Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.949
Filter
1.
Epilepsy Res ; 203: 107380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781737

ABSTRACT

OBJECTIVE: North Sea Progressive Myoclonus Epilepsy (NS-PME) is a rare genetic disorder characterized by ataxia, myoclonus and seizures with a progressive course. Although the cause of NS-PME is known, namely a homozygous mutation in the GOSR2 gene (c.430 G>T; p. Gly144Trp), sufficient treatment is lacking. Despite combinations of on average 3-5 anti-seizure medications (ASMs), debilitating myoclonus and seizures persist. Here we aimed to gain insight into the most effective anti-convulsive target in NS-PME by evaluating the individual effects of ASMs in a NS-PME Drosophila model. METHOD: A previously generated Drosophila model for NS-PME was used displaying progressive heat-sensitive seizures. We used this model to test 1. a first-generation ASM (sodium barbital), 2. common ASMs used in NS-PME (clonazepam, valproic acid, levetiracetam, ethosuximide) and 3. a novel third-generation ASM (ganaxolone) with similar mode of action to sodium barbital. Compounds were administered by adding them to the food in a range of concentrations. After 7 days of treatment, the percentage of heat-induced seizures was determined and compared to non-treated but affected controls. RESULTS: As previously reported in the NS-PME Drosophila model, sodium barbital resulted in significant seizure suppression, with increasing effect at higher dosages. Of the commonly prescribed ASMs, clonazepam and ethosuximide resulted in significant seizure suppression, whereas both valproic acid and levetiracetam did not show any changes in seizures. Interestingly, ganaxolone did result in seizure suppression as well. CONCLUSION: Of the six drugs tested, three of the four that resulted in seizure suppression (sodium barbital, clonazepam, ganaxolone) are primary known for their direct effect on GABAA receptors. This suggests that GABAA could be a potentially important target in the treatment of NS-PME. Consequently, these findings add rationale to the exploration of the clinical effect of ganaxolone in NS-PME and other progressive myoclonus epilepsies.


Subject(s)
Anticonvulsants , Disease Models, Animal , Drosophila , Myoclonic Epilepsies, Progressive , Animals , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Myoclonic Epilepsies, Progressive/genetics , Myoclonic Epilepsies, Progressive/drug therapy , Animals, Genetically Modified , Receptors, GABA-A/genetics , Receptors, GABA-A/drug effects
2.
Neurosci Lett ; 833: 137828, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38772437

ABSTRACT

There is a critical need for safer and better-tolerated alternatives to address the current limitations of antidepressant treatments for major depressive disorder. Recently, drugs targeting the GABA system via α5-containing GABAA receptors (α5-GABAAR) as negative allosteric modulators (α5-NAMs) have shown promise in alleviating stress-related behaviors in preclinical studies, suggesting that α5-NAMs may have translational relevance as novel antidepressant medications. Here, we evaluated the efficacy of Basmisanil, an α5-NAM that has been evaluated in Phase 2 clinical studies as a cognitive enhancer, in a battery of behavioral tests relevant to coping strategies, motivation, and aversion in male mice, along with plasma and brain pharmacokinetic measurements. Our findings reveal that Basmisanil induces dose-dependent rapid antidepressant-like responses in the forced swim test and sucrose splash test without promoting locomotor stimulating effects. Furthermore, Basmisanil elicits sustained behavioral responses in the female urine sniffing test and sucrose splash test, observed 24 h and 48 h post-treatment, respectively. Bioanalysis of plasma and brain samples confirms effective blood-brain barrier penetration by Basmisanil and extrapolation to previously published data suggest that effects were observed at doses (10 and 30 mg/kg i.p.) corresponding to relatively modest levels of α5-GABAAR occupancy (40-65 %). These results suggest that Basmisanil exhibits a combination of rapid and sustained antidepressant-like effects highlighting the potential of α5-NAMs as a novel therapeutic strategy for depression.


