Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.126
Filter
1.
PLoS One ; 19(6): e0304985, 2024.
Article in English | MEDLINE | ID: mdl-38843278

ABSTRACT

Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells, which binds to CD47, a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells, therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer, several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However, the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited, suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end, DS-1103a, a newly developed anti-human SIRPα antibody (Ab), was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd), DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2, respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model, vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab, implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore, in syngeneic mouse models, both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together, this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.


Subject(s)
Antigens, Differentiation , CD47 Antigen , Immunoconjugates , Receptors, Immunologic , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , Animals , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Humans , Mice , Immunoconjugates/pharmacology , Antigens, Differentiation/immunology , Cell Line, Tumor , Female , Trastuzumab/pharmacology , Topoisomerase I Inhibitors/pharmacology , Immunotherapy/methods , Mice, Inbred BALB C
2.
Oncoimmunology ; 13(1): 2346359, 2024.
Article in English | MEDLINE | ID: mdl-38737794

ABSTRACT

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
3.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724599

ABSTRACT

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Subject(s)
Antibodies, Bispecific , Cricetulus , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , CHO Cells , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
4.
Biomed Pharmacother ; 175: 116675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733770

ABSTRACT

The complex of B- and T-lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) plays a critical role in immune regulation and has emerged as a promising therapeutic target for cancer treatment. In this study, we investigated the potential of the peptide inhibitor HVEM(14-39) to restore peripheral T cell activity in patients with advanced melanoma. In these patients, CD8+ T cells downregulated BTLA expression and increased HVEM expression upon activation. The addition of HVEM(14-39) reduced the percentage of BTLA+ CD8+ T cells and increased the subpopulation of HVEM+ CD8+ T cells. Additionally, HVEM(14-39) enhanced T cell activation, proliferation, and the shift toward effector memory T cell subpopulations. Finally, this peptide affected the proliferation rate and late apoptosis of melanoma cell line in co-culture with T cells. These findings suggest that HVEM(14-39) can overcome T cell exhaustion and improve antitumor responses. Peptide-based immunotherapy targeting the BTLA-HVEM complex offers a promising alternative to monoclonal antibody-based therapies, with the potential for fewer side effects and higher treatment efficacy.


Subject(s)
Cell Proliferation , Melanoma , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Apoptosis/drug effects , Male , Female , Middle Aged , Peptide Fragments/pharmacology , Aged , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
5.
Curr Med Chem ; 31(13): 1634-1645, 2024.
Article in English | MEDLINE | ID: mdl-38666504

ABSTRACT

Immune checkpoint inhibitors (ICIs) have shown unprecedented efficacy in treating many advanced cancers. Although FDA-approved ICIs have shown promising efficacy in treating many advanced cancers, their application is greatly limited by the low response rate, immune-related adverse events (irAE), and drug resistance. Developing novel ICIs holds great promise to improve the survival and prognosis of advanced cancer patients. T-Cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on T cells, natural killer (NK) cells, and T regulatory cells. Increasing reports have shown that the disrupting CD155-TIGIT axis could activate the immune system and restore antitumor immune response. This review briefly summarized the role of TIGIT in tumor immune escape and targeting CD155-TIGIT axis drugs in preclinical and clinical trials for cancer immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Receptors, Immunologic , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Virus/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , Immune Checkpoint Inhibitors/therapeutic use , Animals
6.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674069

ABSTRACT

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Subject(s)
Macrophage Migration-Inhibitory Factors , Proteomics , Receptors, CXCR4 , Animals , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Female , Mice , Proteomics/methods , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Hyperalgesia/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Antigens, Differentiation, B-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Cystitis, Interstitial/metabolism , Cystitis, Interstitial/pathology , Spinal Cord/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Disease Models, Animal , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors
7.
Clin Cancer Res ; 30(11): 2300-2302, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38568191

ABSTRACT

Outcomes in mature T-cell lymphomas remain poor, with previous attempts at developing mAbs compromised by limited efficacy and significant immunocompromise. Anti-killer cell lectin-like receptor G1 mAbs may have greater selectivity and specificity for malignant T cells and avoid the toxicity concerns with previous agents. See related article by Assatova et al., p. 2514.


