Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Comput Biol Med ; 173: 108283, 2024 May.
Article in English | MEDLINE | ID: mdl-38552278

ABSTRACT

Allosteric drugs hold the promise of addressing many challenges in the current drug development of GPCRs. However, the molecular mechanism underlying their allosteric modulations remain largely elusive. The dopamine D1 receptor (DRD1), a member of Class A GPCRs, is critical for treating psychiatric disorders, and LY3154207 serves as its promising positive allosteric modulator (PAM). In the work, we utilized extensive Gaussian-accelerated molecular dynamics simulations (a total of 41µs) for the first time probe the diverse binding modes of the allosteric modulator and their regulation effects, based on the DRD1 and LY3154207 as representative. Our simulations identify four binding modes of LY3154207 (one boat mode, two metastable vertical modes and a novel cleft-anchored mode), in which the boat mode is the most stable while there three modes are similar in the stability. However, it is interesting to observed that the most stable boat mode inversely exhibits the weakest positive allosteric effect on influencing the orthosteric ligand binding and maintaining the activity of the transducer binding site. It should result from its induced weaker correlation between the allosteric site and the orthosteric site, and between the orthosteric site and the transducer binding site than the other three binding modes, as well as its weakened interaction between a crucial activation-related residue (S2025.46) and the orthosteric ligand (dopamine). Overall, the work offers atomic-level information to advance our understanding of the complex allosteric regulation on GPCRs, which is beneficial to the allosteric modulator design and development.


Subject(s)
Receptors, Dopamine D1 , Humans , Allosteric Regulation/physiology , Allosteric Site , Binding Sites , Ligands , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism
2.
Nat Commun ; 12(1): 4775, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362914

ABSTRACT

Dopamine controls diverse behaviors and their dysregulation contributes to many disorders. Our ability to understand and manipulate the function of dopamine is limited by the heterogenous nature of dopaminergic projections, the diversity of neurons that are regulated by dopamine, the varying distribution of the five dopamine receptors (DARs), and the complex dynamics of dopamine release. In order to improve our ability to specifically modulate distinct DARs, here we develop a photo-pharmacological strategy using a Membrane anchored Photoswitchable orthogonal remotely tethered agonist for the Dopamine receptor (MP-D). Our design selectively targets D1R/D5R receptor subtypes, most potently D1R (MP-D1ago), as shown in HEK293T cells. In vivo, we targeted dorsal striatal medium spiny neurons where the photo-activation of MP-D1ago increased movement initiation, although further work is required to assess the effects of MP-D1ago on neuronal function. Our method combines ligand and cell type-specificity with temporally precise and reversible activation of D1R to control specific aspects of movement. Our results provide a template for analyzing dopamine receptors.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Receptors, Dopamine/chemistry , Receptors, Dopamine/metabolism , Animals , Brain/metabolism , Corpus Striatum/metabolism , Dopamine/chemistry , Dopamine Agonists/pharmacology , Female , HEK293 Cells , Humans , Ligands , Male , Mice , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism , Synaptic Transmission/physiology
3.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206465

ABSTRACT

(1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (d- and l-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with superior allosteric properties.


Subject(s)
Dopamine , Receptors, Dopamine D1 , Allosteric Regulation , Animals , CHO Cells , Cricetulus , Dopamine/analogs & derivatives , Dopamine/chemistry , Dopamine/pharmacology , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism
4.
Nat Commun ; 12(1): 3305, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083522