Subject(s)
Antidepressive Agents , Receptors, GABA-A , Animals , Male , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/pharmacokinetics , Mice , Brain/metabolism , Brain/drug effects , Female , Behavior, Animal/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice, Inbred C57BL
3.
J Headache Pain ; 25(1): 75, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724972

ABSTRACT

BACKGROUND: GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS: Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS: Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION: Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.


Subject(s)
Migraine Disorders , Phenotype , Rats, Wistar , Receptors, GABA-A , Animals , Migraine Disorders/metabolism , Migraine Disorders/drug therapy , Migraine Disorders/physiopathology , Rats , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Male , Disease Models, Animal , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Epilepsy, Absence/drug therapy , Epilepsy, Absence/physiopathology , Nitroglycerin/pharmacology , Nitroglycerin/toxicity , Photophobia/etiology , Photophobia/physiopathology
4.
Anesthesiology ; 140(6): 1192-1200, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38624275

ABSTRACT

Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.


Subject(s)
Receptors, GABA-A , Animals , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Mice , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Humans , Synapses/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Neuroscience ; 545: 148-157, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38513764

ABSTRACT

In this study, the electrophysiological and biochemical consequences of repeated exposure to morphine in male rats on glutamatergic synaptic transmission, synaptic plasticity, the expression of GABA receptors and glutamate receptors at the temporoammonic-CA1 synapse along the longitudinal axis of the hippocampus (dorsal, intermediate, ventral, DH, IH, VH, respectively) were investigated. Slice electrophysiological methods, qRT-PCR, and western blotting techniques were used to characterize synaptic plasticity properties. We showed that repeated morphine exposure (RME) reduced excitatory synaptic transmission and ability for long-term potentiation (LTP) in the VH as well as eliminated the dorsoventral difference in paired-pulse responses. A decreased expression of NR2B subunit in the VH and an increased expression GABAA receptor of α1 and α5 subunits in the DH were observed following RME. Furthermore, RME did not affect the expression of NR2A, AMPA receptor subunits, and γ2GABAA and GABAB receptors in either segment of the hippocampus. In sum, the impact of morphine may differ depending on the region of the hippocampus studied. A distinct change in the short- and long-term synaptic plasticity along the hippocampus long axis due to repeated morphine exposure, partially mediated by a change in the expression profile of glutamatergic receptor subunits. These findings can be useful in further understanding the cellular mechanism underlying deficits in information storage and, more generally, cognitive processes resulting from chronic opioid abuse.


Subject(s)
Morphine , Neuronal Plasticity , Rats, Sprague-Dawley , Animals , Male , Morphine/pharmacology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Rats , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Narcotics/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, GABA/metabolism , Receptors, GABA/drug effects
6.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685955

ABSTRACT

Acid-sensing ion channels (ASICs) are proton-gated ion channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Sevanol was reported previously as a naturally-occurring ASIC inhibitor from thyme with favorable analgesic and anti-inflammatory activity. Using electrophysiological methods, we found that in the high micromolar range, the compound effectively inhibited homomeric ASIC1a and, in sub- and low-micromolar ranges, positively modulated the currents of α1ß2γ2 GABAA receptors. Next, we tested the compound in anxiety-related behavior models using a targeted delivery into the hippocampus with parallel electroencephalographic measurements. In the open field, 6 µM sevanol reduced both locomotor and θ-rhythmic activity similar to GABA, suggesting a primary action on the GABAergic system. At 300 µM, sevanol markedly suppressed passive avoidance behavior, implying alterations in conditioned fear memory. The observed effects could be linked to distinct mechanisms involving GABAAR and ASIC1a. These results elaborate the preclinical profile of sevanol as a candidate for drug development and support the role of ASIC channels in fear-related functions of the hippocampus.


Subject(s)
Thymus Plant , Acid Sensing Ion Channels , Fear/drug effects , gamma-Aminobutyric Acid , Hippocampus/drug effects , Receptors, GABA-A/drug effects , Thymus Plant/chemistry
7.
Nature ; 622(7981): 195-201, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730991

ABSTRACT

Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1ß2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/ß subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.


