Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 1775, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365641

ABSTRACT

Formyl peptide receptor 2 (FPR2) has been shown to mediate the cytotoxic effects of the ß amyloid peptide Aß42 and serves as a receptor for humanin, a peptide that protects neuronal cells from damage by Aß42, implying its involvement in the pathogenesis of Alzheimer's disease (AD). However, the interaction pattern between FPR2 and Aß42 or humanin remains unknown. Here we report the structures of FPR2 bound to Gi and Aß42 or N-formyl humanin (fHN). Combined with functional data, the structures reveal two critical regions that govern recognition and activity of Aß42 and fHN, including a polar binding cavity within the receptor helical bundle and a hydrophobic binding groove in the extracellular region. In addition, the structures of FPR2 and FPR1 in complex with different formyl peptides were determined, providing insights into ligand recognition and selectivity of the FPR family. These findings uncover key factors that define the functionality of FPR2 in AD and other inflammatory diseases and would enable drug development.


Subject(s)
Neuroprotection , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Amyloid beta-Peptides , Intracellular Signaling Peptides and Proteins , Receptors, Formyl Peptide/metabolism
2.
J Immunol ; 208(7): 1632-1641, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35321878

ABSTRACT

Highly pathogenic Staphylococcus aureus strains produce phenol-soluble modulins (PSMs), which are N-formylated peptides. Nanomolar concentrations of PSMα2 are recognized by formyl peptide receptor 2 (FPR2), but unlike the prototypic FPR2 agonist WKYMVM, PSMα2 is a biased signaling agonist. The truncated N-terminal PSMα2 variant, consisting of the five N-terminal residues, is no longer recognized by FPR2, showing that the C-terminal part of PSMα2 confers FPR2 selectivity, whereas the N-terminal part may interact with the FPR1 binding site. In the current study, a combined pharmacological and genetic approach involving primary human neutrophils and engineered FPR knock-in and knockout cells was used to gain molecular insights into FPR1 and FPR2 recognition of formyl peptides as well as the receptor downstream signaling induced by these peptides. In comparison with the full-length PSMα2, we show that the peptide in which the N-terminal part of PSMα2 was replaced by fMet-Ile-Phe-Leu (an FPR1-selective peptide agonist) potently activates both FPRs for production of superoxide anions and ß-arrestin recruitment. A shortened analog of PSMα2 (PSMα21-12), lacking the nine C-terminal residues, activated both FPR1 and FPR2 to produce reactive oxygen species, whereas ß-arrestin recruitment was only mediated through FPR1. However, a single amino acid replacement (Gly-2 to Ile-2) in PSMα21-12 was sufficient to alter FPR2 signaling to include ß-arrestin recruitment, highlighting a key role of Gly-2 in conferring FPR2-biased signaling. In conclusion, we provide structural insights into FPR1 and FPR2 recognition as well as the signaling induced by interaction with formyl peptides derived from PSMα2, originating from S. aureus bacteria.


Subject(s)
Receptors, Formyl Peptide , Staphylococcus aureus , Bacterial Toxins , Humans , Neutrophils/metabolism , Peptides/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Staphylococcus aureus/metabolism
3.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884957

ABSTRACT

The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin-a bis-indole alkaloid isolated from algae of the genus Caulerpa-could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2-20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.


Subject(s)
Bacterial Proteins/pharmacology , Helicobacter Infections/immunology , Helicobacter pylori/metabolism , Indoles/pharmacology , Peptide Fragments/pharmacology , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Bacterial Proteins/immunology , Cell Line , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Helicobacter pylori/immunology , Humans , Immunity, Innate/drug effects , Indoles/chemistry , Models, Molecular , Peptide Fragments/immunology , Protein Binding , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Signal Transduction/drug effects , THP-1 Cells
4.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920954

