Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.158
Filter
1.
Addict Biol ; 29(5): e13401, 2024 May.
Article in English | MEDLINE | ID: mdl-38782631

ABSTRACT

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Nucleus Accumbens , Propofol , Rats, Sprague-Dawley , Receptors, Dopamine D1 , Receptors, N-Methyl-D-Aspartate , Self Administration , Signal Transduction , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Propofol/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Male , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/drug effects , Rats , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , MAP Kinase Signaling System/drug effects
2.
Behav Brain Res ; 422: 113759, 2022 03 26.
Article in English | MEDLINE | ID: mdl-35051488

ABSTRACT

Conditioned avoidance responses (CAR) behavior is a classical instrumental response paradigm, which is widely used to study aversive conditioning and defensive motivation behavior. Previous studies have shown that dopamine D1 and D2 receptors are involved in CAR behavior; however, it is unclear in which brain regions that dopamine evokes CAR behavior. The aim of the study is to investigate whether dopamine triggers CAR behavior via activating dopamine D1 or D2 receptors in the shell of nucleus accumbens or dorsolateral striatum. The present study found that infusion of the dopamine D2 receptor agonist quinpirole, but not D1 receptor agonist SKF38393, into the shell of nucleus accumbens evoked CAR behavior in reserpine-treated rats. Whereas, infusion of neither SKF38393 nor quinpirole into the dorsolateral striatum evoked CAR behavior. In addition, infusion of quinpirole into the shell of nucleus accumbens enhanced CAR behavior in the unsuccessful trained rats without affecting the motor function in the balance beam and locomotor tests. In conclusion, activation of dopamine D2, but not D1 receptors in the shell of nucleus accumbens evokes CAR behavior. However, activation of dopamine D1 and D2 receptors in the dorsolateral striatum does not evoke CAR behavior. It is suggested that the shell of nucleus accumbens is the critical brain region for dopamine to invoke CAR behavior, and activation of dopamine D2 receptors in the shell of nucleus accumbens is sufficient and necessary to evoke CAR behavior.


Subject(s)
Avoidance Learning/drug effects , Behavior, Animal/drug effects , Conditioning, Classical/drug effects , Dopamine Agonists/pharmacology , Nucleus Accumbens/drug effects , Receptors, Dopamine D2/drug effects , Animals , Male , Neostriatum/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/drug effects
3.
Neurosci Lett ; 768: 136363, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34843876

ABSTRACT

An increasing body of evidence shows significant sex differences in the mammalian brain in multiple behaviours and psychiatric and neurological diseases and as well as that the endocannabinoid system may differ between males and females. In this study we investigated sex differences in working, short-term and long-term memory and the expression of ß2-adrenergic and D1- and D2-receptors in the mPFC and hippocampus, brain regions that are involved in stress response and memory modulation in rats exposed to the chronic unpredictable stress (CUS) and the potential beneficial effects of the chronic fatty acid amide hydrolase inhibitor URB597 treatment. Chronically stressed male rats had an improvement of working memory, while stressed females showed very low object-recognition abilities. On the other hand, animals of both sexes exhibited long-term memory impairment. Our results showed that CUS decreased the expression of ß2-adrenoceptors in the mPFC and D1 receptors in the mPFC and hippocampus of male rats and decreased ß2-adrenoceptors and D1- receptors in the hippocampus of female. URB597 treatment had a positive effect on the short-term memory of stressed animals of both sexes whereas failed to restore long-term memory and did not affect the protein levels ß2-adrenoceptors and D1 receptors in the hippocampus of CUS female rats. The present results support that endocannabinoids induced long-term memory and neurochemical alternations which are sex dependent, suggesting sex specific treatment strategies of mental disorders.


Subject(s)
Benzamides/pharmacology , Brain/drug effects , Carbamates/pharmacology , Memory/drug effects , Receptors, Adrenergic, beta/drug effects , Receptors, Dopamine D1/drug effects , Sex Characteristics , Amidohydrolases/antagonists & inhibitors , Animals , Brain/metabolism , Female , Male , Rats , Rats, Wistar , Receptors, Adrenergic, beta/metabolism , Receptors, Dopamine D1/metabolism , Stress, Psychological/complications
4.
Article in English | MEDLINE | ID: mdl-34662693