ABSTRACT

Dopamine D1 receptor (D1R) is an important drug target implicated in many psychiatric and neurological disorders. Selective agonism of D1R are sought to be the therapeutic strategy for these disorders. Most selective D1R agonists share a dopamine-like catechol moiety in their molecular structure, and their therapeutic potential is therefore limited by poor pharmacological properties in vivo. Recently, a class of non-catechol D1R selective agonists with a distinct scaffold and pharmacological properties were reported. Here, we report the crystal structure of D1R in complex with stimulatory G protein (Gs) and a non-catechol agonist Compound 1 at 3.8 Å resolution. The structure reveals the ligand bound to D1R in an extended conformation, spanning from the orthosteric site to extracellular loop 2 (ECL2). Structural analysis reveals that the unique features of D1R ligand binding pocket explains the remarkable selectivity of this scaffold for D1R over other aminergic receptors, and sheds light on the mechanism for D1R activation by the non-catechol agonist.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/chemistry , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/chemistry , Binding Sites , Crystallography, X-Ray , Humans , In Vitro Techniques , Ligands , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Engineering , Protein Structure, Quaternary , Recombinant Proteins/chemistry
5.
Cell ; 184(4): 931-942.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571431

ABSTRACT

The D1- and D2-dopamine receptors (D1R and D2R), which signal through Gs and Gi, respectively, represent the principal stimulatory and inhibitory dopamine receptors in the central nervous system. D1R and D2R also represent the main therapeutic targets for Parkinson's disease, schizophrenia, and many other neuropsychiatric disorders, and insight into their signaling is essential for understanding both therapeutic and side effects of dopaminergic drugs. Here, we report four cryoelectron microscopy (cryo-EM) structures of D1R-Gs and D2R-Gi signaling complexes with selective and non-selective dopamine agonists, including two currently used anti-Parkinson's disease drugs, apomorphine and bromocriptine. These structures, together with mutagenesis studies, reveal the conserved binding mode of dopamine agonists, the unique pocket topology underlying ligand selectivity, the conformational changes in receptor activation, and potential structural determinants for G protein-coupling selectivity. These results provide both a molecular understanding of dopamine signaling and multiple structural templates for drug design targeting the dopaminergic system.


Subject(s)
Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Signal Transduction , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Amino Acid Sequence , Conserved Sequence , Cryoelectron Microscopy , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Ligands , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Dopamine D1/ultrastructure , Receptors, Dopamine D2/ultrastructure , Structural Homology, Protein
6.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571432

ABSTRACT

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Dopamine D1/metabolism , Signal Transduction , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Catechols/metabolism , Cryoelectron Microscopy , Fenoldopam/chemistry , Fenoldopam/pharmacology , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , HEK293 Cells , Humans , Ligands , Models, Molecular , Protein Multimerization , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/ultrastructure , Receptors, Dopamine D2/metabolism , Structural Homology, Protein
7.
Phytomedicine ; 81: 153439, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33352493

ABSTRACT

BACKGROUND: Depression and stress-related disorders are leading causes of death worldwide. Standard treatments elevating serotonin or noradrenaline levels are not sufficiently effective and cause adverse side effects. A connection between dopamine pathways and stress-related disorders has been suggested. Compounds derived from herbal medicine could be a promising alternative. We examined the neuroprotective effects of ursolic acid (UA) by focusing on dopamine signalling. METHODS: Trolox equivalent capacity assay was used to determine the antioxidant activities of UA in vitro. C. elegans N2 wildtype and dopamine receptor-knockout mutants (dop1-deficient RB665 and dop3-deficient LX703 strains) were used as in vivo models. H2DCFDA and acute juglone assays were applied to determine the antioxidant activity in dependency of dopamine pathways in vivo. Stress was assessed by heat and acute osmotic stress assays. The influence of UA on overall survival was analyzed by a life span assay. The dop1 and dop3 mRNA expression was determined by real time RT-PCR. We also examined the binding affinity of UA towards C. elegans Dop1 and Dop3 receptors as well as human dopamine receptors D1 and D3 by molecular docking. RESULTS: Antioxidant activity assays showed that UA exerts strong antioxidant activity. UA increased resistance towards oxidative, osmotic and heat stress. Additionally, UA increased life span of nematodes. Moreover, dop1 and dop3 gene expression was significantly enhanced upon UA treatment. Docking analysis revealed stronger binding affinity of UA to C. elegans and human dopamine receptors than the natural ligand, dopamine. Binding to Dop1 was stronger than to Dop3. CONCLUSION: UA reduced stress-dependent ROS generation and acted through Dop1 and to a lesser extent through Dop3 to reduce stress and prolong life span in C. elegans. These results indicate that UA could be a promising lead compound for the development of new antidepressant medications.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/drug effects , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics , Stress, Physiological/drug effects , Triterpenes/pharmacology , Animals , Antioxidants/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Dopamine/metabolism , Gene Knockout Techniques , Humans , Longevity/drug effects , Molecular Docking Simulation , Mutation , Reactive Oxygen Species/metabolism , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/chemistry , Receptors, Dopamine D3/metabolism , Signal Transduction/drug effects , Stress, Physiological/genetics , Triterpenes/chemistry , Ursolic Acid
8.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105703