ABSTRACT

Mitocryptides are a novel family of endogenous neutrophil-activating peptides originating from various mitochondrial proteins. Mitocryptide-2 (MCT-2) is one of such neutrophil-activating peptides, and is produced as an N-formylated pentadecapeptide from mitochondrial cytochrome b. Although MCT-2 is a specific endogenous ligand for formyl peptide receptor 2 (FPR2), the chemical structure within MCT-2 that is responsible for FPR2 activation is still obscure. Here, we demonstrate that the N-terminal heptapeptide structure of MCT-2 with an N-formyl group is the minimum structure that specifically activates FPR2. Moreover, the receptor molecule for MCT-2 is suggested to be shifted from FPR2 to its homolog formyl peptide receptor 1 (FPR1) by the physiological cleavages of its C-terminus. Indeed, N-terminal derivatives of MCT-2 with seven amino acid residues or longer caused an increase of intracellular free Ca2+ concentration in HEK-293 cells expressing FPR2, but not in those expressing FPR1. Those MCT-2 derivatives also induced ß-hexosaminidase secretion in neutrophilic/granulocytic differentiated HL-60 cells via FPR2 activation. In contrast, MCT-2(1-4), an N-terminal tetrapeptide of MCT-2, specifically activated FPR1 to promote those functions. Moreover, MCT-2 was degraded in serum to produce MCT-2(1-4) over time. These findings suggest that MCT-2 is a novel critical factor that not only initiates innate immunity via the specific activation of FPR2, but also promotes delayed responses by the activation of FPR1, which may include resolution and tissue regeneration. The present results also strongly support the necessity of considering the exact chemical structures of activating factors for the investigation of innate immune responses.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/metabolism , Amino Acid Sequence , Amino Acid Substitution , Calcium/metabolism , Cell Differentiation , Circular Dichroism , HEK293 Cells , HL-60 Cells , Humans , Immunity, Innate , Models, Biological , Molecular Docking Simulation , Neutrophils/metabolism , Peptides/blood , Time Factors , beta-N-Acetylhexosaminidases/metabolism
5.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118849, 2020 12.
Article in English | MEDLINE | ID: mdl-32916203

ABSTRACT

FPR2, a member of the family of G protein-coupled receptors (GPCRs), mediates neutrophil migration, a response that has been linked to ß-arrestin recruitment. ß-Arrestin regulates GPCR endocytosis and can also elicit non-canonical receptor signaling. To determine the poorly understood role of ß-arrestin in FPR2 endocytosis and in NADPH-oxidase activation in neutrophils, Barbadin was used as a research tool in this study. Barbadin has been shown to bind the clathrin adaptor protein (AP2) and thereby prevent ß-arrestin/AP2 interaction and ß-arrestin-mediated GPCR endocytosis. In agreement with this, AP2/ß-arrestin interaction induced by an FPR2-specific agonist was inhibited by Barbadin. Unexpectedly, however, Barbadin did not inhibit FPR2 endocytosis, indicating that a mechanism independent of ß-arrestin/AP2 interaction may sustain FPR2 endocytosis. This was confirmed by the fact, that FPR2 also underwent agonist-promoted endocytosis in ß-arrestin deficient cells, albeit at a diminished level as compared to wild type cells. Dissection of the Barbadin effects on FPR2-mediated neutrophil functions including NADPH-oxidase activation mediated release of reactive oxygen species (ROS) and chemotaxis revealed that Barbadin had no effect on chemotactic migration whereas the release of ROS was potentiated/primed. The effect of Barbadin on ROS production was reversible, independent of ß-arrestin recruitment, and similar to that induced by latrunculin A. Taken together, our data demonstrate that endocytic uptake of FPR2 occurs independently of ß-arrestin, while Barbadin selectively augments FPR2-mediated ROS production independently of receptor endocytosis. Given that Barbadin binds to AP2 and prevents the AP2/ß-arrestin interaction, our results indicate a role for AP2 in FPR2-mediated ROS release from neutrophils.