ABSTRACT

Cannabidiol, as component of cannabis, can potentially hinder the rewarding impact of drug abuse; however, its mechanism is ambiguous. Moreover, the nucleus accumbens (NAc), as a key area in the reward circuit, extensively receives dopaminergic projections from the ventral tegmentum area. To elucidate the role of accumbal D1 and D2 dopamine receptor families in Cannabidiol's inhibitory impact on the acquisition and expression phases of methamphetamine (MET), the conditioned place preference (CPP) procedure as a common method to assay reward characteristics of drugs was carried out. Six groups of rats were treated by various doses of SCH23390 or Sulpiride (0.25, 1, and 4 µg/0.5 µL) in the NAc as D1 or D2 dopamine receptor family antagonists, respectively, prior to infusion of Cannabidiol (10 µg/5 µL) in the lateral ventricle (LV) over conditioning phase in the acquisition experiments. In the second step of the study, animals received SCH23390 or Sulpiride in the NAc before Cannabidiol (50 µg/5 µL) infusion into the LV in the expression phase of MET to illuminate the influence of SCH23390 or Sulpiride on the inhibitory impact of Cannabidiol on the expression of MET-induced CPP. Intra-NAc administration of either SCH23390 or Sulpiride impaired Cannabidiol's suppressive impact on the expression phase, while just Sulpiride could suppress the Cannabidiol's impact on the acquisition phase of the MET-induced CPP. Also, the inhibitory impact of Sulpiride was stranger in both phases of MET reward. It seems that Cannabidiol prevents the expression and acquisition phases of MET-induced CPP partly through the dopaminergic system in the NAc.


Subject(s)
Cannabidiol , Conditioning, Classical , Methamphetamine/pharmacology , Nucleus Accumbens/drug effects , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Reward , Animals , Benzazepines/administration & dosage , Cannabidiol/administration & dosage , Cannabidiol/pharmacology , Dopamine Antagonists/administration & dosage , Male , Rats , Sulpiride/administration & dosage , Ventral Tegmental Area/drug effects
5.
J Neurochem ; 160(3): 342-355, 2022 02.
Article in English | MEDLINE | ID: mdl-34878648

ABSTRACT

Cholinergic transmission underlies higher brain functions such as cognition and movement. To elucidate the process whereby acetylcholine (ACh) release is maintained and regulated in the central nervous system, uptake of [3 H]choline and subsequent synthesis and release of [3 H]ACh were investigated in rat striatal segments. Incubation with [3 H]choline elicited efficient uptake via high-affinity choline transporter-1, resulting in accumulation of [3 H]choline and [3 H]ACh. However, following inhibition of ACh esterase (AChE), incubation with [3 H]choline led predominantly to the accumulation of [3 H]ACh. Electrical stimulation and KCl depolarization selectively released [3 H]ACh but not [3 H]choline. [3 H]ACh release gradually declined upon repetitive stimulation, whereas the release was reproducible under inhibition of AChE. [3 H]ACh release was abolished after treatment with vesamicol, an inhibitor of vesicular ACh transporter. These results suggest that releasable ACh is continually replenished from the cytosol to releasable pools of cholinergic vesicles to maintain cholinergic transmission. [3 H]ACh release evoked by electrical stimulation was abolished by tetrodotoxin, but that induced by KCl was largely resistant. ACh release was Ca2+ dependent and exhibited slightly different sensitivities to N- and P-type Ca2+ channel toxins (ω-conotoxin GVIA and ω-agatoxin IVA, respectively) between both stimuli. [3 H]ACh release was negatively regulated by M2 muscarinic and D2 dopaminergic receptors. The present results suggest that inhibition of AChE within cholinergic neurons and of presynaptic negative regulation of ACh release contributes to maintenance and facilitation of cholinergic transmission, providing a potentially useful clue for the development of therapies for cholinergic dysfunction-associated disorders, in addition to inhibition of synaptic cleft AChE.


Subject(s)
Acetylcholine/biosynthesis , Neostriatum/metabolism , Acetylcholinesterase/metabolism , Animals , Calcium Channel Blockers/pharmacology , Choline/metabolism , Cholinesterase Inhibitors/pharmacology , Electric Stimulation , Male , Potassium Chloride/pharmacology , Radiopharmaceuticals , Rats , Rats, Wistar , Receptor, Muscarinic M2/drug effects , Receptor, Muscarinic M2/metabolism , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D1/metabolism , Vesicular Acetylcholine Transport Proteins/antagonists & inhibitors , Vesicular Acetylcholine Transport Proteins/metabolism
6.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502393

ABSTRACT

Beta-phenylethylamine (ß-PEA) is a well-known and widespread endogenous neuroactive trace amine found throughout the central nervous system in humans. In this study, we demonstrated the effects of ß-PEA on psychomotor, rewarding, and reinforcing behaviors and affective state using the open-field test, conditioned place preference (CPP), self-administration, and ultrasonic vocalizations (USVs) paradigms. We also investigated the role of the dopamine (DA) D1 receptor in the behavioral effects of ß-PEA in rodents. Using enzyme-linked immunosorbent assay (ELISA) and Western immunoblotting, we also determined the DA concentration and the DA-related protein levels in the dorsal striatum of mice administered with acute ß-PEA. The results showed that acute ß-PEA increased stereotypic behaviors such as circling and head-twitching responses in mice. In the CPP experiment, ß-PEA increased place preference in mice. In the self-administration test, ß-PEA significantly enhanced self-administration during a 2 h session under fixed ratio (FR) schedules (FR1 and FR3) and produced a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement in rats. In addition, acute ß-PEA increased 50-kHz USV calls in rats. Furthermore, acute ß-PEA administration increased DA concentration and p-DAT and TH expression in the dorsal striatum of mice. Finally, pretreatment with SCH23390, a DA D1 receptor antagonist, attenuated ß-PEA-induced circling behavior and ß-PEA-taking behavior in rodents. Taken together, these findings suggest that ß-PEA has rewarding and reinforcing effects and psychoactive properties, which induce psychomotor behaviors and a positive affective state by activating the DA D1 receptor in the dorsal striatum.