ABSTRACT

Quantitative Structure Activity Relationship (QSAR) models can inform on the correlation between activities and structure-based molecular descriptors. This information is important for the understanding of the factors that govern molecular properties and for designing new compounds with favorable properties. Due to the large number of calculate-able descriptors and consequently, the much larger number of descriptors combinations, the derivation of QSAR models could be treated as an optimization problem. For continuous responses, metrics which are typically being optimized in this process are related to model performances on the training set, for example, R2 and QCV2. Similar metrics, calculated on an external set of data (e.g., QF1/F2/F32), are used to evaluate the performances of the final models. A common theme of these metrics is that they are context -" ignorant". In this work we propose that QSAR models should be evaluated based on their intended usage. More specifically, we argue that QSAR models developed for Virtual Screening (VS) should be derived and evaluated using a virtual screening-aware metric, e.g., an enrichment-based metric. To demonstrate this point, we have developed 21 Multiple Linear Regression (MLR) models for seven targets (three models per target), evaluated them first on validation sets and subsequently tested their performances on two additional test sets constructed to mimic small-scale virtual screening campaigns. As expected, we found no correlation between model performances evaluated by "classical" metrics, e.g., R2 and QF1/F2/F32 and the number of active compounds picked by the models from within a pool of random compounds. In particular, in some cases models with favorable R2 and/or QF1/F2/F32 values were unable to pick a single active compound from within the pool whereas in other cases, models with poor R2 and/or QF1/F2/F32 values performed well in the context of virtual screening. We also found no significant correlation between the number of active compounds correctly identified by the models in the training, validation and test sets. Next, we have developed a new algorithm for the derivation of MLR models by optimizing an enrichment-based metric and tested its performances on the same datasets. We found that the best models derived in this manner showed, in most cases, much more consistent results across the training, validation and test sets and outperformed the corresponding MLR models in most virtual screening tests. Finally, we demonstrated that when tested as binary classifiers, models derived for the same targets by the new algorithm outperformed Random Forest (RF) and Support Vector Machine (SVM)-based models across training/validation/test sets, in most cases. We attribute the better performances of the Enrichment Optimizer Algorithm (EOA) models in VS to better handling of inactive random compounds. Optimizing an enrichment-based metric is therefore a promising strategy for the derivation of QSAR models for classification and virtual screening.


Subject(s)
Quantitative Structure-Activity Relationship , Algorithms , Databases, Pharmaceutical , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/chemistry , Humans , Linear Models , Receptor, Muscarinic M3/chemistry , Receptor, Serotonin, 5-HT2C/chemistry , Receptors, Adrenergic, alpha-2/chemistry , Receptors, Dopamine D1/chemistry , Support Vector Machine
9.
Int J Mol Sci ; 21(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872204