Subject(s)
Endocytosis/genetics , Pyrimidines/pharmacology , Receptors, Formyl Peptide/genetics , Receptors, Lipoxin/genetics , beta-Arrestin 1/genetics , Adaptor Protein Complex 2/chemistry , Adaptor Protein Complex 2/genetics , Clathrin/chemistry , Endocytosis/drug effects , HEK293 Cells , Humans , NADPH Oxidases/genetics , Neutrophils/drug effects , Protein Binding/drug effects , Pyrimidines/chemistry , Reactive Oxygen Species/metabolism , Receptors, Formyl Peptide/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, Lipoxin/chemistry , Signal Transduction/drug effects , beta-Arrestin 1/chemistry
6.
FASEB J ; 34(5): 6920-6933, 2020 05.
Article in English | MEDLINE | ID: mdl-32239559

ABSTRACT

The eicosanoid lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 (ATL) are potent anti-inflammatory agents. How their anti-inflammatory effects are mediated by receptors such as the formyl peptide receptor 2 (FPR2/ALX) remains incompletely understood. In the present study, fluorescent biosensors of FPR2/ALX were prepared and ATL-induced conformational changes were recorded. A biphasic dose curve consisting of a descending phase and an ascending phase was observed, with the descending phase corresponding to diminished FPR2 response such as Ca2+ mobilization induced by the potent synthetic agonist WKYMVm. Preincubation of FPR2-expressing cells with 100 pM of ATL also lowered the threshold for WKYMVm to induce ß-arrestin-2 membrane translocation, and inhibited WKYMVm-induced interleukin 8 secretion, suggesting signaling bias favoring anti-inflammatory activities. At 100 pM and above, ATL-induced receptor conformational changes resembling that of the WKYMVm along with a weak but measurable inhibition of forskolin-induced cAMP accumulation. However, no Ca2+ mobilization was induced by ATL until its concentration reached 1 µM. Taken together, these results suggest a dual regulatory mechanism by which ATL exerts anti-inflammatory effects through FPR2/ALX.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Lipoxins/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Animals , Biosensing Techniques , Calcium Signaling/drug effects , Cell Line , Fluorescent Dyes , HEK293 Cells , HL-60 Cells , Humans , Interleukin-8/metabolism , Models, Molecular , Oligopeptides/pharmacology , Protein Conformation/drug effects , Rats , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/agonists , Receptors, Lipoxin/chemistry , Signal Transduction/drug effects
7.
Nat Commun ; 11(1): 1208, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139677

ABSTRACT

The human formyl peptide receptor 2 (FPR2) plays a crucial role in host defense and inflammation, and has been considered as a drug target for chronic inflammatory diseases. A variety of peptides with different structures and origins have been characterized as FPR2 ligands. However, the ligand-binding modes of FPR2 remain elusive, thereby limiting the development of potential drugs. Here we report the crystal structure of FPR2 bound to the potent peptide agonist WKYMVm at 2.8 Å resolution. The structure adopts an active conformation and exhibits a deep ligand-binding pocket. Combined with mutagenesis, ligand binding and signaling studies, key interactions between the agonist and FPR2 that govern ligand recognition and receptor activation are identified. Furthermore, molecular docking and functional assays reveal key factors that may define binding affinity and agonist potency of formyl peptides. These findings deepen our understanding about ligand recognition and selectivity mechanisms of the formyl peptide receptor family.


Subject(s)
Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/metabolism , Amino Acid Sequence , Binding Sites , Humans , Ligands , Molecular Docking Simulation , Mutation/genetics , N-Formylmethionine Leucyl-Phenylalanine/chemistry , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Protein Conformation , Signal Transduction , Structure-Activity Relationship
8.
Nat Commun ; 11(1): 885, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060286

ABSTRACT

Formylpeptide receptors (FPRs) as G protein-coupled receptors (GPCRs) can recognize formylpeptides derived from pathogens or host cells to function in host defense and cell clearance. In addition, FPRs, especially FPR2, can also recognize other ligands with a large chemical diversity generated at different stages of inflammation to either promote or resolve inflammation in order to maintain a balanced inflammatory response. The mechanism underlying promiscuous ligand recognition and activation of FPRs is not clear. Here we report a cryo-EM structure of FPR2-Gi signaling complex with a peptide agonist. The structure reveals a widely open extracellular region with an amphiphilic environment for ligand binding. Together with computational docking and simulation, the structure suggests a molecular basis for the recognition of formylpeptides and a potential mechanism of receptor activation, and reveals conserved and divergent features in Gi coupling. Our results provide a basis for understanding the molecular mechanism of the functional promiscuity of FPRs.