Subject(s)
Phenethylamines/pharmacology , Receptors, Dopamine D1/metabolism , Affect/drug effects , Affect/physiology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Conditioning, Psychological/drug effects , Dopamine/metabolism , Male , Mice , Mice, Inbred C57BL , Phenethylamines/metabolism , Psychomotor Performance/drug effects , Receptors, Dopamine D1/drug effects , Reinforcement, Psychology , Reward , Self Administration
7.
Neuropharmacology ; 197: 108747, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34364897

ABSTRACT

Antipsychotic treatment can produce a dopamine-supersensitive state, potentiating the response to dopamine receptor stimulation. In both schizophrenia patients and rats, this is linked to tolerance to ongoing antipsychotic treatment. In rodents, dopamine supersensitivity is often confirmed by an exaggerated psychomotor response to d-amphetamine after discontinuation of antipsychotic exposure. Here we examined in rats the dopaminergic mechanisms mediating this enhanced behavioural response, as this could uncover pathophysiological processes underlying the expression of antipsychotic-evoked dopamine supersensitivity. Rats received 0.5 mg/kg/day haloperidol via osmotic minipump for 2 weeks, before treatment was discontinued. After cessation of antipsychotic treatment, rats showed a supersensitive psychomotor response to the D2 agonist quinpirole, but not to the D1 partial agonist SKF38393 or the dopamine reuptake blocker GBR12783. Furthermore, acute D1 receptor blockade (using SCH39166) decreased the exaggerated psychomotor response to d-amphetamine in haloperidol-pretreated rats, whereas acute D2 receptor blockade (using sulpiride) enhanced it. Thus, after discontinuation of antipsychotic treatment, D1- and D2-mediated transmission differentially modulate the expression of a supersensitive response to d-amphetamine. This supersensitive behavioural response was accompanied by enhanced GSK3ß activity and suppressed ERK1/2 activity in the nucleus accumbens (but not caudate-putamen), suggesting increased mesolimbic D2 transmission. Finally, after discontinuing haloperidol treatment, neither increasing ventral midbrain dopamine impulse flow nor infusing d-amphetamine into the cerebral ventricles triggered the expression of already established dopamine supersensitivity, suggesting that peripheral effects are required. Thus, while dopamine receptor-mediated signalling regulates the expression of antipsychotic-evoked dopamine supersensitivity, a simple increase in central dopamine neurotransmission is insufficient to trigger this supersensitivity.


Subject(s)
Antipsychotic Agents/adverse effects , Dopamine/physiology , Animals , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Dextroamphetamine/pharmacology , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Haloperidol/pharmacology , Limbic System/drug effects , Male , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects
8.
Brain Res ; 1768: 147583, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34284020

ABSTRACT

Previous studies have pointed out that l-DOPA can interact with D1 or D2 receptors independent of its conversion to endogenous dopamine. The present study was set to investigate whether l-DOPA modulates dopamine release from striatal nerve terminals, using a preparation of synaptosomes preloaded with [3H]DA. Levodopa (1 µM) doubled the K+-induced [3H]DA release whereas the D2/D3 receptor agonist pramipexole (100 nM) inhibited it. The l-DOPA-evoked facilitation was mimicked by the D1 receptor agonist SKF38393 (30-300 nM) and prevented by the D1/D5 antagonist SCH23390 (100 nM) but not the DA transporter inhibitor GBR12783 (300 nM) or the aromatic l-amino acid decarboxylase inhibitor benserazide (1 µM). Higher l-DOPA concentrations (10 and 100 µM) elevated spontaneous [3H]DA efflux. This effect was counteracted by GBR12783 but not SCH23390. Binding of [3H]SCH23390 in synaptosomes (in test tubes) revealed a dense population of D1 receptors (2105 fmol/mg protein). Both SCH23390 and SKF38393 fully inhibited [3H]SCH23390 binding (Ki 0.42 nM and 29 nM, respectively). l-DOPA displaced [3H]SCH23390 binding maximally by 44% at 1 mM. This effect was halved by addition of GBR12935 and benserazide. We conclude that l-DOPA facilitates exocytotic [3H]DA release through SCH23390-sensitive D1 receptors, independent of its conversion to DA. It also promotes non-exocytotic [3H]DA release, possibly via conversion to DA and reversal of DA transporter. These data confirm that l-DOPA can directly interact with dopamine D1 receptors and might extend our knowledge of the neurobiological mechanisms underlying l-DOPA clinical effects.