Subject(s)
Lectins, C-Type , Humans , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/antagonists & inhibitors , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/drug therapy , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Animals , Antibodies, Monoclonal/therapeutic use
8.
J Immunother ; 47(5): 172-181, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38545758

ABSTRACT

SUMMARY: Immune checkpoint blockade therapy is a pivotal approach in treating malignant tumors. TIGIT has emerged as a focal point of interest among the diverse targets for tumor immunotherapy. Nonetheless, there is still a lack of comprehensive understanding regarding the immune microenvironment alterations following TIGIT blockade treatment. To bridge this knowledge gap, we performed single-cell sequencing on mice both before and after the administration of anti-TIGIT therapy. Our analysis revealed that TIGIT was predominantly expressed on T cells and natural killer (NK) cells. The blockade of TIGIT exhibited inhibitory effects on Treg cells by downregulating the expression of Foxp3 and reducing the secretion of immunosuppressive cytokines. In addition, TIGIT blockade facilitated the activation of NK cells, leading to an increase in cell numbers, and promoted cDC1 maturation through the secretion of XCL1 and Flt3L. This activation, in turn, stimulated the TCR signaling of CD8 + T cells, thereby enhancing their antitumor effect. Consequently, anti-TIGIT therapy demonstrated substantial potential for cancer immunotherapy. Our research provided novel insights into future therapeutic strategies targeting TIGIT for patients with cancer.


Subject(s)
Receptors, Immunologic , Single-Cell Analysis , Tumor Microenvironment , Animals , Mice , Cell Line, Tumor , Immunotherapy/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Sequence Analysis, RNA/methods , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology
9.
Clin Cancer Res ; 30(11): 2514-2530, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38252421

ABSTRACT

PURPOSE: Develop a novel therapeutic strategy for patients with subtypes of mature T-cell and NK-cell neoplasms. EXPERIMENTAL DESIGN: Primary specimens, cell lines, patient-derived xenograft models, commercially available, and proprietary anti-KLRG1 antibodies were used for screening, target, and functional validation. RESULTS: Here we demonstrate that surface KLRG1 is highly expressed on tumor cells in subsets of patients with extranodal NK/T-cell lymphoma (ENKTCL), T-prolymphocytic leukemia (T-PLL), and gamma/delta T-cell lymphoma (G/D TCL). The majority of the CD8+/CD57+ or CD3-/CD56+ leukemic cells derived from patients with T- and NK-large granular lymphocytic leukemia (T-LGLL and NK-LGLL), respectively, expressed surface KLRG1. The humanized afucosylated anti-KLRG1 monoclonal antibody (mAb208) optimized for mouse in vivo use depleted KLRG1+ TCL cells by mechanisms of ADCC, ADCP, and CDC rather than apoptosis. mAb208 induced ADCC and ADCP of T-LGLL patient-derived CD8+/CD57+ cells ex vivo. mAb208 effected ADCC of subsets of healthy donor-derived KLRG1+ NK, CD4+, CD8+ Tem, and TemRA cells while sparing KLRG1- naïve and CD8+ Tcm cells. Treatment of cell line and TCL patient-derived xenografts with mAb208 or anti-CD47 mAb alone and in combination with the PI3K-δ/γ inhibitor duvelisib extended survival. The depletion of macrophages in vivo antagonized mAb208 efficacy. CONCLUSIONS: Our findings suggest the potential benefit of a broader treatment strategy combining therapeutic antibodies with PI3Ki for the treatment of patients with mature T-cell and NK-cell neoplasms. See related commentary by Varma and Diefenbach, p. 2300.


Subject(s)
Lectins, C-Type , Receptors, Immunologic , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/antagonists & inhibitors , Cell Line, Tumor , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/therapy , Lymphoma, T-Cell/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology
10.
J Virol ; 97(10): e0092623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37754758

ABSTRACT

IMPORTANCE: Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.