Subject(s)
Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/metabolism , Animals , Binding Sites , Cryoelectron Microscopy , Humans , Ligands , Molecular Docking Simulation , Mutation , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Rats , Receptors, Formyl Peptide/genetics , Receptors, Lipoxin/genetics , Signal Transduction
9.
J Immunol ; 202(9): 2710-2719, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30902901

ABSTRACT

Similar to bacteria, synthesis of mitochondrial DNA-encoded proteins requires an N-formylated methionine to initiate translation. Thus, the N-formylated methionine peptides originating from mitochondria should be recognized as danger signals. To date, only one such peptide, denoted as mitocryptide-2 (MCT-2), originating from the N-terminal of the mitochondrial cytochrome b, has been isolated from mammalian tissues. Human neutrophils express FPR1 and FPR2 that detect formyl peptides, and the precise structural determinants for receptor recognition remain to be elucidated. MCT-2 is known to activate neutrophils through FPR2 but not FPR1. The aim of this study was to elucidate the structural determinants of importance for receptor preference and human neutrophil activation in MCT-2 by generating a series of MCT-2 variants. We show that there is an absolute requirement for the N-formyl group and the side chain of Met1 at position 1 of MCT-2 but also the C terminus is of importance for MCT-2 activity. We also uncovered individual side chains that positively contribute to MCT-2 activity as well as those suppressed in the response. The MCT-2 peptide and its two polymorphic variants ([Thr7]MCT-2 and [Ser8]MCT-2) all activated neutrophils, but MCT-2 containing Ile7 and Asn8 was the most potent. We also show that some peptide variants displayed a biased FPR2-signaling property related to NADPH oxidase activation and ß-arrestin recruitment, respectively. In conclusion, we disclose several critical elements in MCT-2 that are required for neutrophil activation and disclose structural insights into how FPR2 recognition of this mitochondrial DNA-derived peptide may increase our understanding of the role of FPR2 in aseptic inflammation.


Subject(s)
Cytochromes b/immunology , DNA, Mitochondrial/immunology , Mitochondrial Proteins/immunology , Neutrophils/immunology , Peptides/immunology , Receptors, Formyl Peptide/immunology , Receptors, Lipoxin/immunology , Cytochromes b/chemistry , Female , Humans , Male , Mitochondrial Proteins/chemistry , Peptides/chemistry , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry
10.
Blood Adv ; 2(21): 2973-2985, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30413433

ABSTRACT

Platelet-associated complications including thrombosis, thrombocytopenia, and hemorrhage are commonly observed during various inflammatory diseases such as sepsis, inflammatory bowel disease, and psoriasis. Despite the reported evidence on numerous mechanisms/molecules that may contribute to the dysfunction of platelets, the primary mechanisms that underpin platelet-associated complications during inflammatory diseases are not fully established. Here, we report the discovery of formyl peptide receptor 2, FPR2/ALX, in platelets and its primary role in the development of platelet-associated complications via ligation with its ligand, LL37. LL37 acts as a powerful endogenous antimicrobial peptide, but it also regulates innate immune responses. We demonstrate the impact of LL37 in the modulation of platelet reactivity, hemostasis, and thrombosis. LL37 activates a range of platelet functions, enhances thrombus formation, and shortens the tail bleeding time in mice. By utilizing a pharmacological inhibitor and Fpr2/3 (an ortholog of human FPR2/ALX)-deficient mice, the functional dependence of LL37 on FPR2/ALX was determined. Because the level of LL37 is increased in numerous inflammatory diseases, these results point toward a critical role for LL37 and FPR2/ALX in the development of platelet-related complications in such diseases. Hence, a better understanding of the clinical relevance of LL37 and FPR2/ALX in diverse pathophysiological settings will pave the way for the development of improved therapeutic strategies for a range of thromboinflammatory diseases.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Platelet Activation/drug effects , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Binding Sites , Blood Platelets/cytology , Blood Platelets/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , Hemostasis/drug effects , Humans , Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/metabolism , Signal Transduction/drug effects , Thrombosis/blood , Thrombosis/etiology , Cathelicidins
11.
Int J Mol Sci ; 16(5): 11101-24, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25988387