Subject(s)
Dopamine/metabolism , Levodopa/pharmacology , Receptors, Dopamine D1/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines/pharmacokinetics , Benzazepines/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Levodopa/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism
9.
PLoS Biol ; 19(7): e3001055, 2021 07.
Article in English | MEDLINE | ID: mdl-34197448

ABSTRACT

It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific contribution of DA signaling at D1-like receptor (D1R) and D2-like receptor (D2R) to cost-benefit trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs) and positron emission tomography (PET) imaging, we assessed the relationship between the degree of D1R/D2R blockade and changes in benefit- and cost-based motivation for goal-directed behavior of macaque monkeys. We found that the degree of blockade of either D1R or D2R was associated with a reduction of the positive impact of reward amount and increasing delay discounting. Workload discounting was selectively increased by D2R antagonism. In addition, blocking both D1R and D2R had a synergistic effect on delay discounting but an antagonist effect on workload discounting. These results provide fundamental insight into the distinct mechanisms of DA action in the regulation of the benefit- and cost-based motivation, which have important implications for motivational alterations in both neurological and psychiatric disorders.


Subject(s)
Cost-Benefit Analysis , Dopamine/metabolism , Macaca mulatta/physiology , Motivation , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology , Animals , Delay Discounting , Dopamine Antagonists/pharmacology , Macaca fuscata , Male , Positron-Emission Tomography , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Workload
10.
Behav Brain Res ; 410: 113342, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33961911

ABSTRACT

Using marijuana has become popular and is allowed for medical purposes in some countries. The effect of marijuana on Parkinson's disease is controversial and Medical marijuana may benefit for motor and non-motor symptoms of patients with Parkinson's disease. No research has been conducted to fully prove the benefits, risks, and uses of marijuana as a treatment for patients with Parkinson's disease. In the present study, several different approaches, including behavioral measures and the western blot method for protein level assay, were used to investigate whether exposure to marijuana affects the motor and synaptic plasticity impairment induced by 6-OHDA. Marijuana consumption significantly decreased apomorphine-induced contralateral rotation, beam travel time, beam freeze time, and catalepsy time, but significantly increased latency to fall in the rotarod test, balance time, and protein level of PSD-95 and dopamine receptor D1 in the 6-OHDA + marijuana group. These results suggest that marijuana may be helpful for motor disorders and synaptic changes in patients with Parkinson's disease.


Subject(s)
Behavior, Animal/drug effects , Cannabinoid Receptor Agonists/pharmacology , Disks Large Homolog 4 Protein/drug effects , Dronabinol/pharmacology , Dyskinesia, Drug-Induced/drug therapy , Medical Marijuana/pharmacology , Neuronal Plasticity/drug effects , Receptors, Dopamine D1/drug effects , Adrenergic Agents/pharmacology , Animals , Cannabinoid Receptor Agonists/administration & dosage , Disease Models, Animal , Dronabinol/administration & dosage , Male , Medical Marijuana/administration & dosage , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Plant Extracts , Rats , Rats, Wistar
11.
Behav Brain Res ; 411: 113339, 2021 08 06.
Article in English | MEDLINE | ID: mdl-33945831

ABSTRACT

Dopamine (DA) in the striatum is essential to influence motor behavior and may lead to movement impairment in Parkinson's disease (PD). The present study examined the different functions of the DA D1 receptor (D1R) and DA D2 receptor (D2R) by intrastriatal injection of the D1R agonist SKF38393 and the D2R agonist quinpirole in 6-hydroxydopamine (6-OHDA)-lesioned and control rats. All rats separately underwent dose-response behavior testing for SKF38393 (0, 0.5, 1.0, and 1.5 µg/site) or quinpirole (0, 1.0, 2.0, and 3.0 µg/site) to determine the effects of the optimal modulating threshold dose. Two behavior assessment indices, the time of latency to fall and the number of steps on a rotating treadmill, were used as reliable readouts of motor stimulation variables for quantifying the motor effects of the drugs. The findings indicate that at threshold doses, SKF38393 (1.0 µg/site) and quinpirole (1.0 µg/site) produce a dose-dependent increase in locomotor activity compared to vehicle injection. The ameliorated behavioral responses to either SKF38393 or quinpirole in lesioned rats were greater than those in unlesioned control rats. Moreover, the dose-dependent increase in locomotor capacity for quinpirole was greater than that for SKF38393 in lesioned rats. These results can clarify several key issues related to DA receptors directly and may provide a basis for exploring the potential of future selective dopamine therapies for PD in humans.