Subject(s)
Cryoelectron Microscopy , Neurosteroids , Receptors, GABA-A , gamma-Aminobutyric Acid , Animals , Mice , Binding Sites/drug effects , Depression, Postpartum/drug therapy , Flurazepam/pharmacology , gamma-Aminobutyric Acid/metabolism , Hypnotics and Sedatives/pharmacology , Ion Channel Gating/drug effects , Neurosteroids/metabolism , Neurosteroids/pharmacology , Photobleaching , Pregnanolone/pharmacology , Protein Conformation/drug effects , Protein Subunits/chemistry , Protein Subunits/drug effects , Protein Subunits/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Receptors, GABA-A/ultrastructure , Sleep Initiation and Maintenance Disorders/drug therapy , Zolpidem/pharmacology
8.
J Cogn Neurosci ; 35(6): 976-989, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36976900

ABSTRACT

Animals need to cope with abundant sensory information, and one strategy is to selectively direct attention to only the most relevant part of the environment. Although the cortical networks of selective attention have been studied extensively, its underlying neurotransmitter systems, especially the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), remain less well understood. Increased GABAA receptor activity because of administration of benzodiazepines such as lorazepam is known to slow reactions in cognitive tasks. However, there is limited knowledge about GABAergic involvement in selective attention. Particularly, it is unknown whether increased GABAA receptor activity slows the build-up of selectivity or generally widens attentional focus. To address this question, participants (n = 29) received 1 mg lorazepam and placebo (within-subjects, double-blind) and performed an extended version of the flanker task. The spatial distribution of selective attention was studied by systematically manipulating number and position of incongruent flankers; the temporal build-up was characterized using delta plots. An online task version was presented to an independent, unmedicated sample (n = 25) to verify task effects. Under placebo and in the unmedicated sample, only the number of incongruent flankers, but not their position, influenced RTs. Incongruent flankers impaired RTs more strongly under lorazepam than placebo, especially when adjacent to the target. Delta plot analyses of RT showed that this effect persisted even when participants reacted slowly, indicating that lorazepam-induced impairments in selective attention do not result from simply slowed down build-up of selectivity. Instead, our data indicate that increased GABAA receptor activity widens the attentional focus.


Subject(s)
Attention , GABA Modulators , Receptors, GABA-A , Double-Blind Method , Lorazepam/pharmacology , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Humans , Attention/drug effects , Attention/physiology , GABA Modulators/pharmacology
9.
Turk J Med Sci ; 53(5): 1058-1066, 2023.
Article in English | MEDLINE | ID: mdl-38813010

ABSTRACT

Background/aim: Propofol is a positive allosteric modulator of GABAA receptor (GABAAR) and has potent antioxidant activity. The aim of this study was to investigate the effect of propofol on damage to the cerebral cortex and hippocampus in a lithium chloride (LiCl)-pilocarpine animal model of status epilepticus (SE). Materials and methods: Adult male Sprague Dawley rats were injected with LiCl-pilocarpine to induce SE. They were then randomized and injected 30 min later with vehicle saline (SE+saline), propofol (SE+PPF, 50 mg/kg), Diazepam (SE+DZP, 10 mg/kg), Scopolamine (SE+SCOP, 10 mg/kg), or MK-801 (SE+MK-801, 2 mg/kg). Another group of rats received saline only and served as the naïve control (BLK). The levels of superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) in the serum, cortex and hippocampus were analyzed 2 and 24 h posttreatment. The degree of tissue damage in the cortex and hippocampus of individual rats was assessed 24 h posttreatment, together with expression of the GABAAR α1 subunit. Results: The propofol group showed reduced levels of tissue damage in the cerebral cortex and hippocampus, decreased levels of MDA, and increased levels of GSH compared to the SE+saline group. No changes in SOD level were observed in serum and tissue samples from the cortex and hippocampus of SE+saline rats. Immunohistochemistry and Western blot assays showed that propofol treatment significantly increased the expression of GABAAR α1 subunit in the cortical and hippocampal tissues of SE rats. Conclusion: Propofol treatment protected against SE-induced tissue injury in the cortex and hippocampus of rats. This was due at least in part to its antioxidant activity and to its induction of GABAAR α1 subunit expression in the brain.