ABSTRACT

The acute phase protein serum amyloid A (SAA), a marker of inflammation, induces expression of pro-inflammatory and pro-thrombotic mediators including ICAM-1, VCAM-1, IL-6, IL-8, MCP-1 and tissue factor (TF) in both monocytes/macrophages and endothelial cells, and induces endothelial dysfunction-a precursor to atherosclerosis. In this study, we determined the effect of pharmacological inhibition of known SAA receptors on pro-inflammatory and pro-thrombotic activities of SAA in human carotid artery endothelial cells (HCtAEC). HCtAEC were pre-treated with inhibitors of formyl peptide receptor-like-1 (FPRL-1), WRW4; receptor for advanced glycation-endproducts (RAGE), (endogenous secretory RAGE; esRAGE) and toll-like receptors-2/4 (TLR2/4) (OxPapC), before stimulation by added SAA. Inhibitor activity was also compared to high-density lipoprotein (HDL), a known inhibitor of SAA-induced effects on endothelial cells. SAA significantly increased gene expression of TF, NFκB and TNF and protein levels of TF and VEGF in HCtAEC. These effects were inhibited to variable extents by WRW4, esRAGE and OxPapC either alone or in combination, suggesting involvement of endothelial cell SAA receptors in pro-atherogenic gene expression. In contrast, HDL consistently showed the greatest inhibitory action, and often abrogated SAA-mediated responses. Increasing HDL levels relative to circulating free SAA may prevent SAA-mediated endothelial dysfunction and ameliorate atherogenesis.


Subject(s)
Gene Expression Regulation/drug effects , Lipoproteins, HDL/pharmacology , Serum Amyloid A Protein/metabolism , Apolipoprotein A-I/metabolism , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Lipoproteins, HDL/isolation & purification , NF-kappa B/genetics , NF-kappa B/metabolism , Peptides/pharmacology , Phosphatidylcholines/pharmacology , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Serum Amyloid A Protein/antagonists & inhibitors , Serum Amyloid A Protein/pharmacology , Thromboplastin/genetics , Thromboplastin/metabolism , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
Bioorg Med Chem ; 23(14): 4072-81, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25882522

ABSTRACT

Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2.


Subject(s)
Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/metabolism , Structure-Activity Relationship , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Binding Sites , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Molecular Docking Simulation , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Protein Conformation , Pyrazolones/chemistry , Pyrazolones/metabolism , Pyridazines/chemistry , Pyridazines/metabolism , Quinazolinones/chemistry , Quinazolinones/metabolism , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Lipoxin/agonists , Receptors, Lipoxin/antagonists & inhibitors
13.
Bioorg Med Chem ; 23(14): 3913-24, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25549897

ABSTRACT

N-Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) that play critical roles in inflammatory reactions, and FPR-specific interactions can possibly be used to facilitate the resolution of pathological inflammatory reactions. We here report the synthesis and biological evaluation of six pairs of chiral ureidopropanamido derivatives as potent and selective formyl peptide receptor-2 (FPR2) agonists that were designed starting from our lead agonist (S)-3-(1H-indol-3-yl)-2-[3-(4-methoxyphenyl)ureido]-N-[[1-(5-methoxy-2-pyridinyl)cyclohexyl]methyl]propanamide ((S)-9a). The new compounds were obtained in overall yields considerably higher than (S)-9a. Several of the new compounds showed agonist properties comparable to that of (S)-9a along with higher selectivity over FPR1. Molecular modeling was used to define chiral recognition by FPR2. In vitro metabolic stability of selected compounds was also assessed to obtain preliminary insight on drug-like properties of this class of compounds.