ABSTRACT

Opioids and their antagonists alter vitamin C metabolism. Morphine binds to glutathione (l-γ-glutamyl-l-cysteinyl-glycine), an intracellular ascorbic acid recycling molecule with a wide range of additional activities. The morphine metabolite morphinone reacts with glutathione to form a covalent adduct that is then excreted in urine. Morphine also binds to adrenergic and histaminergic receptors in their extracellular loop regions, enhancing aminergic agonist activity. The first and second extracellular loops of adrenergic and histaminergic receptors are, like glutathione, characterized by the presence of cysteines and/or methionines, and recycle ascorbic acid with similar efficiency. Conversely, adrenergic drugs bind to extracellular loops of opioid receptors, enhancing their activity. These observations suggest functional interactions among opioids and amines, their receptors, and glutathione. We therefore explored the relative binding affinities of ascorbic acid, dehydroascorbic acid, opioid and adrenergic compounds, as well as various control compounds, to glutathione and glutathione-like peptides derived from the extracellular loop regions of the human beta 2-adrenergic, dopamine D1, histamine H1, and mu opioid receptors, as well as controls. Some cysteine-containing peptides derived from these receptors do bind ascorbic acid and/or dehydroascorbic acid and the same peptides generally bind opioid compounds. Glutathione binds not only morphine but also naloxone, methadone, and methionine enkephalin. Some adrenergic drugs also bind to glutathione and glutathione-like receptor regions. These sets of interactions provide a novel basis for understanding some ways that adrenergic, opioid and antioxidant systems interact during anesthesia and drug abuse and may have utility for understanding drug interactions.


Subject(s)
Analgesics, Opioid/pharmacology , Ascorbic Acid/pharmacology , Glutathione/metabolism , Peptides/pharmacology , Dehydroascorbic Acid/pharmacology , Enkephalin, Methionine/pharmacology , Humans , Hydromorphone/analogs & derivatives , Hydromorphone/urine , Methadone/pharmacology , Morphine/pharmacology , Naloxone/pharmacology , Receptors, Adrenergic, beta-2/chemistry , Receptors, Dopamine D1/chemistry , Receptors, Histamine H1/chemistry , Receptors, Opioid/chemistry , Receptors, Opioid, mu/chemistry
10.
Elife ; 92020 06 09.
Article in English | MEDLINE | ID: mdl-32513388

ABSTRACT

Early Huntington's disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we found that D1R-induced cell death signaling and neuronal degeneration, are mitigated by an H3R antagonist. We demonstrate that the D1R-H3R heteromer is expressed in HD mice at early but not late stages of HD, correlating with HD progression. In accordance, we found this target expressed in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H3R antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression. Taken together, our results indicate that D1R - H3R heteromers play a pivotal role in dopamine signaling and represent novel targets for treating HD.


Subject(s)
Drug Delivery Systems/methods , Huntington Disease/metabolism , Receptors, Dopamine D1 , Receptors, Histamine H3 , Animals , Cells, Cultured , Female , Gene Knock-In Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Piperidines/pharmacology , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Histamine H3/chemistry , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Visual Cortex/cytology
11.
Proc Natl Acad Sci U S A ; 117(25): 14139-14149, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32503917

ABSTRACT

Agonist-activated G protein-coupled receptors (GPCRs) must correctly select from hundreds of potential downstream signaling cascades and effectors. To accomplish this, GPCRs first bind to an intermediary signaling protein, such as G protein or arrestin. These intermediaries initiate signaling cascades that promote the activity of different effectors, including several protein kinases. The relative roles of G proteins versus arrestins in initiating and directing signaling is hotly debated, and it remains unclear how the correct final signaling pathway is chosen given the ready availability of protein partners. Here, we begin to deconvolute the process of signal bias from the dopamine D1 receptor (D1R) by exploring factors that promote the activation of ERK1/2 or Src, the kinases that lead to cell growth and proliferation. We found that ERK1/2 activation involves both arrestin and Gαs, while Src activation depends solely on arrestin. Interestingly, we found that the phosphorylation pattern influences both arrestin and Gαs coupling, suggesting an additional way the cells regulate G protein signaling. The phosphorylation sites in the D1R intracellular loop 3 are particularly important for directing the binding of G protein versus arrestin and for selecting between the activation of ERK1/2 and Src. Collectively, these studies correlate functional outcomes with a physical basis for signaling bias and provide fundamental information on how GPCR signaling is directed.