Subject(s)
DEAD Box Protein 58 , Prohibitins , RNA Viruses , Receptors, Immunologic , Signal Transduction , Virus Replication , DEAD Box Protein 58/antagonists & inhibitors , DEAD Box Protein 58/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Karyopherins/metabolism , Prohibitins/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Interferon Type I/biosynthesis , Interferon Type I/immunology , RNA Viruses/growth & development , RNA Viruses/immunology , RNA Viruses/metabolism
11.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36512425

ABSTRACT

Autologous stem cell transplantation (ASCT) with subsequent lenalidomide maintenance is standard consolidation therapy for multiple myeloma, and a subset of patients achieve durable progression-free survival that is suggestive of long-term immune control. Nonetheless, most patients ultimately relapse, suggesting immune escape. TIGIT appears to be a potent inhibitor of myeloma-specific immunity and represents a promising new checkpoint target. Here we demonstrate high expression of TIGIT on activated CD8+ T cells in mobilized peripheral blood stem cell grafts from patients with myeloma. To guide clinical application of TIGIT inhibition, we evaluated identical anti-TIGIT antibodies that do or do not engage FcγR and demonstrated that anti-TIGIT activity is dependent on FcγR binding. We subsequently used CRBN mice to investigate the efficacy of anti-TIGIT in combination with lenalidomide maintenance after transplantation. Notably, the combination of anti-TIGIT with lenalidomide provided synergistic, CD8+ T cell-dependent, antimyeloma efficacy. Analysis of bone marrow (BM) CD8+ T cells demonstrated that combination therapy suppressed T cell exhaustion, enhanced effector function, and expanded central memory subsets. Importantly, these immune phenotypes were specific to the BM tumor microenvironment. Collectively, these data provide a logical rationale for combining TIGIT inhibition with immunomodulatory drugs to prevent myeloma progression after ASCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lenalidomide , Multiple Myeloma , Receptors, Immunologic , Animals , Mice , Immunity/drug effects , Immunity/genetics , Lenalidomide/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Neoplasm Recurrence, Local , Receptors, IgG , Stem Cell Transplantation/adverse effects , Transplantation, Autologous , Tumor Microenvironment , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism
12.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012120

ABSTRACT

The triggering receptors expressed on myeloid cells (TREMs) are a family of activating immune receptors that regulate the inflammatory response. TREM-1, which is expressed on monocytes and/or macrophages and neutrophils, functions as an inflammation amplifier and plays a role in the pathogenesis of rheumatoid arthritis (RA). Unlike TREM-1, the role in RA of TREM-2, which is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, remains unclear and controversial. TREM-2 ligands are still unknown, adding further uncertainty to our understanding of TREM-2 function. Previously, we demonstrated that TREM-1 blockade, using a ligand-independent TREM-1 inhibitory peptide sequence GF9 rationally designed by our signaling chain homooligomerization (SCHOOL) model of cell signaling, ameliorates collagen-induced arthritis (CIA) severity in mice. Here, we designed a TREM-2 inhibitory peptide sequence IA9 and tested it in the therapeutic CIA model, either as a free 9-mer peptide IA9, or as a part of a 31-mer peptide IA31 incorporated into lipopeptide complexes (IA31-LPC), for targeted delivery. We demonstrated that administration of IA9, but not a control peptide, after induction of arthritis diminished release of proinflammatory cytokines and dramatically suppressed joint inflammation and damage, suggesting that targeting TREM-2 may be a promising approach for the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Membrane Glycoproteins/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Mice , Peptides/pharmacology , Peptides/therapeutic use , Triggering Receptor Expressed on Myeloid Cells-1
13.
N Engl J Med ; 387(4): 321-331, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35939578

ABSTRACT

BACKGROUND: Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS: In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS: A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS: In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).


Subject(s)
Antibodies, Monoclonal, Humanized , Lectins, C-Type , Lupus Erythematosus, Cutaneous , Membrane Glycoproteins , Receptors, Immunologic , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dose-Response Relationship, Drug , Double-Blind Method , Herpes Zoster/etiology , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Lupus Erythematosus, Cutaneous/drug therapy , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Severity of Illness Index , Treatment Outcome
14.
Cancer Discov ; 12(7): 1603-1604, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35652612

ABSTRACT

Genentech's TIGIT-targeted antibody tiragolumab missed its endpoints in two late-stage lung cancer trials, raising doubts about one of the most widely studied next-generation checkpoint targets in immuno-oncology. But numerical signs of benefit among certain patients with metastatic non-small cell lung cancer suggest that TIGIT blockade still has potential-if drug developers can successfully identify the best indications, drug combinations, or patient populations.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Receptors, Immunologic , Antibodies, Monoclonal , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Receptors, Immunologic/antagonists & inhibitors
15.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35132998

