patients with refractory or relapsed B-cell acute lymphoblastic leukemia (ALL), the infusion of autologous anti-CD19 CAR T cells is rapidly gaining standard-of-care status and might eventually be incorporated into frontline treatment. In T-ALL, however, leukemic cells generally lack surface molecules recognized by established CAR, such as CD19 and CD22. Such deficiency is particularly important, as outcome is dismal for patients with T-ALL that is refractory to standard chemotherapy and/or hematopoietic stem cell transplant. Recently, CAR T-cell technologies directed against T-cell malignancies have been developed and are beginning to be tested clinically. The main technical obstacles stem from the fact that malignant and normal T cells share most surface antigens. Therefore, CAR T cells directed against T-ALL targets might be susceptible to self-elimination during manufacturing and/or have suboptimal activity after infusion. Moreover, removing leukemic cells that might be present in the cell source used for CAR T-cell manufacturing might be problematic. Finally, reconstitution of T cells and natural killer cells after CAR T-cell infusion might be impaired. In this article, we discuss potential targets for CAR T-cell therapy of T-ALL with an emphasis on CD7, and review CAR configurations as well as early clinical results.


Subject(s)
Immunotherapy, Adoptive , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Animals , Treatment Outcome , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
16.
Haematologica ; 109(6): 1689-1699, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832424

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a breakthrough cancer therapy over the past decade. Remarkable outcomes in B-cell lymphoproliferative disorders and multiple myeloma have been reported in both pivotal trials and real-word studies. Traditionally, the use of a patient's own (autologous) T cells to manufacture CAR products has been the standard practice. Nevertheless, this approach has some drawbacks, including manufacturing delays, dependence on the functional fitness of the patient's T cells, which can be compromised by both the disease and prior therapies, and contamination of the product with blasts. A promising alternative is offered by the development of allogeneic CAR-cell products. This approach has the potential to yield more efficient drug products and enables the use of effector cells with negligible alloreactive potential and a significant CAR-independent antitumor activity through their innate receptors (i.e., natural killer cells, γδ T cells and cytokine induced killer cells). In addition, recent advances in genome editing tools offer the potential to overcome the primary challenges associated with allogeneic CAR T-cell products, namely graft-versus-host disease and host allo-rejection, generating universal, off-the-shelf products. In this review, we summarize the current pre-clinical and clinical approaches based on allogeneic CAR T cells, as well as on alternative effector cells, which represent exciting opportunities for multivalent approaches and optimized antitumor activity.


Subject(s)
Immunotherapy, Adoptive , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Child , Transplantation, Homologous , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
17.
Front Immunol ; 15: 1380065, 2024.
Article in English | MEDLINE | ID: mdl-38726005

ABSTRACT

Introduction: Solid cancers Myeloid cells are prevalent in solid cancers, but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME), which hinders the effectiveness of cancer immunotherapies. Myeloid cells' natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers, including tumor infiltration, tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1, which is often upregulated by solid cancers to evade immune responses. Method: Here we devised an adoptive cell therapy strategy based on myeloid cells expressing a Chimeric Antigen Receptor (CAR)-like immune receptor (CARIR). The extracellular domain of CARIR is derived from the natural inhibitory receptor PD-1, while the intracellular domain(s) are derived from CD40 and/or CD3ζ. To assess the efficacy of CARIR-engineered myeloid cells, we conducted proof-of-principle experiments using co-culture and flow cytometry-based phagocytosis assays in vitro. Additionally, we employed a fully immune-competent syngeneic tumor mouse model to evaluate the strategy's effectiveness in vivo. Result: Co-culturing CARIR-expressing human monocytic THP-1 cells with PD-L1 expressing target cells lead to upregulation of the costimulatory molecule CD86 along with expression of proinflammatory cytokines TNF-1α and IL-1ß. Moreover, CARIR expression significantly enhanced phagocytosis of multiple PD-L1 expressing cancer cell lines in vitro. Similar outcomes were observed with CARIR-expressing human primary macrophages. In experiments conducted in syngeneic BALB/c mice bearing 4T1 mammary tumors, infusing murine myeloid cells that express a murine version of CARIR significantly slowed tumor growth and prolonged survival. Conclusion: Taken together, these results demonstrate that adoptive transfer of PD-1 CARIR-engineered myeloid cells represents a promising strategy for treating PD-L1 positive solid cancers.


Subject(s)
B7-H1 Antigen , Immunotherapy, Adoptive , Myeloid Cells , Receptors, Chimeric Antigen , Tumor Microenvironment , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Mice , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/therapy
18.
Front Immunol ; 15: 1389018, 2024.
Article in English | MEDLINE | ID: mdl-38720898

ABSTRACT

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Single-Domain Antibodies , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Single-Domain Antibodies/immunology , Immunotherapy, Adoptive/methods , Animals , Cell Line, Tumor , Mice , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Signaling Lymphocytic Activation Molecule Family/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
19.
J Transl Med ; 22(1): 413, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693513

ABSTRACT

Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Animals , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...