Subject(s)
2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Quinpirole/pharmacology , Receptors, Dopamine/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopamine Agonists/administration & dosage , Dopamine Agonists/pharmacology , Locomotion/drug effects , Locomotion/physiology , Male , Motor Activity/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Quinpirole/administration & dosage , Rats , Rats, Wistar , Receptors, Dopamine/drug effects , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism
12.
Nutrients ; 13(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803057

ABSTRACT

Danshensu, a traditional herb-based active component (Salvia miltiorrhiza Bunge), has garnered attention, due to its safety, nutritional value, and antioxidant effects, along with cardiovascular-protective and neuroprotective abilities; however, its effect on the retinal tissues and functional vision has not been fully studied. The objective of this study was to analyze the protective effect of danshensu on retinal tissues and functional vision in vivo in a mouse model of light-induced retinal degeneration. High energy light-evoked visual damage was confirmed by the loss in structural tissue integrity in the retina accompanied by a decline in visual acuity and visual contrast sensitivity function (VCSF), whereas the retina tissue exhibited severe Müller cell gliosis. Although danshensu treatment did not particularly reduce light-evoked damage to the photoreceptors, it significantly prevented Müller cell gliosis. Danshensu exerted protective effects against light-evoked deterioration on low spatial frequency-based VCSF as determined by the behavioral optomotor reflex method. Additionally, the protective effect of danshensu on VCSF can be reversed and blocked by the injection of a dopamine D1 receptor antagonist (SCH 23390). This study demonstrated that the major functional vision promotional effect of danshensu in vivo was through the dopamine D1 receptors enhancement pathway, rather than the structural protection of the retinas.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Lactates/therapeutic use , Receptors, Dopamine D1/drug effects , Retina/drug effects , Retinal Degeneration/prevention & control , Animals , Contrast Sensitivity/drug effects , Drugs, Chinese Herbal/pharmacology , Female , Lactates/pharmacology , Mice , Retinal Degeneration/drug therapy , Vision, Ocular/drug effects , Visual Acuity/drug effects
13.
Eur J Pharmacol ; 902: 174118, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33905702

ABSTRACT

Steroid sex hormones produce physiological effects in reproductive and non-reproductive tissues, such as the brain. In the brain, sex hormones receptors are expressed in cortical, limbic and midbrain areas modulating memory, arousal, fear and motivation between other behaviors. One neurotransmitters system regulated by sex hormones is dopamine (DA), where during adulthood, sex hormones promote neurophysiological and behavioral effects on DA systems such as tuberoinfundibular (prolactin secretion), nigrostriatal (motor circuit regulation) and mesocorticolimbic (driving of motivated behavior). However, the long-term effects induced by neonatal exposure to sex hormones on DA release induced by D1 receptor activation and its expression in nucleus accumbens (NAcc) have not been fully studied. To answer this question, neurochemical, cellular and molecular techniques were used. The data show sex differences in NAcc DA extracellular levels induced by D1 receptor activation and protein content of this receptor in male and female control rats. In addition, neonatal programming with a single dose of TP increases the NAcc protein content of D1 receptors of adult male and female rats. Our results show new evidence related with sex differences that could explain the dependence to drug of abuse in males and females, which may be associated with increased reinforcing effects of drugs of abuse.


Subject(s)
Dopamine/metabolism , Glutamic Acid/metabolism , Gonadal Steroid Hormones/pharmacology , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , gamma-Aminobutyric Acid/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Aging , Animals , Animals, Newborn , Dopamine Agonists/administration & dosage , Dopamine Agonists/pharmacology , Estradiol/administration & dosage , Estradiol/pharmacology , Female , Gonadal Steroid Hormones/administration & dosage , Injections , Male , Nucleus Accumbens/drug effects , Rats, Sprague-Dawley , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/drug effects , Sex Factors , Testosterone Propionate/administration & dosage , Testosterone Propionate/pharmacology , Time
14.
Biomed Pharmacother ; 139: 111500, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33901873

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most common fatal interstitial lung disease, with limited therapeutic options. The abnormal and uncontrolled differentiation and proliferation of fibroblasts have been confirmed to play a crucial role in driving the pathogenesis of IPF. Therefore, effective and well-tolerated antifibrotic agents that interfere with fibroblasts would be an ideal treatment, but no such treatments are available. Remarkably, we found that dopamine (DA) receptor D1 (D1R) and DA receptor D2 (D2R) were both upregulated in myofibroblasts in lungs of IPF patients and a bleomycin (BLM)-induced mouse model. Then, we explored the safety and efficacy of DA, fenoldopam (FNP, a selective D1R agonist) and sumanirole (SMR, a selective D2R agonist) in reversing BLM-induced pulmonary fibrosis. Further data showed that DA receptor agonists exerted potent antifibrotic effects in BLM-induced pulmonary fibrosis by attenuating the differentiation and proliferation of fibroblasts. Detailed pathway analysis revealed that DA receptor agonists decreased the phosphorylation of Smad2 induced by TGF-ß1 in primary human lung fibroblasts (PHLFs) and IMR-90 cells. Overall, DA receptor agonists protected mice from BLM-induced pulmonary fibrosis and may be therapeutically beneficial for IPF patients in a clinical setting.


