Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.741
Filter
1.
Sci Rep ; 14(1): 13146, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849434

ABSTRACT

Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous system (CNS). T helper (Th) 17 cells are involved in the pathogenesis of MS and its animal model of experimental autoimmune encephalomyelitis (EAE) by infiltrating the CNS and producing effector molecules that engage resident glial cells. Among these glial cells, astrocytes have a central role in coordinating inflammatory processes by responding to cytokines and chemokines released by Th17 cells. In this study, we examined the impact of pathogenic Th17 cells on astrocytes in vitro and in vivo. We identified that Th17 cells reprogram astrocytes by driving transcriptomic changes partly through a Janus Kinase (JAK)1-dependent mechanism, which included increased chemokines, interferon-inducible genes, and cytokine receptors. In vivo, we observed a region-specific heterogeneity in the expression of cell surface cytokine receptors on astrocytes, including those for IFN-γ, IL-1, TNF-α, IL-17, TGFß, and IL-10. Additionally, these receptors were dynamically regulated during EAE induced by adoptive transfer of myelin-reactive Th17 cells. This study overall provides evidence of Th17 cell reprogramming of astrocytes, which may drive changes in the astrocytic responsiveness to cytokines during autoimmune neuroinflammation.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Janus Kinase 1 , Myelin-Oligodendrocyte Glycoprotein , Receptors, Cytokine , Th17 Cells , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Animals , Astrocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Receptors, Cytokine/metabolism , Receptors, Cytokine/genetics , Janus Kinase 1/metabolism , Mice, Inbred C57BL , Cytokines/metabolism , Cellular Reprogramming , Female , Cells, Cultured
2.
Cells ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727293

ABSTRACT

BACKGROUND: Since cytokine receptor-like factor 1 (CRLF1) has been implicated in tissue regeneration, we hypothesized that CRLF1 released by mesenchymal stem cells can promote the repair of osteochondral defects. METHODS: The degree of a femoral osteochondral defect repair in rabbits after intra-articular injections of bone marrow-derived mesenchymal stem cells (BMSCs) that were transduced with empty adeno-associated virus (AAV) or AAV containing CRLF1 was determined by morphological, histological, and micro computer tomography (CT) analyses. The effects of CRLF1 on chondrogenic differentiation of BMSCs or catabolic events of interleukin-1beta-treated chondrocyte cell line TC28a2 were determined by alcian blue staining, gene expression levels of cartilage and catabolic marker genes using real-time PCR analysis, and immunoblot analysis of Smad2/3 and STAT3 signaling. RESULTS: Intra-articular injections of BMSCs overexpressing CRLF1 markedly improved repair of a rabbit femoral osteochondral defect. Overexpression of CRLF1 in BMSCs resulted in the release of a homodimeric CRLF1 complex that stimulated chondrogenic differentiation of BMSCs via enhancing Smad2/3 signaling, whereas the suppression of CRLF1 expression inhibited chondrogenic differentiation. In addition, CRLF1 inhibited catabolic events in TC28a2 cells cultured in an inflammatory environment, while a heterodimeric complex of CRLF1 and cardiotrophin-like Cytokine (CLC) stimulated catabolic events via STAT3 activation. CONCLUSION: A homodimeric CRLF1 complex released by BMSCs enhanced the repair of osteochondral defects via the inhibition of catabolic events in chondrocytes and the stimulation of chondrogenic differentiation of precursor cells.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Mesenchymal Stem Cells , Animals , Rabbits , Mesenchymal Stem Cells/metabolism , Chondrogenesis/genetics , Chondrocytes/metabolism , Receptors, Cytokine/metabolism , Receptors, Cytokine/genetics , Femur/pathology , Signal Transduction , Cell Line , Mesenchymal Stem Cell Transplantation
3.
Commun Biol ; 7(1): 630, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789577