Subject(s)
Disease Models, Animal , Lithium Chloride , Oxidative Stress , Pilocarpine , Propofol , Rats, Sprague-Dawley , Receptors, GABA-A , Status Epilepticus , Animals , Propofol/pharmacology , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/drug therapy , Pilocarpine/toxicity , Male , Lithium Chloride/pharmacology , Oxidative Stress/drug effects , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Brain Injuries/metabolism , Brain Injuries/drug therapy , Brain Injuries/chemically induced , Malondialdehyde/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects
10.
Can J Gastroenterol Hepatol ; 2022: 3618090, 2022.
Article in English | MEDLINE | ID: mdl-36523650

ABSTRACT

Background and Aims: A third of patients with primary biliary cholangitis (PBC) experience poorly understood cognitive symptoms, with a significant impact on quality of life (QOL), and no effective medical treatment. Allopregnanolone, a neurosteroid, is a positive allosteric modulator of gamma-aminobutyricacid-A (GABA-A) receptors, associated with disordered mood, cognition, and memory. This study explored associations between allopregnanolone and a disease-specific QOL scoring system (PBC-40) in PBC patients. Method: Serum allopregnanolone levels were measured in 120 phenotyped PBC patients and 40 age and gender-matched healthy controls. PBC subjects completed the PBC-40 at recruitment. Serum allopregnanolone levels were compared across PBC-40 domains for those with none/mild symptoms versus severe symptoms. Results: There were no overall differences in allopregnanolone levels between healthy controls (median = 0.03 ng/ml (IQR = 0.025)) and PBC patients (0.031 (0.42), p = 0.42). Within the PBC cohort, higher allopregnanolone levels were observed in younger patients (r (120) = -0.53, p < 0.001) but not healthy controls (r (39) = -0.21, p = 0.21). Allopregnanolone levels were elevated in the PBC-40 domains, cognition (u = 1034, p = 0.02), emotional (u = 1374, p = 0.004), and itch (u = 795, p = 0.03). Severe cognitive symptoms associated with a younger age: severe (50 (12)) vs. none (60 (13); u = 423 p = 0.001). Conclusion: Elevated serum allopregnanolone is associated with severe cognitive, emotional, and itch symptoms in PBC, in keeping with its known action on GABA-A receptors. Existing novel compounds targeting allopregnanolone could offer new therapies in severely symptomatic PBC, satisfying a significant unmet need.


Subject(s)
Liver Cirrhosis, Biliary , Neurosteroids , Receptors, GABA-A , Humans , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/drug therapy , Neurosteroids/pharmacology , Neurosteroids/therapeutic use , Pregnanolone/pharmacology , Pregnanolone/therapeutic use , Quality of Life , Receptors, GABA-A/drug effects
11.
Pharm Biol ; 60(1): 1341-1348, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35840545

ABSTRACT

CONTEXT: The sleep-promoting activity of Nelumbo nucifera Gaertn. (Nymphaeaceae) alkaloids in leaves or seeds are well known. However, the sleep-promoting activity of the lotus rhizome (LE), which is used mainly as food, has not yet been evaluated. OBJECTIVE: We investigated the sleep-promoting activity of LE water extract. MATERIALS AND METHODS: Institute of Cancer Research (ICR) mice (n = 8) were subject to a pentobarbital-induced sleep test to assess changes in sleep latency and duration following the administration of LE (80-150 mg/kg). In addition, electroencephalography analysis was performed to determine the sleep quality after LE treatment as well as the sleep recovery effect of LE using a caffeine-induced insomnia SD rat model. Real-time PCR and western blot analysis were performed to investigate the expression of neurotransmitter receptors, and the GABAA receptor antagonists were used for receptor binding analysis. RESULTS: An oral administration of 150 mg/kg LE significantly increased sleep duration by 24% compared to the control. Furthermore, LE increased nonrapid eye movement (NREM) sleep by increasing theta and delta powers. In the insomnia model, LE increased sleep time by increasing NREM sleep. Moreover, treatment with picrotoxin and flumazenil decreased the sleep time by 33% and 23%, respectively, indicating an involvement of the GABAA receptor in the sleep-enhancing activity of LE. The expression of GABAA receptors and the concentration of GABA in the brain were increased by LE. DISCUSSION AND CONCLUSIONS: The results suggest that the sleep-promoting activity of LE was via the GABAA receptor. Collectively, these data show that LE may promote sleep.


