Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.303
Filter
1.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758808

ABSTRACT

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Mice , Gastrointestinal Microbiome/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Macrophages/immunology , Immune Checkpoint Inhibitors/pharmacology , Mice, Knockout , Female , Intestines/immunology
2.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724599

ABSTRACT

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Subject(s)
Antibodies, Bispecific , Cricetulus , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , CHO Cells , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
3.
Curr Med Chem ; 31(13): 1634-1645, 2024.
Article in English | MEDLINE | ID: mdl-38666504

ABSTRACT

Immune checkpoint inhibitors (ICIs) have shown unprecedented efficacy in treating many advanced cancers. Although FDA-approved ICIs have shown promising efficacy in treating many advanced cancers, their application is greatly limited by the low response rate, immune-related adverse events (irAE), and drug resistance. Developing novel ICIs holds great promise to improve the survival and prognosis of advanced cancer patients. T-Cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on T cells, natural killer (NK) cells, and T regulatory cells. Increasing reports have shown that the disrupting CD155-TIGIT axis could activate the immune system and restore antitumor immune response. This review briefly summarized the role of TIGIT in tumor immune escape and targeting CD155-TIGIT axis drugs in preclinical and clinical trials for cancer immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Receptors, Immunologic , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Virus/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , Immune Checkpoint Inhibitors/therapeutic use , Animals
4.
Int Immunopharmacol ; 133: 112055, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38677094

ABSTRACT

As a transmembrane protein, CD300e is primarily expressed in myeloid cells. It belongs to the CD300 glycoprotein family, functioning as an immune-activating receptor. Dysfunction of CD300e has been suggested in many diseases, such as infections, immune disorders, obesity, and diabetes, signifying its potential as a key biomarker for disease diagnosis and treatment. This review is aimed to explore the roles and potential mechanisms of CD300e in regulating oxidative stress, immune cell activation, tissue damage and repair, and lipid metabolism, shedding light on its role as a diagnostic marker or a therapeutic target, particularly for infections and autoimmune disorders.


Subject(s)
Receptors, Immunologic , Humans , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Oxidative Stress , Lipid Metabolism , Autoimmune Diseases/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Biomarkers
5.
Nature ; 628(8009): 854-862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570678

ABSTRACT

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Subject(s)
Intestinal Mucosa , Mucous Membrane , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Antigens, CD/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Immune Tolerance/immunology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Integrin alpha Chains/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Single-Cell Gene Expression Analysis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/cytology , Transcriptome
6.
Cancer Biol Med ; 21(4)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38425216

ABSTRACT

OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.


Subject(s)
Hematologic Neoplasms , Killer Cells, Natural , Receptors, Immunologic , Humans , Killer Cells, Natural/immunology , Animals , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Xenograft Model Antitumor Assays , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Male , Cell Line, Tumor , Cytotoxicity, Immunologic , Phosphatidylserines/metabolism
7.
Nature ; 627(8005): 847-853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480885

ABSTRACT

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Subject(s)
Adenosine Triphosphate , Arabidopsis , NAD , Nicotiana , Phase Separation , Plant Proteins , Protein Domains , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Death , Mutation , NAD/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/metabolism , NLR Proteins/chemistry , NLR Proteins/genetics , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/immunology , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Domains/genetics , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Toll-Like Receptors/chemistry , Receptors, Interleukin-1/chemistry
8.
Cancer Res ; 84(10): 1550-1559, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38381555