ABSTRACT

Therapeutic agents targeting cytokine-cytokine receptor (CK-CKR) interactions lead to the disruption in cellular signaling and are effective in treating many diseases including tumors. However, a lack of universal and quick access to annotated structural surface regions on CK/CKR has limited the progress of a structure-driven approach in developing targeted macromolecular drugs and precision medicine therapeutics. Herein we develop CytoSIP (Single nucleotide polymorphisms (SNPs), Interface, and Phenotype), a rich internet application based on a database of atomic interactions around hotspots in experimentally determined CK/CKR structural complexes. CytoSIP contains: (1) SNPs on CK/CKR; (2) interactions involving CK/CKR domains, including CK/CKR interfaces, oligomeric interfaces, epitopes, or other drug targeting surfaces; and (3) diseases and phenotypes associated with CK/CKR or SNPs. The database framework introduces a unique tri-level SIP data model to bridge genetic variants (atomic level) to disease phenotypes (organism level) using protein structure (complexes) as an underlying framework (molecule level). Customized screening tools are implemented to retrieve relevant CK/CKR subset, which reduces the time and resources needed to interrogate large datasets involving CK/CKR surface hotspots and associated pathologies. CytoSIP portal is publicly accessible at https://CytoSIP.biocloud.top , facilitating the panoramic investigation of the context-dependent crosstalk between CK/CKR and the development of targeted therapeutic agents.


Subject(s)
Cytokines , Polymorphism, Single Nucleotide , Receptors, Cytokine , Humans , Receptors, Cytokine/metabolism , Receptors, Cytokine/chemistry , Receptors, Cytokine/genetics , Cytokines/metabolism , Cytokines/genetics , Cytokines/chemistry , Databases, Protein , Phenotype
4.
Nucleic Acids Res ; 52(8): 4409-4421, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587197

ABSTRACT

Gene fusions and their chimeric products are commonly linked with cancer. However, recent studies have found chimeric transcripts in non-cancer tissues and cell lines. Large-scale efforts to annotate structural variations have identified gene fusions capable of generating chimeric transcripts even in normal tissues. In this study, we present a bottom-up approach targeting population-specific chimeric RNAs, identifying 58 such instances in the GTEx cohort, including notable cases such as SUZ12P1-CRLF3, TFG-ADGRG7 and TRPM4-PPFIA3, which possess distinct patterns across different ancestry groups. We provide direct evidence for an additional 29 polymorphic chimeric RNAs with associated structural variants, revealing 13 novel rare structural variants. Additionally, we utilize the All of Us dataset and a large cohort of clinical samples to characterize the association of the SUZ12P1-CRLF3-causing variant with patient phenotypes. Our study showcases SUZ12P1-CRLF3 as a representative example, illustrating the identification of elusive structural variants by focusing on those producing population-specific fusion transcripts.


Subject(s)
Gene Fusion , RNA , Receptors, Cytokine , Transcription Factors , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polymorphism, Genetic , RNA/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , TRPM Cation Channels/genetics , Receptors, Cytokine/genetics , Sequence Analysis, RNA , RNA Splicing
5.
Cell Rep Med ; 5(5): 101526, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670095

ABSTRACT

The efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy is suboptimal in most cancers, necessitating further improvement in their therapeutic actions. However, enhancing antitumor T cell response inevitably confers an increased risk of cytokine release syndrome associated with monocyte-derived interleukin-6 (IL-6). Thus, an approach to simultaneously enhance therapeutic efficacy and safety is warranted. Here, we develop a chimeric cytokine receptor composed of the extracellular domains of GP130 and IL6RA linked to the transmembrane and cytoplasmic domain of IL-7R mutant that constitutively activates the JAK-STAT pathway (G6/7R or G6/7R-M452L). CAR-T cells with G6/7R efficiently absorb and degrade monocyte-derived IL-6 in vitro. The G6/7R-expressing CAR-T cells show superior expansion and persistence in vivo, resulting in durable antitumor response in both liquid and solid tumor mouse models. Our strategy can be widely applicable to CAR-T cell therapy to enhance its efficacy and safety, irrespective of the target antigen.