Subject(s)
Receptors, Dopamine D1/metabolism , Signal Transduction , Arrestin/metabolism , GTP-Binding Protein alpha Subunits/metabolism , HEK293 Cells , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein Domains , Receptors, Dopamine D1/chemistry , src-Family Kinases/metabolism
12.
Chem Biol Drug Des ; 96(2): 825-835, 2020 08.
Article in English | MEDLINE | ID: mdl-32279445

ABSTRACT

The novel 1,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine framework, a structurally rigidified variant of the 1-phenylbenzazepine template, was synthesized via direct arylation as a key reaction. Evaluation of the binding affinities of the rigidified compounds across a battery of serotonin, dopamine, and adrenergic receptors indicates that this scaffold unexpectedly has minimal affinity for D1 and other dopamine receptors and is selective for the 5-HT6 receptor. The affinity of these systems at the 5-HT6 receptor is significantly influenced by electronic and hydrophobic interactions as well as the enhanced rigidity of the ligands. Molecular docking studies indicate that the reduced D1 receptor affinity of the rigidified compounds may be due in part to weaker H-bonding interactions between the oxygenated moieties on the compounds and specific receptor residues. Key receptor-ligand H-bonding interactions, salt bridges, and π-π interactions appear to be responsible for the 5-HT6 receptor affinity of the compounds. Compounds 10 (6,7-dimethoxy-2,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine) and 12 (6,7-dimethoxy-2-methyl-2,3,4,11b-tetrahydro-1H-fluoreno[9,1-cd]azepine) have been identified as structurally novel, high affinity (Ki  = 5 nM), selective 5-HT6 receptor ligands.


Subject(s)
Azepines/chemistry , Benzazepines/chemistry , Dopamine Agonists/chemistry , Receptors, Dopamine D1/chemistry , Receptors, Serotonin/chemistry , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/chemistry , Hydrogen Bonding , Ligands , Molecular Conformation , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship
13.
Toxicol Appl Pharmacol ; 384: 114789, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31669811

ABSTRACT

Previous studies showed that dopamine (DA) significantly reduces the frequency of cancer stem-like cells (CSC) and enhances the efficacy of sunitinib (SUN) in the treatment of breast cancer and non-small cell lung cancer (NSCLC). To overcome the shortcomings of DA in clinical practice, the purpose of this study was to investigate the efficacy as well as the underlying mechanism of an orally available, N-arylpiperazine-containing compound C2, in the treatment of pancreatic cancer when used alone or in combination with SUN. Our results showed that C2 and SUN exerted synergistic effects on inhibiting the growth of SW1990 and PANC-1 pancreatic cancer cells. C2 significantly inhibited colony formation and migration of both cells. SW1990 xenograft and patient-derived xenograft (PDX) models were utilized for pharmacodynamic investigation in vivo. C2 alone showed little inhibition effect on tumor growth but increased the anti-tumor efficacy of SUN in both xenografts. Moreover, C2 down-regulated CSC markers (CD133 and ALDH) of both cancer cells and up-regulated the expression of dopamine receptor D1 (D1DR) in tumor. Besides, the SW1990 tumor growth was dose-dependently inhibited when the cells were pretreated with C2 before implantation. C2 increased intratumoral cAMP level, and the combination with D1DR specific antagonist SCH23390 reversed the above-mentioned effects of C2 both in vitro and in vivo, indicating the activation of D1DR may be involved in the underlying mechanism of C2 action. In summary, C2 could reduce the CSC frequency and enhance the anti-cancer effect of SUN in the treatment of pancreatic cancer, demonstrating its potential in cancer therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Pancreatic Neoplasms/drug therapy , Piperazines/pharmacology , Receptors, Dopamine D1/metabolism , Sunitinib/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , Humans , Mice , Molecular Docking Simulation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Pancreas/pathology , Pancreatectomy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Piperazines/chemistry , Piperazines/therapeutic use , Receptors, Dopamine D1/chemistry , Sunitinib/therapeutic use , Xenograft Model Antitumor Assays
14.
Adv Pharmacol ; 86: 273-305, 2019.
Article in English | MEDLINE | ID: mdl-31378255