ABSTRACT

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Subject(s)
Aortic Aneurysm, Abdominal/etiology , Receptors, Immunologic/physiology , Receptors, Prostaglandin/physiology , Angiotensin II/pharmacology , Animals , Aortic Aneurysm, Abdominal/prevention & control , Male , Mice , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors
16.
MAbs ; 14(1): 2013750, 2022.
Article in English | MEDLINE | ID: mdl-35090381

ABSTRACT

TIGIT is an immune checkpoint receptor that is expressed on subsets of activated T cells and natural killer (NK) cells. Several ligands for TIGIT, including poliovirus receptor (PVR), are expressed on cancer cells and mediate inhibitory signaling to suppress antitumor activities of the immune cells. Many studies support that the TIGIT signaling is a potential target for cancer immunotherapy. We developed an IgG4-type monoclonal antibody against human TIGIT, designated as MG1131, using a phage display library of single-chain variable fragments (scFvs). MG1131 interacts with TIGIT much more tightly than PVR does. The crystal structure of a scFv version of MG1131 bound to TIGIT was determined, showing that MG1131 could block the PVR-TIGIT interaction and thus the immunosuppressive signaling of TIGIT. Consistently, MG1131 is bound to TIGIT-expressing cells and interferes with PVR binding to these cells. Moreover, MG1131 increased NK cell-mediated tumor killing activities, inhibited immunosuppressive activity of regulatory T (Treg) cells from healthy donors, and restored interferon-γ secretion from peripheral blood mononuclear cells derived from multiple myeloma patients. MG1131 also increased T cell infiltration to the tumor site and inhibited tumor growth in mice. Collectively, these data indicate that MG1131 modulates the effector functions of T cells and NK cells positively and Treg cells negatively.


Subject(s)
Antibodies, Neutralizing/immunology , Cell Surface Display Techniques , Receptors, Immunologic/antagonists & inhibitors , Single-Chain Antibodies/immunology , Antibodies, Neutralizing/genetics , Humans , Receptors, Immunologic/immunology , Single-Chain Antibodies/genetics
17.
Cell Chem Biol ; 29(2): 239-248.e4, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34375614

ABSTRACT

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.


Subject(s)
Acetates/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Membrane Glycoproteins/genetics , Microglia/drug effects , Phenols/pharmacology , Receptors, Immunologic/genetics , Retinoid X Receptors/genetics , Thyroid Hormones/pharmacology , Acetates/chemical synthesis , Animals , Binding Sites , Brain/drug effects , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Humans , Immunity, Innate , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Models, Molecular , Phenols/chemical synthesis , Phenoxyacetates/pharmacology , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Response Elements , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Signal Transduction
18.
Eur J Med Chem ; 229: 114047, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34915428

ABSTRACT

Phagocytosis of cancer cells by antigen presenting cells (APCs) is critical to activate the host's immune responses. However, the targeting ability of APCs to cancer cells is limited by the upregulation of transmembrane protein CD47 on the cancer cell surface. Blocking CD47 can affect the macrophage-mediated phagocytosis. Two platinum-based immunomodulators MUP and DMUP were synthesized to enhance the phagocytic activity of macrophages by blocking the CD47-SIRPα axis. These PtIV complexes not only showed high antiproliferative activity against a panel of human cancer cell lines, but also cooperated with human peripheral blood mononuclear cells (PBMCs) to suppress cancer cells. They acted as immune checkpoint inhibitors to modulate the immune responses of both cancer and immune cells. In particular, DMUP decreased the expression of CD47 in tumor tissues and promoted the polarization of macrophages from M2 to M1 phenotype in a mouse model of non-small cell lung cancer, thereby enhancing the anticancer effect. By interfering with DNA synthesis and stimulating immune system, DMUP takes the advantage of chemotherapy and immunotherapy to inhibit cancer cells. The dual efficacy of DMUP makes it a potential chemoimmunotherapeutic agent in cancer therapy.