Subject(s)
Amides/chemistry , Drug Evaluation, Preclinical/methods , Receptors, Formyl Peptide/agonists , Receptors, Lipoxin/agonists , Amides/chemical synthesis , Animals , Calcium/metabolism , Chemistry Techniques, Synthetic , Drug Stability , HL-60 Cells/drug effects , Humans , Mice, Inbred BALB C , Microsomes, Liver/drug effects , Neutrophil Activation/drug effects , Rats , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Species Specificity , Stereoisomerism
14.
Biochim Biophys Acta ; 1853(1): 192-200, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25447672

ABSTRACT

Pathogenic Staphylococcus aureus strains produce N-formylmethionyl containing peptides, of which the tetrapeptide fMIFL is a potent activator of the neutrophil formyl peptide receptor 1 (FPR1) and the PSMα2 peptide is a potent activator of the closely related FPR2. Variants derived from these two peptide activators were used to disclose the structural determinants for receptor interaction. Removal of five amino acids from the C-terminus of PSMα2 gave rise to a peptide that had lost the receptor-independent neutrophil permeabilizing effect, whereas neutrophil activation capacity as well as its preference for FPR2 was retained. Shorter peptides, PSMα21-10 and PSMα21-5, activate neutrophils, but the receptor preference for these peptides was switched to FPR1. The fMIFL-PSM5-16 peptide, in which the N-terminus of PSMα21-16 was replaced by the sequence fMIFL, was a dual agonist for FPR1/FPR2, whereas fMIFL-PSM5-10 preferred FPR1 to FPR2. Further, an Ile residue was identified as a key determinant for interaction with FPR2. A chimeric receptor in which the cytoplasmic tail of FPR1 was replaced by the corresponding part of FPR2 lost the ability to recognize FPR1 agonists, but gained function in relation to FPR2 agonists. Taken together, our data demonstrate that the C-terminus of the PSMα2 peptide plays a critical role for its cytotoxicity, but is not essential for the receptor-mediated pro-inflammatory activity. More importantly, we show that the amino acids present in the C-terminus, which are not supposed to occupy the agonist-binding pocket in the FPRs, are of importance for the choice of receptor.


Subject(s)
N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophil Activation/drug effects , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Humans , Ligands , Receptors, Formyl Peptide/agonists , Receptors, Formyl Peptide/physiology , Receptors, Lipoxin/agonists , Receptors, Lipoxin/physiology , Structure-Activity Relationship
15.
J Biol Chem ; 289(52): 36166-78, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25326384

ABSTRACT

Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes ß-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation.


Subject(s)
Apoptosis , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Amino Acid Sequence , Arrestins/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Protein Transport , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , beta-Arrestins
16.
Chembiochem ; 15(16): 2420-6, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25224835

ABSTRACT

The tripeptide N-formyl-Met-Leu-Phe (fMLF) is a potent neutrophil chemoattractant and the reference agonist for the G protein-coupled N-formylpeptide receptor (FPR). As it plays a very important role in host defense and inflammation, there has been considerable interest in the development of fMLF analogues in the hope of identifying potential therapeutic agents. Herein we report the design, synthesis, and evaluation of AApeptides that mimic the structure and function of fMLF. The lead AApeptides induced calcium mobilization and mitogen-activated protein kinase (MAPK) signal transduction pathways in FPR-transfected rat basophilic leukemic (RBL) cells. More intriguingly, at high concentrations, certain AApeptides were more effective than fMLF in the induction of calcium mobilization. Their agonistic activity is further supported by their ability to stimulate chemotaxis and the production of superoxide in HL-60 cells. Similarly to fMLF, these AApeptides are much more selective towards FPR1 than FPR2. These results suggest that the fMLF-mimicking AApeptides might emerge as a new class of therapeutic agents that target FPRs.


Subject(s)
N-Formylmethionine Leucyl-Phenylalanine/analogs & derivatives , Peptidomimetics/chemical synthesis , Animals , Calcium/metabolism , Cell Line , Chemotaxis , HL-60 Cells , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , N-Formylmethionine Leucyl-Phenylalanine/chemistry , Neutrophils/enzymology , Peptidomimetics/chemistry , Rats , Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Superoxides/metabolism , Transfection
17.
J Biol Chem ; 289(4): 2295-306, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24285541