ABSTRACT

Lipid nanoparticle (LNP)-encapsulated mRNA has been used for in vivo production of several secreted protein classes, such as IgG, and has enabled the development of personalized vaccines in oncology. Establishing the feasibility of delivering complex multispecific modalities that require higher-order structures important for their function could help expand the use of mRNA/LNP biologic formulations. Here, we evaluated whether in vivo administration of mRNA/LNP formulations of SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT could achieve oligomerization and extend exposure, on-target activity, and antitumor responses comparable with that of the corresponding recombinant fusion proteins. Intravenous infusion of the formulated LNP-encapsulated mRNAs led to rapid and sustained production of functional hexameric proteins in vivo, which increased the overall exposure relative to the recombinant protein controls by ∼28 to 140 fold over 96 hours. High concentrations of the mRNA-encoded proteins were also observed in secondary lymphoid organs and within implanted tumors, with protein concentrations in tumors up to 134-fold greater than with the recombinant protein controls 24 hours after treatment. In addition, SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT mRNAs induced a greater increase in antigen-specific CD8+ T cells in the tumors. These mRNA/LNP formulations were well tolerated and led to a rapid increase in serum and intratumoral IL2, delayed tumor growth, extended survival, and outperformed the activities of benchmark mAb controls. Furthermore, the mRNA/LNPs demonstrated improved efficacy in combination with anti-PD-L1 relative to the recombinant fusion proteins. These data support the delivery of complex oligomeric biologics as mRNA/LNP formulations, where high therapeutic expression and exposure could translate into improved patient outcomes. SIGNIFICANCE: Lipid nanoparticle-encapsulated mRNA can efficiently encode complex fusion proteins encompassing immune checkpoint blockers and costimulators that functionally oligomerize in vivo with extended pharmacokinetics and durable exposure to induce potent antitumor immunity.


Subject(s)
Nanoparticles , RNA, Messenger , Recombinant Fusion Proteins , Animals , Mice , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Nanoparticles/chemistry , Humans , Female , Mice, Inbred C57BL , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Lipids/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Cell Line, Tumor
9.
Nature ; 627(8004): 646-655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418879

ABSTRACT

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents , B7-H1 Antigen , Myeloid Cells , Neoplasms , Receptors, Immunologic , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Drug Therapy, Combination , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/therapeutic use , Macrophage Activation , Myeloid Cells/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Receptors, IgG/immunology , Receptors, Immunologic/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
10.
Int Immunol ; 36(6): 317-325, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38289706

ABSTRACT

The cluster of differentiation 155 (CD155) is highly expressed on tumor cells and augments or inhibits the cytotoxic activities of natural killer (NK) cells and T cells through its receptor ligands DNAX accessory molecule 1 (DNAM-1) and T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), respectively. Although CD155 is heavily glycosylated, the role of glycosylation of CD155 in the cytotoxic activity of effector lymphocytes remains unknown. Here, we show that the N-linked glycosylation at residue 105 (N105 glycosylation) in the first Ig-like domain of CD155 is involved in the binding of CD155 to both DNAM-1 and TIGIT. The N105 glycosylation also plays an essential role to induce signaling in both DNAM-1 and TIGIT reporter cells. Moreover, we show that the N105 glycosylation of CD155 contributes preferentially to the DNAM-1-mediated activating signal over the TIGIT-mediated inhibitory signal in NK cells. Our results demonstrated the important role of the N105 glycosylation of CD155 in DNAM-1 and TIGIT functions and shed new light on the understanding of tumor immune responses.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Killer Cells, Natural , Receptors, Immunologic , Receptors, Virus , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Glycosylation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Receptors, Virus/metabolism , Receptors, Virus/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Protein Binding
12.
Nature ; 621(7980): 830-839, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674079

ABSTRACT

The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Neutrophils , Receptors, Immunologic , Animals , Humans , Mice , CRISPR-Cas Systems , Disease Progression , Gene Editing , Immunotherapy , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Neoplasms/immunology , Neoplasms/pathology , Neutrophils/immunology , Neutrophils/pathology , Receptors, Immunologic/immunology , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment , Lymphocyte Activation
13.
Life Sci Alliance ; 6(10)2023 10.
Article in English | MEDLINE | ID: mdl-37558422

ABSTRACT

RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.


Subject(s)
DEAD Box Protein 58 , Receptors, Immunologic , Signal Transduction , Virus Diseases , Cell Line , Receptors, Immunologic/immunology , DEAD Box Protein 58/immunology , Virus Diseases/immunology
14.
Science ; 379(6635): 934-939, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36862785

ABSTRACT

Plant pathogens cause recurrent epidemics, threatening crop yield and global food security. Efforts to retool the plant immune system have been limited to modifying natural components and can be nullified by the emergence of new pathogen strains. Made-to-order synthetic plant immune receptors provide an opportunity to tailor resistance to pathogen genotypes present in the field. In this work, we show that plant nucleotide-binding, leucine-rich repeat immune receptors (NLRs) can be used as scaffolds for nanobody (single-domain antibody fragment) fusions that bind fluorescent proteins (FPs). These fusions trigger immune responses in the presence of the corresponding FP and confer resistance against plant viruses expressing FPs. Because nanobodies can be raised against most molecules, immune receptor-nanobody fusions have the potential to generate resistance against plant pathogens and pests delivering effectors inside host cells.