Subject(s)
Lotus , Nelumbo , Plant Extracts , Receptors, GABA-A , Sleep Initiation and Maintenance Disorders , Animals , Mice , Nelumbo/metabolism , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Rhizome/chemistry , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Water/pharmacology , gamma-Aminobutyric Acid/pharmacology
12.
Med Clin North Am ; 106(1): 113-129, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34823725

ABSTRACT

Benzodiazepine and related sedative use has been increasing. There has been a growing number of unregulated novel psychoactive substances, including designer benzodiazepines. Benzodiazepines have neurobiological and pharmacologic properties that result in a high potential for misuse and physical dependence. Options for discontinuing long-term benzodiazepine use include an outpatient benzodiazepine taper or inpatient withdrawal management at a hospital or detoxification facility. The quality of evidence on medications for benzodiazepine discontinuation is overall low, whereas cognitive behavioral therapy has shown the most benefit in terms of behavioral treatments. Benzodiazepines may also have significant adverse effects, increasing the risk of overdose and death.


Subject(s)
Benzodiazepines/adverse effects , Drug Tapering/methods , Hypnotics and Sedatives/adverse effects , Substance Withdrawal Syndrome/prevention & control , Substance-Related Disorders/epidemiology , Adult , Benzodiazepines/pharmacology , Designer Drugs , Female , Humans , Hypnotics and Sedatives/pharmacology , Inactivation, Metabolic/physiology , Male , Neurobiology , Receptors, GABA-A/drug effects , Substance Withdrawal Syndrome/therapy , Substance-Related Disorders/complications , Substance-Related Disorders/ethnology , Young Adult
13.
Neuropharmacology ; 206: 108934, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34933049

ABSTRACT

Genetic differences in cerebellar sensitivity to alcohol (EtOH) influence EtOH consumption phenotype in animal models and contribute to risk for developing an alcohol use disorder in humans. We previously determined that EtOH enhances cerebellar granule cell (GC) tonic GABAAR currents in low EtOH consuming rodent genotypes, but suppresses it in high EtOH consuming rodent genotypes. Moreover, pharmacologically counteracting EtOH suppression of GC tonic GABAAR currents reduces EtOH consumption in high alcohol consuming C57BL/6J (B6J) mice, suggesting a causative role. In the low EtOH consuming rodent models tested to date, EtOH enhancement of GC tonic GABAAR currents is mediated by inhibition of neuronal nitric oxide synthase (nNOS) which drives increased vesicular GABA release onto GCs and a consequent enhancement of tonic GABAAR currents. Consequently, genetic variation in nNOS expression across rodent genotypes is a key determinant of whether EtOH enhances or suppresses tonic GABAAR currents, and thus EtOH consumption. We used behavioral, electrophysiological, and immunocytochemical techniques to further explore the relationship between EtOH consumption and GC GABAAR current responses in C57BL/6N (B6N) mice. B6N mice consume significantly less EtOH and achieve significantly lower blood EtOH concentrations than B6J mice, an outcome not mediated by differences in taste. In voltage-clamped GCs, EtOH enhanced the GC tonic current in B6N mice but suppressed it in B6J mice. Immunohistochemical and electrophysiological studies revealed significantly higher nNOS expression and function in the GC layer of B6N mice compared to B6Js. Collectively, our data demonstrate that despite being genetically similar, B6N mice consume significantly less EtOH than B6J mice, a behavioral difference paralleled by increased cerebellar nNOS expression and opposite EtOH action on GC tonic GABAAR currents in each genotype.