Subject(s)
Antineoplastic Agents/chemistry , CD47 Antigen/antagonists & inhibitors , Coordination Complexes/chemistry , Platinum/chemistry , Receptors, Immunologic/antagonists & inhibitors , Animals , Antigens, Differentiation/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CD47 Antigen/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Drug Screening Assays, Antitumor , Humans , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred ICR , Neoplasms/drug therapy , Neoplasms/therapy , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Receptors, Immunologic/metabolism
19.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34884723

ABSTRACT

This study aimed to characterize different natural killer (NK) cell phenotypes on bone marrow and peripheral blood cells from acute myeloid leukemia (AML) patients and healthy donors (HDs). Our data show that CD56dimCD16- and CD56brightCD16- NK cells represent the predominant NK cell subpopulations in AML, while the CD56dimCD16+ NK cells are significantly reduced compared to HDs. Moreover, TIGIT+ and PVRIG+ cells cluster on the CD56dimCD16+ subset whereas CD39+ and CD38+ cells do so on CD56brightCD16- NK cells in AML. Furthermore, functional effects of (co-)blockade of TIGIT and CD39 or A2AR on NK cell functionality were analyzed. These experiments revealed that the single blockade of the TIGIT receptor results in an increased NK-92 cell-mediated killing of AML cells in vitro. Combined targeting of CD39 or A2AR significantly augments the anti-TIGIT-mediated lysis of AML cells. Our data indicate that distinct NK cell subsets in AML exhibit different immunosuppressive patterns (via the TIGIT/PVRIG receptors and the purinergic pathway). In summary, we conclude that TIGIT, CD39, and A2AR constitute relevant inhibitory checkpoints of NK cells in AML patients. A combinatorial blockade synergistically strengthens NK-92 cell-mediated cytotoxicity. As inhibitors of TIGIT, CD39, and A2AR are clinically available, studies on their combined use could be conducted in the near future.


Subject(s)
Apyrase/metabolism , Killer Cells, Natural/metabolism , Leukemia, Myeloid, Acute/immunology , Receptor, Adenosine A2A/metabolism , Receptors, Immunologic/metabolism , Adult , Aged , Aged, 80 and over , Apyrase/antagonists & inhibitors , Case-Control Studies , Humans , Immunotherapy , Leukemia, Myeloid, Acute/therapy , Middle Aged , Receptors, Immunologic/antagonists & inhibitors , Young Adult
20.
Int Immunopharmacol ; 101(Pt A): 108307, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34735918

ABSTRACT

Interleukin-21 (IL-21) has exhibited anti-tumor activity in preclinical and clinical studies; however, its modest efficacy and short half-time has limited its therapeutic utility as a monotherapy. Therefore, we engineered a fusion protein (IL-21-αHSA) in which a nanobody targeting human serum albumin (HSA) was fused to the C-terminus of rhIL-21. The αHSA nanobody displayed broad species cross-reactivity and bound to a HSA epitope that does not overlap with the FcRn binding site, thus providing a strategic design for half-life extension. The IL-21-αHSA fusion protein showed increased stability compared to rhIL-21, while retaining its bioactivity in a liquid solution for at least 6 months. Moreover, IL-21-αHSA showed a dramatically extended half-life and prolonged exposure in cynomolgus monkeys, with the t1/2 and AUC nearly 10 and 50 times greater than that of rhIL-21, respectively. Furthermore, IL-21-αHSA displayed enhanced anti-tumor efficacy in two syngeneic mouse models. Notably, IL-21-αHSA increased the anti-tumor effect of programmed cell death protein 1 (PD-1) and T cell immunoglobulin and ITIM domain (TIGIT) blockades when used in combination, with a protection against tumor rechallenge, suggesting the formation of long-term anti-tumor memory response. KEGG analysis identified significantly enriched pathways associated with anti-tumor immune response, with increased expression of genes associated with CD8+ T and NK cell cytotoxicity. Overall, these data support further clinical evaluation of IL-21-αHSA as a monotherapy or in combination with immune checkpoint blockades.


Subject(s)
Antineoplastic Agents/therapeutic use , Interleukins/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Albumins , Animals , Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Female , Half-Life , Interleukins/administration & dosage , Interleukins/pharmacokinetics , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...