Subject(s)
Disease Resistance , Plant Diseases , Receptors, Immunologic , Single-Domain Antibodies , Disease Resistance/immunology , Genotype , Receptors, Immunologic/immunology , Single-Domain Antibodies/immunology , Plant Diseases/immunology , Plant Diseases/prevention & control , Luminescent Proteins
15.
J Virol ; 97(3): e0013423, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916938

ABSTRACT

Type I interferon (IFN-I) response plays a prominent role in innate immunity, which is frequently modulated during viral infection. Here, we report DNA methylation regulator UHRF1 as a potent negative regulator of IFN-I induction during alphaherpesvirus infection, whereas the viruses in turn regulates the transcriptional expression of UHRF1. Knockdown of UHRF1 in cells significantly increases interferon-ß (IFN-ß)-mediated gene transcription and viral inhibition against herpes simplex virus 1 (HSV1) and pseudorabies virus (PRV). Mechanistically, UHRF1 deficiency promotes IFN-I production by triggering dsRNA-sensing receptor RIG-I and activating IRF3 phosphorylation. Knockdown of UHRF1 in cells upregulates the accumulation of double-stranded RNA (dsRNA), including host endogenous retroviral sequence (ERV) transcripts, while the treatment of RNase III, known to specifically digest dsRNA, prevents IFN-ß induction by siUHRF1. Furthermore, the double-knockdown assay of UHRF1 and DNA methyltransferase DNMT1 suggests that siUHRF1-mediated DNA demethylation may play an important role in dsRNA accumulation and subsequently IFN induction. These findings establish the essential role of UHRF1 in IFN-I-induced antiviral immunity and reveal UHRF1 as a potential antivrial target. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals, which rely partly on their interaction with IFN-mediated innate immune response. Using alphaherpesviruses PRV and HSV-1 as models, we identified an essential role of DNA methylation regulator UHRF1 in IFN-mediated immunity against virus replication, which unravels a novel mechanism employed by epigenetic factor to control IFN-mediated antiviral immune response and highlight UHRF1, which might be a potential target for antiviral drug development.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 1, Suid , Interferon Type I , Animals , Humans , Antiviral Agents , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Gene Expression , Herpesvirus 1, Human/genetics , Herpesvirus 1, Suid/genetics , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Interferon-beta/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Alphaherpesvirinae , Receptors, Immunologic/immunology
16.
Front Immunol ; 14: 1105309, 2023.
Article in English | MEDLINE | ID: mdl-36793726

ABSTRACT

Interferons (IFNs), IFN-stimulated genes (ISGs), and inflammatory cytokines mediate innate immune responses, and are essential to establish an antiviral response. Within the innate immune responses, retinoic acid-inducible gene I (RIG-I) is a key sensor of virus infections, mediating the transcriptional induction of IFNs and inflammatory proteins. Nevertheless, since excessive responses could be detrimental to the host, these responses need to be tightly regulated. In this work, we describe, for the first time, how knocking-down or knocking-out the expression of IFN alpha-inducible protein 6 (IFI6) increases IFN, ISG, and pro-inflammatory cytokine expression after the infections with Influenza A Virus (IAV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Sendai Virus (SeV), or poly(I:C) transfection. We also show how overexpression of IFI6 produces the opposite effect, in vitro and in vivo, indicating that IFI6 negatively modulates the induction of innate immune responses. Knocking-out or knocking-down the expression of IFI6 diminishes the production of infectious IAV and SARS-CoV-2, most likely because of its effect on antiviral responses. Importantly, we report a novel interaction of IFI6 with RIG-I, most likely mediated through binding to RNA, that affects RIG-I activation, providing a molecular mechanism for the effect of IFI6 on negatively regulating innate immunity. Remarkably, these new functions of IFI6 could be targeted to treat diseases associated with an exacerbated induction of innate immune responses and to combat viral infections, such as IAV and SARS-CoV-2.