Subject(s)
Alcohol Drinking/physiopathology , Alcoholism/physiopathology , Central Nervous System Depressants/pharmacology , Cerebellar Cortex , Electrophysiological Phenomena , Ethanol/pharmacology , Nitric Oxide Synthase Type I , Receptors, GABA-A , Animals , Behavior, Animal/physiology , Central Nervous System Depressants/administration & dosage , Cerebellar Cortex/drug effects , Cerebellar Cortex/metabolism , Disease Models, Animal , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Ethanol/administration & dosage , Male , Mice , Mice, Inbred C57BL/genetics , Nitric Oxide Synthase Type I/drug effects , Nitric Oxide Synthase Type I/metabolism , Receptors, GABA-A/drug effects , Receptors, GABA-A/physiology , Species Specificity
14.
J Med Chem ; 64(24): 17795-17812, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34908407

ABSTRACT

The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4ßδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alkanes/pharmacology , GABA Antagonists/pharmacology , Receptors, GABA-A/drug effects , Adjuvants, Immunologic/chemistry , Alkanes/chemistry , Cell Proliferation/drug effects , GABA Antagonists/chemistry , Humans , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects
15.
Neuropharmacology ; 200: 108807, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34562442

ABSTRACT

Interoception refers to the perception of the internal state of the body and is increasingly being recognized as an important factor in mental health disorders. Drugs of abuse produce powerful interoceptive states that are upstream of behaviors that drive and influence drug intake, and addiction pathology is impacted by interoceptive processes. The goal of the present review is to discuss interoceptive processes related to alcohol. We will cover physiological responses to alcohol, how interoceptive states can impact drinking, and the recruitment of brain networks as informed by clinical research. We also review the molecular and brain circuitry mechanisms of alcohol interoceptive effects as informed by preclinical studies. Finally, we will discuss emerging treatments with consideration of interoception processes. As our understanding of the role of interoception in drug and alcohol use grows, we suggest that the convergence of information provided by clinical and preclinical studies will be increasingly important. Given the complexity of interoceptive processing and the multitude of brain regions involved, an overarching network-based framework can provide context for how focused manipulations modulate interoceptive processing as a whole. In turn, preclinical studies can systematically determine the roles of individual nodes and their molecular underpinnings in a given network, potentially suggesting new therapeutic targets and directions. As interoceptive processing drives and influences motivation, emotion, and subsequent behavior, consideration of interoception is important for our understanding of processes that drive ongoing drinking and relapse.


Subject(s)
Alcoholism/physiopathology , Brain/drug effects , Ethanol/pharmacology , Interoception/drug effects , Animals , Behavior, Addictive/physiopathology , Drug Evaluation, Preclinical , Emotions/drug effects , Humans , Receptors, GABA-A/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Sex Factors , Stress, Psychological/physiopathology
16.
Neuropharmacology ; 198: 108779, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34481835

ABSTRACT

The basal amygdala (BA) has been implicated in encoding fear and its extinction. The level of serotonin (5-HT) in the BA increases due to arousal and stress related to aversive stimuli. The effects of 5-HT7 receptor (5-HT7R) activation and blockade on the activity of BA neurons have not yet been investigated. In the present study, a transgenic mouse line carrying green fluorescent protein (GFP) reporter gene was used to identify neurons that express the 5-HT7R. GFP immunoreactivity was present mainly in cells that also expressed GAD67 or parvalbumin (PV), the phenotypic markers for GABAergic interneurons. Most cells showing GFP fluorescence demonstrated firing patterns characteristic of BA inhibitory interneurons. Activation of 5-HT7Rs resulted in a depolarization and/or occurrence of spontaneous spiking activity of BA interneurons that was accompanied by an increase in the mean frequency and mean amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from BA principal neurons. These effects were blocked by a specific 5-HT7R antagonist, SB269970 and were absent in slices from 5-HT7R knockout mice. Activation of 5-HT7Rs also decreased the mean frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from BA principal neurons, which was blocked by the GABAA receptor antagonist picrotoxin. Neither inhibitory nor excitatory miniature postsynaptic currents (mIPSCs/mEPSCs) were affected by 5-HT7R activation. These results show that in the BA 5-HT7Rs stimulate an activity-dependent enhancement of inhibitory input from local interneurons to BA principal neurons and provide insights about the possible involvement of BA serotonergic receptors in neuronal mechanisms underlying fear memory.