Subject(s)
Antibiotics, Antineoplastic , Bleomycin , Dopamine Agonists/therapeutic use , Fibroblasts/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Animals , Benzimidazoles/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dopamine Agonists/pharmacology , Fenoldopam/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Smad2 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation/drug effects
15.
Psychopharmacology (Berl) ; 238(4): 991-1004, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410986

ABSTRACT

RATIONALE: Optimal decision-making necessitates evaluation of multiple rewards that are each offset by distinct costs, such as high effort requirement or high risk of failure. The neurotransmitter dopamine is fundamental toward these cost-benefit analyses, and D1-like and D2-like dopamine receptors differently modulate the reward-discounting effects of both effort and risk. However, measuring the role of dopamine in regulating decision-making between options associated with distinct costs exceeds the scope of traditional rodent economic decision-making paradigms. OBJECTIVES: We developed the effort vs probability economic conflict task (EvP) to model multimodal economic decision-making in rats. This task measures choice between two rewards of uniform magnitude associated with either a high effort requirement or risk of reward omission. We then tested the modulatory effects of systemic cocaine and D1/D2 blockade or activation on the preference between high-effort and high-risk alternatives. METHODS: In the EvP, two reinforcers of equal magnitude are associated with either (1) an effort requirement that increases throughout the session (1, 5, 10, and 20 lever presses), or (2) a low probability of reward receipt (25% of probabilistic choices). Critically, the reinforcer for each choice is comparable (one pellet), which eliminates the influence of magnitude discrimination on the decision-making process. After establishing the task, the dopamine transporter blocker cocaine and D1/D2 antagonists and agonists were administered prior to EvP performance. RESULTS: Preference shifted away from either effortful or probabilistic choice when either option became more costly, and this preference was highly variable between subjects and stable over time. Cocaine, D1 activation, and D2 blockade produced limited, dose-dependent shifts in choice preference contingent on high or low effort conditions. In contrast, D2 activation across multiple doses evoked a robust shift from effortful to risky choice that was evident even when clearly disadvantageous. CONCLUSIONS: The EvP clearly demonstrates that rats can evaluate distinct effortful or risky costs associated with rewards of comparable magnitude, and shift preference away from either option with increasing cost. This preference is more tightly linked to D2 than D1 receptor manipulation, suggesting D2-like receptors as a possible therapeutic target for maladaptive biases toward risk-taking over effort.


Subject(s)
Decision Making/physiology , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Reward , Animals , Dopamine/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Male , Probability , Rats , Rats, Long-Evans
16.
Psychopharmacology (Berl) ; 238(4): 1069-1085, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33432392

ABSTRACT

RATIONALE: There is an urgent need for novel drugs for treating cognitive deficits that are defining features of schizophrenia. The individual d- and l-enantiomers of the tetrahydroprotoberberine (THPB) d,l-govadine have been proposed for the treatment of cognitive deficiencies and positive symptoms of schizophrenia, respectively. OBJECTIVES: We examined the effects of d-, l-, or d,l-govadine on two distinct forms of cognitive flexibility perturbed in schizophrenia and compared them to those induced by a selective D1 receptor agonist and D2 receptor antagonist. METHODS: Male rats received d-, l-, or d,l-govadine (0.3, 0.5, and 1.0 mg/kg), D1 agonist SKF81297(0.1, 0.3, and 1.0 mg/kg), or D2 antagonist haloperidol (0.1-0.2 mg/kg). Experiment 1 used a strategy set-shifting task (between-subjects). In experiment 2, well-trained rats were tested on a probabilistic reversal task (within-subjects). RESULTS: d-Govadine improved set-shifting across all doses, whereas higher doses of l-govadine impaired set-shifting. SKF81297 reduced perseverative errors at the lowest dose. Low/high doses of haloperidol increased/decreased set-shifting errors, the latter "improvement" attributable to impaired retrieval of a previous acquired rule. Probabilistic reversal performance was less affected by these drugs, but d-govadine reduced errors during the first reversal, whereas l-govadine impaired initial discrimination learning. d,l-Govadine had no reliable cognitive effects but caused psychomotor slowing like l-govadine and haloperidol. CONCLUSIONS: These findings further highlight differences between two enantiomers of d,l-govadine that may reflect differential modulation of D1 and D2 receptors. These preclinical findings give further impetus to formal clinical evaluation of d-govadine as a treatment for cognitive deficiencies related to schizophrenia.