Subject(s)
Immunity, Innate , Mitochondrial Proteins , Receptors, Immunologic , Virus Diseases , Humans , Cytokines , SARS-CoV-2/metabolism , Virus Diseases/immunology , Mitochondrial Proteins/genetics , Influenza, Human/immunology , Receptors, Immunologic/immunology
17.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463233

ABSTRACT

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Subject(s)
Brain Injuries, Traumatic , Animals , Male , Mice , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/immunology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Immunologic/agonists , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Disease Models, Animal , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/immunology , Nervous System/drug effects , Nervous System/immunology
18.
N Engl J Med ; 387(10): 894-904, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36069871

ABSTRACT

BACKGROUND: Antibody-binding of blood dendritic cell antigen 2 (BDCA2), which is expressed exclusively on plasmacytoid dendritic cells, suppresses the production of type I interferon that is involved in the pathogenesis of systemic lupus erythematosus (SLE). The safety and efficacy of subcutaneous litifilimab, a humanized monoclonal antibody that binds to BDCA2, in patients with SLE have not been extensively studied. METHODS: We conducted a phase 2 trial of litifilimab involving participants with SLE. The initial trial design called for randomly assigning participants to receive litifilimab (at a dose of 50, 150, or 450 mg) or placebo administered subcutaneously at weeks 0, 2, 4, 8, 12, 16, and 20, with the primary end point of evaluating cutaneous lupus activity. The trial design was subsequently modified; adults with SLE, arthritis, and active skin disease were randomly assigned to receive either litifilimab at a dose of 450 mg or placebo. The revised primary end point was the change from baseline in the total number of active joints (defined as the sum of the swollen joints and the tender joints) at week 24. Secondary end points were changes in cutaneous and global disease activity. Safety was also assessed. RESULTS: A total of 334 adults were assessed for eligibility, and 132 underwent randomization (64 were assigned to receive 450-mg litifilimab, 6 to receive 150-mg litifilimab, 6 to receive 50-mg litifilimab, and 56 to receive placebo). The primary analysis was conducted in the 102 participants who had received 450-mg litifilimab or placebo and had at least four tender and at least four swollen joints. The mean (±SD) baseline number of active joints was 19.0±8.4 in the litifilimab group and 21.6±8.5 in the placebo group. The least-squares mean (±SE) change from baseline to week 24 in the total number of active joints was -15.0±1.2 with litifilimab and -11.6±1.3 with placebo (mean difference, -3.4; 95% confidence interval, -6.7 to -0.2; P = 0.04). Most of the secondary end points did not support the results of the analysis of the primary end point. Receipt of litifilimab was associated with adverse events, including two cases of herpes zoster and one case of herpes keratitis. CONCLUSIONS: In a phase 2 trial involving participants with SLE, litifilimab was associated with a greater reduction from baseline in the number of swollen and tender joints than placebo over a period of 24 weeks. Longer and larger trials are required to determine the safety and efficacy of litifilimab for the treatment of SLE. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).


Subject(s)
Antibodies, Monoclonal, Humanized , Lectins, C-Type , Lupus Erythematosus, Systemic , Membrane Glycoproteins , Receptors, Immunologic , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Double-Blind Method , Humans , Lectins, C-Type/immunology , Lupus Erythematosus, Systemic/drug therapy , Membrane Glycoproteins/immunology , Receptors, Immunologic/immunology , Skin Diseases , Treatment Outcome
20.
Nature ; 610(7932): 532-539, 2022 10.
Article in English | MEDLINE | ID: mdl-36163289

ABSTRACT

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.


Subject(s)
Calcium Channels , Cryoelectron Microscopy , NLR Proteins , Plant Proteins , Receptors, Immunologic , Triticum , Arabidopsis/immunology , Arabidopsis/metabolism , Arginine , Calcium Channels/chemistry , Calcium Channels/immunology , Calcium Channels/metabolism , Cations/metabolism , Leucine , NLR Proteins/chemistry , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/chemistry , Plant Proteins/immunology , Plant Proteins/metabolism , Receptors, Immunologic/chemistry , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Triticum/immunology , Triticum/metabolism , Amino Acid Motifs , Conserved Sequence , Electrophysiology
SELECTION OF CITATIONS
SEARCH DETAIL
...