Subject(s)
Immunotherapy, Adoptive , Interleukin-6 , Receptors, Chimeric Antigen , T-Lymphocytes , Animals , Humans , Interleukin-6/metabolism , Interleukin-6/immunology , Immunotherapy, Adoptive/methods , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokine Receptor gp130/metabolism , Neoplasms/immunology , Neoplasms/therapy , Xenograft Model Antitumor Assays , Receptors, Cytokine/metabolism , Receptors, Cytokine/genetics , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-7/metabolism
6.
Genomics ; 116(2): 110797, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262564

ABSTRACT

BACKGROUND: Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition and the precise mechanisms underlying HTS remain elusive. This study aimed to identify and validate potential immune-related genes associated with hypertrophic scar formation. METHODS: Skin samples from normal (n = 12) and hypertrophic scar tissues (n = 12) were subjected to RNA-seq analysis. Differentially expressed genes (DEGs) and significant modular genes in Weighted gene Co-expression Network Analysis (WGCNA) were identified. Subsequently, functional enrichment analysis was performed on the intersecting genes. Additionally, eight immune-related genes were matched from the ImmPort database. Validation of NRG1 and CRLF1 was carried out using an external cohort (GSE136906). Furthermore, the association between these two genes and immune cells was assessed by Spearman correlation analysis. Finally, RNA was extracted from normal and hypertrophic scar samples, and RT-qPCR, Immunohistochemistry staining and Western Blot were employed to validate the expression of characteristic genes. RESULTS: A total of 940 DEGs were identified between HTS and normal samples, and 288 key module genes were uncovered via WGCNA. Enrichment analysis in key module revealed involvement in many immune-related pathways, such as Th17 cell differentiation, antigen processing and presentation and B cell receptor signaling pathway. The eight immune-related genes (IFI30, NR2F2, NRG1, ESM1, NFATC2, CRLF1, COLEC12 and IL6) were identified by matching from the ImmPort database. Notably, we observed that activated mast cell positively correlated with CRLF1 expression, while CD8 T cells exhibited a positive correlation with NRG1. The expression of NRG1 and CRLF1 was further validated in clinical samples. CONCLUSION: In this study, two key immune-related genes (CRLF1 and NRG1) were identified as characteristic genes associated with HTS. These findings provide valuable insights into the immune-related mechanisms underlying hypertrophic scar formation.


Subject(s)
Cicatrix, Hypertrophic , Neuregulin-1 , Receptors, Cytokine , Humans , Cell Differentiation , Cicatrix, Hypertrophic/genetics , Databases, Factual , Extracellular Matrix , Skin , Receptors, Cytokine/genetics
7.
J Clin Immunol ; 44(1): 30, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38133879

ABSTRACT

Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.


Subject(s)
Cytokine Receptor gp130 , Interleukin-11 , Job Syndrome , Humans , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Cytokines/genetics , Cytokines/metabolism , Interleukin-11/metabolism , Interleukin-6/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , STAT3 Transcription Factor/metabolism
8.
Microbiol Spectr ; 11(6): e0224723, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37882560

ABSTRACT

IMPORTANCE: Pegylated interferon alfa (PegIFNα) has limited efficacy in the treatment of chronic hepatitis B (CHB). Although many biomarkers related to hepatitis B virus (HBV) have been proposed to stratify patients, the response rate to PegIFNα is still unsatisfactory. Herein, our data suggest that the single-nucleotide polymorphism (SNP) rs10838543 in TRIM22 potentiates a positive clinical response to PegIFNα treatment in patients with hepatitis B e antigen-positive CHB by increasing the levels of IFNL1, CCL3, and CCL5. These observations can help guide treatment decisions for patients with CHB to improve the response rate to PegIFNα.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Interferon-alpha , Tripartite Motif Proteins , Humans , Antiviral Agents/therapeutic use , DNA, Viral , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/genetics , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/therapeutic use , Polymorphism, Single Nucleotide , Receptors, Cytokine/genetics , Receptors, Cytokine/therapeutic use , Recombinant Proteins/therapeutic use , Recombinant Proteins/genetics , Repressor Proteins/genetics , Signal Transduction , Treatment Outcome , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
9.
Medicine (Baltimore) ; 102(43): e34384, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37904456