Subject(s)
Berberine Alkaloids/pharmacology , Cognition/drug effects , Dopamine Agents/pharmacology , Animals , Benzazepines/pharmacology , Berberine Alkaloids/chemistry , Discrimination Learning/drug effects , Dopamine Agonists/pharmacology , Haloperidol/pharmacology , Learning/drug effects , Male , Psychomotor Performance/drug effects , Rats , Rats, Long-Evans , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Schizophrenic Psychology , Stereoisomerism
17.
J Neurosci ; 41(11): 2360-2372, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33514676

ABSTRACT

Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Furthermore, insulin dysregulation accompanying obesity is linked to cognitive decline, depression, anxiety, and altered motivation that rely on NAc excitatory transmission. Using whole-cell patch-clamp and biochemical approaches, we determined how insulin affects NAc glutamatergic transmission in nonobese and obese male rats and the underlying mechanisms. We find that there are concentration-dependent, bidirectional effects of insulin on excitatory transmission, with insulin receptor activation increasing and IGF receptor activation decreasing NAc excitatory transmission. Increases in excitatory transmission were mediated by activation of postsynaptic insulin receptors located on MSNs. However, this effect was due to an increase in presynaptic glutamate release. This suggested feedback from MSNs to presynaptic terminals. In additional experiments, we found that insulin-induced increases in presynaptic glutamate release are mediated by opioid receptor-dependent disinhibition. Furthermore, obesity resulted in a loss of insulin receptor-mediated increases in excitatory transmission and a reduction in NAc insulin receptor surface expression, while preserving reductions in transmission mediated by IGF receptors. These results provide the first insights into how insulin influences excitatory transmission in the adult brain, and evidence for a previously unidentified form of opioid receptor-dependent disinhibition of NAc glutamatergic transmission.SIGNIFICANCE STATEMENT Data here provide the first insights into how insulin influences excitatory transmission in the adult brain, and identify previously unknown interactions between insulin receptor activation, opioids, and glutamatergic transmission. These data contribute to our fundamental understanding of insulin's influence on brain motivational systems and have implications for the use of insulin as a cognitive enhancer and for targeting of insulin receptors and IGF receptors to alter motivation.


Subject(s)
Endorphins/pharmacology , Glutamic Acid/metabolism , Insulin/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Receptor, Insulin/drug effects , Synaptic Transmission/drug effects , Animals , Diet, High-Fat , Male , Neurons/drug effects , Obesity/genetics , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Receptor, IGF Type 1/agonists , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects
18.
Clin Pharmacol Drug Dev ; 10(4): 393-403, 2021 04.
Article in English | MEDLINE | ID: mdl-33029934

ABSTRACT

Activation of the brain dopamine D1 receptor has attracted attention because of its promising role in neuropsychiatric diseases. Although efforts to develop D1 agonists have been challenging, a positive allosteric modulator (PAM), represents an attractive approach with potential better drug-like properties. Phase 1 single-ascending-dose (SAD; NCT03616795) and multiple-ascending-dose (MAD; NCT02562768) studies with the D1PAM mevidalen (LY3154207) were conducted with healthy subjects. There were no treatment-related serious adverse events (AEs) in these studies. In the SAD study, 25-200 mg administered orally showed dose-proportional pharmacokinetics (PK) and acute dose-related increases in systolic blood pressure (SBP) and diastolic blood pressure DBP) and pulse rate at doses ≥ 75 mg. AE related to central activation were seen at doses ≥ 75 mg. At 25 and 75 mg, central penetration of mevidalen was confirmed by measurement of mevidalen in cerebrospinal fluid. In the MAD study, once-daily doses of mevidalen at 15-150 mg for 14 days showed dose-proportional PK. Acute dose-dependent increases in SBP, DBP, and PR were observed on initial administration, but with repeated dosing the effects diminished and returned toward baseline levels. Overall, these findings support further investigation of mevidalen as a potential treatment for a range of neuropsychiatric disorders.


Subject(s)
Dopamine Agents , Isoquinolines , Receptors, Dopamine D1 , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Administration, Oral , Allosteric Regulation/drug effects , Blood Pressure/drug effects , Cohort Studies , Dopamine Agents/administration & dosage , Dopamine Agents/pharmacokinetics , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , Double-Blind Method , Heart Rate/drug effects , Isoquinolines/administration & dosage , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D1/metabolism
19.
J Neurosci ; 41(4): 711-725, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33268547