Subject(s)
Amygdala/drug effects , Neurons/drug effects , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Synapses/drug effects , Animals , Electrophysiological Phenomena , Excitatory Postsynaptic Potentials/drug effects , GABAergic Neurons/drug effects , Green Fluorescent Proteins , Interneurons/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenols/pharmacology , Picrotoxin/pharmacology , Receptors, GABA-A/drug effects , Receptors, Serotonin/genetics , Sulfonamides/pharmacology
17.
Neuropharmacology ; 199: 108785, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34509495

ABSTRACT

Preclinical evidence suggests a key role for GABAA receptors containing the α5 subunit (i.e., α5GABAA receptors) in the abuse-related effects of alcohol, including the reinforcing and discriminative stimulus effects, as well as cue-induced alcohol-seeking behavior. However, the contribution of this GABAA receptor subtype to relapse-like drinking behavior remains unknown. The present study evaluated the capacity of ligands targeting α5GABAA receptors to modulate the alcohol deprivation effect (ADE), a model of relapse-like drinking. Groups of Sprague-Dawley rats underwent repeated cycles of long-term access to alcohol solutions (5%, 10%, 20% v/v) and water in the home cage followed by water only deprivation periods. Upon evidence that the ADE could be reliably expressed across cycles, drug treatment was initiated. One group received the α5GABAA receptor-preferring agonist QH-ii-066 and the other group received the α5GABAA receptor-selective inverse agonist L-655,708. At the end of ADE testing, rats underwent testing in the elevated zero maze under vehicle or L-655,708 treatment for assessment of anxiety-like behavior. The ADE was reliably expressed across repeated cycles of alcohol access/deprivation in a subset of rats. Low doses of QH-ii-066 enhanced expression of the ADE; whereas, L-655,708 dose-dependently inhibited expression of the ADE. L-655,708 did not engender anxiogenic effects in the elevated zero maze under the conditions evaluated. These findings suggest a key role for α5GABAA receptor mechanisms in relapse-like drinking. Moreover, they suggest that α5GABAA receptors may represent a novel pharmacological target for the development of medications to prevent or reduce alcohol relapse.


Subject(s)
Alcohol Drinking/drug therapy , Alcoholism/drug therapy , GABA-A Receptor Agonists/pharmacology , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Animals , Behavior, Animal/drug effects , Benzodiazepines/pharmacology , Disease Models, Animal , Imidazoles/pharmacology , Ligands , Male , Rats , Rats, Sprague-Dawley , Recurrence
18.
J Neurophysiol ; 126(4): 1090-1100, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34406874

ABSTRACT

The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) ß2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor ß2 versus ß3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from ß2-N265M mice resisted etomidate suppression of LTP, indicating that the ß2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, ß2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of ß3-N265M mice, we also examined the contributions of ß2- versus ß3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both ß2- and ß3-GABAARs contribute to GABAA,slow inhibition and that both ß2- and ß3-GABAARs contribute to feedback inhibition, whereas only ß3-GABAARs contribute to feedforward inhibition. We conclude that modulation of ß2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that ß2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.


Subject(s)
Anesthetics, Intravenous/pharmacology , Etomidate/pharmacology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Neural Inhibition/drug effects , Pyramidal Cells/drug effects , Receptors, GABA-A/drug effects , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic
19.
J Neurophysiol ; 126(4): 1209-1220, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34406887