ABSTRACT

Colorectal cancer originates from the epithelium of the large intestine and is a common malignant tumor in the gastrointestinal tract. However, the relationship between RRP9 and DDX21 and colorectal cancer (CRC) remains unclear. GSE134834, GSE206800, and GSE209892 profiles for CRC were downloaded from the gene expression omnibus database generated using GPL20115 and GPL23126. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network. Functional enrichment analysis and gene set enrichment analysis were performed. Gene expression heat map was drawn and immune infiltration analysis was performed. Comparative toxicogenomics database analysis were performed to find the disease most related to the core gene. TargetScan was used to screen miRNAs regulating central DEGs. One thousand three hundred eighty DEGs were identified. According to gene ontology analysis, they were mainly concentrated in signal receptor activity regulation and metal titanase activity. Kyoto encyclopedia of gene and genome analysis showed that they mainly focused on IL17 signal pathway, PPAR signal pathway, protein digestion, and absorption, and the interaction of viral proteins with cytokines and cytokine receptors. The intersection of enrichment items and GOKEGG enrichment items of differentially expressed genes is mainly concentrated in PPAR signal pathway and the interaction of viral proteins with cytokines and cytokine receptors. The protein-protein interaction network obtained 16 core genes (MAD2L1, MELK, TPX2, UBE2C, RFC4, PLK1, RACGAP1, DKC1, DDX21, L Y AR, WDR3, RRP9, WDR43, NOLC1, BRIX1, and GTPBP4). Heat map of gene expression showed that core genes (TPX2, UBE2C, RFC4, PLK1, DKC1, LYAR, WDR3, NOLC1, and BRIX1) were not significantly differentially expressed between CRC and normal tissue samples. Core genes (MAD2L1, MELK, RACGAP1, RRP9, WDR43, DDX21, and GTPBP4) were highly expressed in CRC tissue samples and lowly expressed in normal tissue samples. Comparative toxicogenomics database analysis showed that 7 genes (MAD2L1, MELK, RACGAP1, RRP9, WDR43, DDX21, and GTPBP4) were related to necrosis, inflammation, tumor, precancerous symptoms, hemorrhage, and weightlessness. RRP9 and DDX21 are highly expressed in CRC. The higher the expression level of RRP9 and DDX21, the worse the prognosis.


Subject(s)
Colorectal Neoplasms , Peroxisome Proliferator-Activated Receptors , Humans , Peroxisome Proliferator-Activated Receptors/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Cell Cycle Proteins/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , Cytokines/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Viral Proteins/metabolism , Computational Biology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Nuclear Proteins/genetics
10.
Front Immunol ; 14: 1221562, 2023.
Article in English | MEDLINE | ID: mdl-37583704

ABSTRACT

The IL-6 cytokine family signals through the common signal transduction molecule gp130 combined with a cytokine-specific receptor. Gp130 signaling on CD4 T cells is vital in controlling chronic infection of mice with lymphocytic choriomeningitis virus clone 13 (LCMV Cl13), but the precise role of individual members of the IL-6 cytokine family is not fully understood. Transcriptional analysis highlighted the importance of gp130 signaling in promoting key processes in CD4 T cells after LCMV Cl13 infection, particularly genes associated with T follicular helper (Tfh) cell differentiation and IL-21 production. Further, Il27r-/-Il6ra-/- mice failed to generate antibody or CD8 T-cell immunity and to control LCMV Cl13. Transcriptomics and phenotypic analyses of Il27r-/-Il6ra-/- Tfh cells revealed that IL-6R and IL-27R signaling was required to activate key pathways within CD4 T cells. IL-6 and IL-27 signaling has distinct and overlapping roles, with IL-6 regulating Tfh differentiation, IL-27 regulating CD4 T cell survival, and both redundantly promoting IL-21.