ABSTRACT

The dopamine D1 receptor plays an important role in motor activity, reward, and cognition. Efforts to develop D1 agonists have been mixed due to poor drug-like properties, tachyphylaxis, and inverted U-shaped dose-response curves. Recently, positive allosteric modulators (PAMs) for the dopamine D1 receptor were discovered and initial pharmacological profiling has suggested that several of the above issues could be addressed with this mechanism. This paper presents an overview of key findings for DETQ (2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one), which is currently the only D1 PAM for which published in vivo data is available. In vitro studies showed selective potentiation of the human D1 receptor without significant allosteric agonist effects. Due to a species difference in affinity for DETQ, transgenic mice expressing the human D1 receptor (hD1 mice) were used in vivo. In contrast to D1 agonists, DETQ increased locomotor activity over a wide dose-range without inverted U-shaped dose response or tachyphylaxis. DETQ also reversed hypo-activity in mice with dopamine depletion due to reserpine pretreatment, suggesting potential for treatment of motor symptoms in Parkinson's disease. Potential pro-cognitive effects were supported by improved performance in the novel object recognition task, enhanced release of cortical acetylcholine and histamine, and increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB. In addition, DETQ enhanced wakefulness in EEG studies and decreased immobility in the forced-swim test. Together, these results provide support for potential utility of D1 PAMs in the treatment of several neuropsychiatric disorders. LY3154207, a close analog of DETQ, is currently in phase 2 clinical trials.


Subject(s)
Dopamine Agonists/therapeutic use , Mental Disorders/drug therapy , Receptors, Dopamine D1/metabolism , Allosteric Regulation/drug effects , Amino Acid Sequence , Animals , Dopamine Agonists/chemistry , Dopamine Agonists/pharmacology , Humans , Receptors, Dopamine D1/chemistry
15.
Proc Natl Acad Sci U S A ; 116(22): 11038-11047, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31072930

ABSTRACT

The dorsolateral striatum (DLS) is essential for motor and procedure learning, but the role of DLS spiny projection neurons (SPNs) of direct and indirect pathways, as marked, respectively, by D1 and D2 receptor (D1R and D2R) expression, remains to be clarified. Long-term two-photon calcium imaging of the same neuronal population during mouse learning of a cued lever-pushing task revealed a gradual emergence of distinct D1R and D2R neuronal ensembles that reproducibly fired in a sequential manner, with more D1R and D2R neurons fired during the lever-pushing period and intertrial intervals (ITIs), respectively. This sequential firing pattern was specifically associated with the learned motor behavior, because it changed markedly when the trained mice performed other cued motor tasks. Selective chemogenetic silencing of D1R and D2R neurons impaired the initiation of learned motor action and suppression of erroneous lever pushing during ITIs, respectively. Thus, motor learning involves reorganization of DLS neuronal activity, forming stable D1R and D2R neuronal ensembles that fired sequentially to regulate different aspects of the learned behavior.


Subject(s)
Corpus Striatum , Learning/physiology , Motor Skills/physiology , Receptors, Dopamine D1 , Receptors, Dopamine D2 , Animals , Corpus Striatum/cytology , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Mice , Neurons/cytology , Neurons/metabolism , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism
16.
Bioorg Med Chem ; 27(10): 2100-2111, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30981605

ABSTRACT

Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1 µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757 µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemistry , Ligands , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D2/chemistry , Animals , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Dopamine Agonists/chemistry , Dopamine Agonists/metabolism , Dopamine D2 Receptor Antagonists/chemistry , Dopamine D2 Receptor Antagonists/metabolism , Heterocyclic Compounds, 4 or More Rings/metabolism , Molecular Conformation , Molecular Docking Simulation , Protein Structure, Tertiary , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Streptomyces griseus/chemistry , Streptomyces griseus/metabolism , Structure-Activity Relationship
17.
PLoS One ; 14(3): e0213792, 2019.
Article in English | MEDLINE | ID: mdl-30875392

ABSTRACT

We tested the interactions with four different G protein-coupled receptors (GPCRs) of arrestin-3 mutants with substitutions in the four loops, three of which contact the receptor in the structure of the arrestin-1-rhodopsin complex. Point mutations in the loop at the distal tip of the N-domain (Glu157Ala), in the C-loop (Phe255Ala), back loop (Lys313Ala), and one of the mutations in the finger loop (Gly65Pro) had mild variable effects on receptor binding. In contrast, the deletion of Gly65 at the beginning of the finger loop reduced the binding to all GPCRs tested, with the binding to dopamine D2 receptor being affected most dramatically. Thus, the presence of a glycine at the beginning of the finger loop appears to be critical for the arrestin-receptor interaction.