ABSTRACT

Presympathetic neurons in the paraventricular nucleus of the hypothalamus (PVN) play a key role in cardiovascular regulation. We have previously shown that brain-derived neurotrophic factor (BDNF), acting in the PVN, increases sympathetic activity and blood pressure and serves as a key regulator of stress-induced hypertensive responses. BDNF is known to alter glutamatergic and GABA-ergic signaling broadly in the central nervous system, but whether BDNF has similar actions in the PVN remains to be investigated. Here, we tested the hypothesis that increased BDNF expression in the PVN elevates blood pressure by enhancing N-methyl-d-aspartate (NMDA) receptor (NMDAR)- and inhibiting GABAA receptor (GABAAR)-mediated signaling. Sprague-Dawley rats received bilateral PVN injections of AAV2 viral vectors expressing green fluorescent protein (GFP) or BDNF. Three weeks later, cardiovascular responses to PVN injections of NMDAR and GABAAR agonists and antagonists were recorded under α-chloralose-urethane anesthesia. In addition, expressions of excitatory and inhibitory signaling components in the PVN were assessed using immunofluorescence. Our results showed that NMDAR inhibition led to a greater decrease in blood pressure in the BDNF vs. GFP group, while GABAAR inhibition led to greater increases in blood pressure in the GFP group compared to BDNF. Conversely, GABAAR activation decreased blood pressure significantly more in GFP vs. BDNF rats. In addition, immunoreactivity of NMDAR1 was upregulated, while GABAAR-α1 and K+/Cl- cotransporter 2 were downregulated by BDNF overexpression in the PVN. In summary, our findings indicate that hypertensive actions of BDNF within the PVN are mediated, at least in part, by augmented NMDAR and reduced GABAAR signaling.NEW & NOTEWORTHY We have shown that BDNF, acting in the PVN, elevates blood pressure in part by augmenting NMDA receptor-mediated excitatory input and by diminishing GABAA receptor-mediated inhibitory input to PVN neurons. In addition, we demonstrate that elevated BDNF expression in the PVN upregulates NMDA receptor immunoreactivity and downregulates GABAA receptor as well as KCC2 transporter immunoreactivity.


Subject(s)
Blood Pressure/physiology , Brain-Derived Neurotrophic Factor/metabolism , Electrophysiological Phenomena/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Sympathetic Nervous System/physiology , Animals , Blood Pressure/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Electrophysiological Phenomena/drug effects , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/drug effects , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , Sympathetic Nervous System/drug effects
20.
J Psychopharmacol ; 35(12): 1496-1509, 2021 12.
Article in English | MEDLINE | ID: mdl-34278874

ABSTRACT

BACKGROUND: Inhibitory control is a crucial executive function with high relevance to mental and physical well-being. However, there are still unanswered questions regarding its neural mechanisms, including the role of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). AIMS: This study examined the effects of lorazepam (0.5 mg and 1 mg), a positive allosteric modulator at the GABAA receptor, on response inhibition and interference control. We also explored the heterogeneity of inhibitory control and calculated delta plots to explore whether lorazepam affects the gradual build-up of inhibition and activation over time. METHODS: N = 50 healthy participants performed antisaccade, Eriksen flanker and Simon tasks in a within-subjects, placebo-controlled, double-blind randomized design. RESULTS: Lorazepam increased reaction time (RT) and error rates dose dependently in all tasks (p ⩽ 0.005). In the antisaccade and Simon tasks, lorazepam increased congruency effects for error rate (p ⩽ 0.029) but not RT (p ⩾ 0.587). In the Eriksen flanker task, both congruency effects were increased by the drug (p ⩽ 0.031). Delta plots did not reflect drug-induced changes in inhibition and activation over time. Delta plots for RT in the Simon task were negative-going, as expected, whereas those for the antisaccade and flanker tasks were positive-going. CONCLUSIONS: This study provides evidence for GABAergic involvement in performance on response inhibition and interference control tasks. Furthermore, our findings highlight the diversity of the broader construct of inhibitory control while also pointing out similarities between different inhibitory control tasks. In contrast to RT and error rates, the cognitive processes indexed by delta plots may not be sensitive to GABAergic modulation.


Subject(s)
Attention/drug effects , Executive Function/drug effects , GABA Agents/pharmacology , Inhibition, Psychological , Lorazepam/pharmacology , Psychomotor Performance/drug effects , Adult , Double-Blind Method , Female , Humans , Male , Receptors, GABA-A/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...