Subject(s)
Interleukin-27 , Lymphocytic Choriomeningitis , Mice , Animals , CD4-Positive T-Lymphocytes , Interleukin-27/metabolism , Interleukin-6/metabolism , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Persistent Infection , Lymphocytic choriomeningitis virus , Receptors, Cytokine/genetics
11.
Vet Immunol Immunopathol ; 260: 110607, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148644

ABSTRACT

Canine brucellosis caused by Brucella canis infection occurs mainly in dogs, and is a zoonotic disease that also has the possibility of infection in humans. Many studies have been conducted to understand the immunopathological mechanism of B. canis infection. However, the precise immune mechanism remains to be elucidated because compared to other Brucella spp., B. canis has different immune evasion mechanisms. In this study, gene expression levels of Toll-like receptors (TLRs) and TLR-associated molecules and cytokine production were analyzed to figure out the roles of immune-related host factors in B. canis infection. Time-dependent gene expression of TLRs (1-10) and TLR-related molecules (TNF-α, IL-5, IL-23, CCL4, CD40 and NFκ-B) and release of Th1, Th2 and Th17-related cytokines (IFN-γ, IL-1ß, IL-4, IL-6, IL-10 and IL-17A) were investigated in DH82 canine macrophages infected with B. canis. Time-dependent induction of TLRs 3, 7 and 8 was observed, and TLR 7 had the highest expression level (p <0.05). The expression levels of all TLR-related genes were significantly increased after infection. In particular, the expression of the CCL4 and IL-23 genes was highly induced. The amounts of IL-1ß, IL-6 and IL-10 were significantly increased by B. canis infection, but the amounts of IL-4 and IL-17A were not. The production of IL-1ß and IL-6 was the highest at 24 hr after B. canis infection (p <0.05). This study demonstrates that TLRs 3, 7 and 8 are prominent sites of to immune response induction with the production of related cytokines and a nuclear factor in DH82 cells infected with B. canis. These results suggest a sequential immune mechanism of B. canis infection, involving TLRs, cytokines and their associated factors.


Subject(s)
Brucella canis , Brucellosis , Dog Diseases , Humans , Dogs , Animals , Cytokines/metabolism , Brucella canis/genetics , Interleukin-10/genetics , Interleukin-17 , Interleukin-6/metabolism , Interleukin-4/genetics , Brucellosis/veterinary , Macrophages , Toll-Like Receptors/genetics , Gene Expression , Receptors, Cytokine/genetics , Interleukin-23
12.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1343-1351, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005818

ABSTRACT

The present study investigated the mechanism of artesunate in the treatment of bone destruction in experimental rheumatoid arthritis(RA) based on transcriptomics and network pharmacology. The transcriptome sequencing data of artesunate in the inhibition of osteoclast differentiation were analyzed to obtain differentially expressed genes(DEGs). GraphPad Prism 8 software was used to plot volcano maps and heat maps were plotted through the website of bioinformatics. GeneCards and OMIM were used to collect information on key targets of bone destruction in RA. The DEGs of artesunate in inhibiting osteoclast differentiation and key target genes of bone destruction in RA were intersected by the Venny 2.1.0 platform, and the intersection target genes were analyzed by Gene Ontology(GO)/Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment. Finally, the receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model and collagen-induced arthritis(CIA) model were established. Quantitative real time polymerase chain reaction(q-PCR), immunofluorescence, and immunohistochemistry were used to verify the pharmacological effect and molecular mechanism of artesunate in the treatment of bone destruction in RA. In this study, the RANKL-induced osteoclast differentiation model in vitro was established and intervened with artesunate, and transcriptome sequencing data were analyzed to obtain 744 DEGs of artesunate in inhibiting osteoclast differentiation. A total of 1 291 major target genes of bone destruction in RA were obtained from GeneCards and OMIM. The target genes of artesunate in inhibiting osteoclast differentiation and the target genes of bone destruction in RA were intersected to obtain 61 target genes of artesunate against bone destruction in RA. The intersected target genes were analyzed by GO/KEGG enrichment. According to the results previously reported, the cytokine-cytokine receptor interaction signaling pathway was selected for experimental verification. Artesunate intervention in the RANKL-induced osteoclast differentiation model showed that artesunate inhibited CC chemokine receptor 3(CCR3), CC chemokine receptor 1(CCR1) and leukemia inhibitory factor(LIF) mRNA expression in osteoclasts in a dose-dependent manner compared with the RANKL-induced group. Meanwhile, the results of immunofluorescence and immunohistochemistry showed that artesunate could dose-dependently reduce the expression of CCR3 in osteoclasts and joint tissues of the CIA rat model in vitro. This study indicated that artesunate regulated the CCR3 in the cytokine-cytokine receptor interaction signaling pathway in the treatment of bone destruction in RA and provided a new target gene for the treatment of bone destruction in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Arthritis, Experimental/drug therapy , Artesunate/pharmacology , Artesunate/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Transcriptome , Network Pharmacology , Osteoclasts , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, Cytokine/therapeutic use
15.
Brain Behav Immun ; 111: 186-201, 2023 07.
Article in English | MEDLINE | ID: mdl-36958512