ABSTRACT

Elucidation of the mechanism of dopamine signaling to ERK that underlies plasticity in dopamine D1 receptor-expressing neurons leading to acquired cocaine preference is incomplete. NCS-Rapgef2 is a novel cAMP effector, expressed in neuronal and endocrine cells in adult mammals, that is required for D1 dopamine receptor-dependent ERK phosphorylation in mouse brain. In this report, we studied the effects of abrogating NCS-Rapgef2 expression on cAMP-dependent ERK→Egr-1/Zif268 signaling in cultured neuroendocrine cells; in D1 medium spiny neurons of NAc slices; and in either male or female mouse brain in a region-specific manner. NCS-Rapgef2 gene deletion in the NAc in adult mice, using adeno-associated virus-mediated expression of cre recombinase, eliminated cocaine-induced ERK phosphorylation and Egr-1/Zif268 upregulation in D1-medium spiny neurons and cocaine-induced behaviors, including locomotor sensitization and conditioned place preference. Abrogation of NCS-Rapgef2 gene expression in mPFC and BLA, by crossing mice bearing a floxed Rapgef2 allele with a cre mouse line driven by calcium/calmodulin-dependent kinase IIα promoter also eliminated cocaine-induced phospho-ERK activation and Egr-1/Zif268 induction, but without effect on the cocaine-induced behaviors. Our results indicate that NCS-Rapgef2 signaling to ERK in dopamine D1 receptor-expressing neurons in the NAc, but not in corticolimbic areas, contributes to cocaine-induced locomotor sensitization and conditioned place preference. Ablation of cocaine-dependent ERK activation by elimination of NCS-Rapgef2 occurred with no effect on phosphorylation of CREB in D1 dopaminoceptive neurons of NAc. This study reveals a new cAMP-dependent signaling pathway for cocaine-induced behavioral adaptations, mediated through NCS-Rapgef2/phospho-ERK activation, independently of PKA/CREB signaling.SIGNIFICANCE STATEMENT ERK phosphorylation in dopamine D1 receptor-expressing neurons exerts a pivotal role in psychostimulant-induced neuronal gene regulation and behavioral adaptation, including locomotor sensitization and drug preference in rodents. In this study, we examined the role of dopamine signaling through the D1 receptor via a novel pathway initiated through the cAMP-activated guanine nucleotide exchange factor NCS-Rapgef2 in mice. NCS-Rapgef2 in the NAc is required for activation of ERK and Egr-1/Zif268 in D1 dopaminoceptive neurons after acute cocaine administration, and subsequent enhanced locomotor response and drug seeking behavior after repeated cocaine administration. This novel component in dopamine signaling provides a potential new target for intervention in psychostimulant-shaped behaviors, and new understanding of how D1-medium spiny neurons encode the experience of psychomotor stimulant exposure.


Subject(s)
Cocaine/pharmacology , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dopaminergic Neurons/drug effects , Motor Activity/drug effects , Receptors, Dopamine D1/drug effects , Signal Transduction/drug effects , Animals , Cyclic AMP/physiology , Cyclic AMP Response Element-Binding Protein/genetics , Early Growth Response Protein 1/drug effects , Female , Guanine Nucleotide Exchange Factors/drug effects , Guanine Nucleotide Exchange Factors/genetics , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/drug effects , Prefrontal Cortex/drug effects , Ventral Striatum/drug effects
20.
J Parkinsons Dis ; 10(4): 1503-1514, 2020.
Article in English | MEDLINE | ID: mdl-32651332

ABSTRACT

BACKGROUND: We recently showed that striatal overexpression of brain derived neurotrophic factor (BDNF) by adeno-associated viral (AAV) vector exacerbated L-DOPA-induced dyskinesia (LID) in 6-OHDA-lesioned rats. An extensive sprouting of striatal serotonergic terminals accompanied this effect, accounting for the increased susceptibility to LID. OBJECTIVE: We set to investigate whether the BDNF effect was restricted to LID, or extended to dyskinesia induced by direct D1 receptor agonists. METHODS: Unilaterally 6-OHDA-lesioned rats received a striatal injection of an AAV vector to induce BDNF or GFP overexpression. Eight weeks later, animals received daily treatments with a low dose of SKF82958 (0.02 mg/kg s.c.) and development of dyskinesia was evaluated. At the end of the experiment, D1 and D3 receptors expression levels and D1 receptor-dependent signaling pathways were measured in the striatum. RESULTS: BDNF overexpression induced significant worsening of dyskinesia induced by SKF82958 compared to the GFP group and increased the expression of D3 receptor at striatal level, even in absence of pharmacological treatment; by contrast, D1 receptor levels were not affected. In BDNF-overexpressing striata, SKF82958 administration resulted in increased levels of D1-D3 receptors co-immunoprecipitation and increased phosphorylation levels of Thr34 DARPP-32 and ERK1/2. CONCLUSION: Here we provide evidence for a functional link between BDNF, D3 receptors and D1-D3 receptor close interaction in the augmented susceptibility to dyskinesia in 6-OHDA-lesioned rats. We suggest that D1-D3 receptors interaction may be instrumental in driving the molecular alterations underlying the appearance of dyskinesia; its disruption may be a therapeutic strategy for treating dyskinesia in PD patients.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Dopamine Agonists/pharmacology , Dyskinesia, Drug-Induced/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D3/metabolism , Animals , Benzazepines/pharmacology , Brain-Derived Neurotrophic Factor/drug effects , Corpus Striatum/drug effects , Disease Models, Animal , Disease Susceptibility/chemically induced , Dyskinesia, Drug-Induced/etiology , Immunoprecipitation , Oxidopamine , Rats , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D3/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...