Subject(s)
Arrestins/metabolism , Point Mutation , Receptor, Muscarinic M2/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Amino Acid Sequence , Arrestins/chemistry , Arrestins/genetics , HEK293 Cells , Humans , Protein Conformation , Receptor, Muscarinic M2/chemistry , Receptor, Muscarinic M2/genetics , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/genetics , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/genetics , Sequence Homology
18.
Science ; 360(6396)2018 06 29.
Article in English | MEDLINE | ID: mdl-29853555

ABSTRACT

Neuromodulatory systems exert profound influences on brain function. Understanding how these systems modify the operating mode of target circuits requires spatiotemporally precise measurement of neuromodulator release. We developed dLight1, an intensity-based genetically encoded dopamine indicator, to enable optical recording of dopamine dynamics with high spatiotemporal resolution in behaving mice. We demonstrated the utility of dLight1 by imaging dopamine dynamics simultaneously with pharmacological manipulation, electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity. dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine transients in mouse striatum. Further, we used dLight1 to image spatially distinct, functionally heterogeneous dopamine transients relevant to learning and motor control in mouse cortex. We also validated our sensor design platform for developing norepinephrine, serotonin, melatonin, and opioid neuropeptide indicators.


Subject(s)
Biosensing Techniques , Cerebral Cortex/metabolism , Dopamine/metabolism , Neuroimaging/methods , Neurotransmitter Agents/metabolism , Optogenetics , Animals , Calcium/analysis , Calcium/metabolism , Cerebral Cortex/chemistry , Corpus Striatum , Dopamine/analysis , Genetic Engineering , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Learning , Mice , Neurons/physiology , Neurotransmitter Agents/analysis , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/genetics , Serotonin/analysis , Serotonin/metabolism
19.
J Neural Transm (Vienna) ; 125(8): 1187-1194, 2018 08.
Article in English | MEDLINE | ID: mdl-29417335

ABSTRACT

The current standard treatment for Parkinson disease focuses on restoring striatal dopamine levels using L-3,4-dihydroxyphenylalanine (L-DOPA). However, disease progression and chronic treatment are associated with motor side effects such as L-DOPA-induced dyskinesia (LID). Dopamine receptor function is strongly associated with the mechanisms underlying LID. In fact, increased D1R signaling is associated with this motor side effect. Compelling evidence demonstrates that dopamine receptors in the striatum can form heteromeric complexes, and heteromerization can lead to changes in the functional and pharmacological properties of receptors compared to their monomeric subtypes. Currently, the most promising strategy for therapeutic intervention in dyskinesia originates from investigations of the D1R-D3R heteromers. Interestingly, there is a correlation between the expression of D1R-D3R heteromers and the development of LID. Moreover, D3R stimulation can potentiate the D1R signaling pathway. The aim of this review is to summarize current knowledge of the distinct roles of heteromeric dopaminergic receptor complexes in LID.


Subject(s)
Dyskinesia, Drug-Induced/metabolism , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D3/chemistry , Receptors, Dopamine D3/metabolism , Animals , Corpus Striatum/metabolism , Humans
20.
ChemMedChem ; 12(19): 1585-1594, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28776962

ABSTRACT

MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D1 and D2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D1 and D2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D1 and D2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays.


Subject(s)
Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Benzazepines/analysis , Benzazepines/chemistry , Benzazepines/metabolism , Chromatography, High Pressure Liquid , Humans , Kinetics , Ligands , Protein Binding , Raclopride/analysis , Raclopride/chemistry , Raclopride/metabolism , Radioligand Assay , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D2/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...