ABSTRACT

In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).


Subject(s)
Cytokines , Interleukin-6 , Female , Pregnancy , Infant, Newborn , Young Adult , Adolescent , Humans , Child, Preschool , Infant , Cytokines/metabolism , Interleukin-6/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Dorsolateral Prefrontal Cortex , Interleukin-13 , Interleukin-18/metabolism , Tumor Necrosis Factor-alpha/metabolism , RNA, Messenger
16.
Int J Lab Hematol ; 45(3): 337-343, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36748719

ABSTRACT

INTRODUCTION: In this study, we aimed to compare the immunophenotype of tumor cells in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harboring rearrangements of the CRLF2 gene with that in children without such aberrations with a specific focus on the surface expression of the related protein thymic stromal lymphopoietin receptor (TSLPR). METHODS: We examined bone marrow samples from 46 patients with primary BCP-ALL who had CRLF2 rearrangements detected by FISH (CRLF2(+) cohort). A total of 140 consecutive patients with intact CRLF2 were included in a control CRLF2(-) cohort. TSLPR expression was studied by flow cytometry. RESULTS: The majority of CRLF2(+) patients were conventionally positive (≥20% positive cells) for TSLPR (33 of 46, 71.7%). Among the remaining children in this group, two were completely TSLPR-negative, seven had less than 10% TSLPR-positive cells, and four had between 10% and 20% TSLPR-positive cells. By contrast, the majority of CRLF2(-) patients had no TSLPR-positive cells (119 of 140, 85.0%), while in 15 cases (10.7%), the percentage of TSLPR-positive cells was below 10%, and in six cases (4.3%), it was between 10% and 20%. Receiver operator characteristic analysis revealed a threshold of only 1.6% TSLPR-positive cells for the effective prediction of the presence of CRLF2 rearrangement. Moreover, this threshold retained its predictive value when only children with low TSLPR positivity were studied. CONCLUSION: When surface TSLPR is detected at the diagnosis of BCP-ALL, close attention should be given to the search for chromosomal aberrations involving CRLF2 at any level of expression.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Thymic Stromal Lymphopoietin , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Chromosome Aberrations , Gene Rearrangement , Receptors, Cytokine/genetics
17.
Leuk Lymphoma ; 64(3): 698-706, 2023 03.
Article in English | MEDLINE | ID: mdl-36642937

ABSTRACT

The prognostic significance of cytokine receptor like factor 2 (CRLF2) expression at diagnosis in adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) needs to be clarified. A total of 357 bone marrow samples collected from consecutive adult cases with Ph-negative BCP-ALL at diagnosis retrospectively detected CRLF2 transcript levels by real-time quantitative PCR. Twenty percent was selected as the cutoff value for CRLF2 to divide patients into CRLF2_H and CRLF2_L groups. CRLF2_H was associated with higher WBC count, P2RY8-CRLF2 fusion and IKZF1 deletions (IKZF1del). In both the whole cohort and B-other patients, CRLF2_H independently predicted lower CR rates after induction. Furthermore, CRLF2_H/IKZF1del(+) patients had significantly lower CR, RFS, and OS rates and tended to have lower RFS and OS rates than others in the whole cohort and B-other patients, respectively. Therefore, coexistence of CRLF2_H and IKZF1del at diagnosis predicts poor response and outcome in adult Ph-negative BCP-ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Receptors, Cytokine/genetics , Retrospective Studies , Philadelphia Chromosome
18.
Biol Res Nurs ; 25(1): 76-87, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36036249

ABSTRACT

Background: Little is known about the genetic characteristics associated with exercise in women undergoing breast cancer surgery. Purpose: In a sample of women who were evaluated prior to breast cancer surgery (n = 310), we evaluated for differences in demographic and clinical characteristics between patients who did and did not exercise on a regular basis and evaluated for associations between polymorphisms in genes for pro- and anti-inflammatory cytokines, their receptors, and their transcriptional regulators. Methods: Patients completed an investigator-developed exercise questionnaire. Based on the recommended level of exercise (≥150 minutes/week), survivors were classified into no exercise (NoEx), less exercise (LessEx), or recommended exercise (RecEx) groups. Candidate gene analyses were done to identify relationships between polymorphisms and exercise group membership (i.e., NoEx vs. RecEx). Only 23.5% of the total sample met the recommendations for regular exercise. Results: Compared to the RecEx group (n = 78), patients in the NoEx group (n = 120) had less education; were less likely to report being White or Asia/Pacific Islander; more likely to report a lower household income; had a higher body mass index (BMI), had a poorer functional status; had a higher comorbidity burden; were more likely to self-report high blood pressure; and were more likely to have received neoadjuvant chemotherapy. Polymorphisms in IFNGR1 and NFKB1 were associated with membership in the NoEx group. Conclusions: While they warrant replication, our findings suggest that variations in cytokine-related genes may play a role in exercise behavior, and that clinicians need to assess for barriers to regular exercise and educate patients on its benefits.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Receptors, Cytokine/genetics , Polymorphism, Single Nucleotide , Exercise , Genes, Regulator
19.
Pediatr Blood Cancer ; 70(4): e30039, 2023 04.
Article in English | MEDLINE | ID: mdl-36316822

ABSTRACT

We describe a patient with congenital neutropenia (CN) with a homozygous germline mutation in the colony-stimulating factor 3 receptor gene (CSF3R). The patient's bone marrow shows lagging neutrophil development with subtle left shift and unresponsiveness to CSF3 in in vitro colony assays. This patient illustrates that the di-proline hinge motif in the extracellular cytokine receptor homology domain of CSF3R is critical for adequate neutrophil production, but dispensable for in vivo terminal neutrophil maturation. This report underscores that CN patients with inherited CSF3R mutations should be marked as a separate clinical entity, characterized by a failure to respond to CSF3.


Subject(s)
Neutropenia , Receptors, Colony-Stimulating Factor , Humans , Receptors, Colony-Stimulating Factor/genetics , Mutation , Receptors, Cytokine/genetics , Granulocyte Colony-Stimulating Factor , Neutropenia/genetics
20.
Nat Rev Drug Discov ; 22(1): 21-37, 2023 01.
Article in English | MEDLINE | ID: mdl-36131080

ABSTRACT

Cytokines are secreted signalling proteins that play essential roles in the initiation, maintenance and resolution of immune responses. Although the unique ability of cytokines to control immune function has garnered clinical interest in the context of cancer, autoimmunity and infectious disease, the use of cytokine-based therapeutics has been limited. This is due, in part, to the ability of cytokines to act on many cell types and impact diverse biological functions, resulting in dose-limiting toxicity or lack of efficacy. Recent studies combining structural biology, protein engineering and receptor pharmacology have unlocked new insights into the mechanisms of cytokine receptor activation, demonstrating that many aspects of cytokine function are highly tunable. Here, we discuss the pharmacological principles underlying these efforts to overcome cytokine pleiotropy and enhance the therapeutic potential of this important class of signalling molecules.


Subject(s)
Cytokines , Neoplasms , Humans , Cytokines/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Signal Transduction/physiology , Protein Engineering , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...