ABSTRACT

Unlike formyl peptide receptor 1 (FPR1), FPR2/ALX (FPR2) interacts with peptides of diverse sequences but has low affinity for the Escherichia coli-derived chemotactic peptide fMet-Leu-Phe (fMLF). Using computer modeling and site-directed mutagenesis, we investigated the structural requirements for FPR2 to interact with formyl peptides of different length and composition. In calcium flux assay, the N-formyl group of these peptides is necessary for activation of both FPR2 and FPR1, whereas the composition of the C-terminal amino acids appears more important for FPR2 than FPR1. FPR2 interacts better with pentapeptides (fMLFII, fMLFIK) than tetrapeptides (fMLFK, fMLFW) and tripeptide (fMLF) but only weakly with peptides carrying negative charges at the C terminus (e.g. fMLFE). In contrast, FPR1 is less sensitive to negative charges at the C terminus. A CXCR4-based homology model of FPR1 and FPR2 suggested that Asp-281(7.32) is crucial for the interaction of FPR2 with certain formyl peptides as its negative charge may be repulsive with the terminal COO- group of fMLF and negatively charged Glu in fMLFE. Asp-281(7.32) might also form a stable interaction with the positively charged Lys in fMLFK. Site-directed mutagenesis was performed to remove the negative charge at position 281 in FPR2. The D281(7.32)G mutant showed improved affinity for fMLFE and fMLF and reduced affinity for fMLFK compared with wild type FPR2. These results indicate that different structural determinants are used by FPR1 and FPR2 to interact with formyl peptides.


Subject(s)
Molecular Dynamics Simulation , N-Formylmethionine Leucyl-Phenylalanine/analogs & derivatives , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Amino Acid Substitution , Humans , Ligands , Mutagenesis, Site-Directed , Mutation, Missense , N-Formylmethionine Leucyl-Phenylalanine/chemistry , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Receptors, CXCR4/chemistry , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Structural Homology, Protein , Structure-Activity Relationship
18.
PLoS One ; 7(11): e47114, 2012.
Article in English | MEDLINE | ID: mdl-23189124

ABSTRACT

The Formyl Peptide Receptor 1 (FPR1) is an important chemotaxis receptor involved in various aspects of host defense and inflammatory processes. We constructed a model of FPR1 using as a novel template the chemokine receptor CXCR4 from the same branch of the phylogenetic tree of G-protein-coupled receptors. The previously employed template of rhodopsin contained a bulge at the extracellular part of TM2 which directly influenced binding of ligands. We also conducted molecular dynamics (MD) simulations of FPR1 in the apo form as well as in a form complexed with the agonist fMLF and the antagonist tBocMLF in the model membrane. During all MD simulation of the fMLF-FPR1 complex a water molecule transiently bridged the hydrogen bond between W254(6.48) and N108(3.35) in the middle of the receptor. We also observed a change in the cytoplasmic part of FPR1 of a rotamer of the Y301(7.53) residue (tyrosine rotamer switch). This effect facilitated movement of more water molecules toward the receptor center. Such rotamer of Y301(7.53) was not observed in any crystal structures of GPCRs which can suggest that this state is temporarily formed to pass the water molecules during the activation process. The presence of a distance between agonist and residues R201(5.38) and R205(5.42) on helix TM5 may suggest that the activation of FPR1 is similar to the activation of ß-adrenergic receptors since their agonists are separated from serine residues on helix TM5. The removal of water molecules bridging these interactions in FPR1 can result in shrinking of the binding site during activation similarly to the shrinking observed in ß-ARs. The number of GPCR crystal structures with agonists is still scarce so the designing of new ligands with agonistic properties is hampered, therefore homology modeling and docking can provide suitable models. Additionally, the MD simulations can be beneficial to outline the mechanisms of receptor activation and the agonist/antagonist sensing.


Subject(s)
Molecular Dynamics Simulation , Receptors, Formyl Peptide/chemistry , Water/chemistry , Binding Sites , Humans , Hydrogen Bonding , Ligands , Molecular Docking Simulation , N-Formylmethionine Leucyl-Phenylalanine/chemistry , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Protein Binding , Protein Conformation , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/chemistry , Water/metabolism
19.
J Immunol ; 189(2): 629-37, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22706076

ABSTRACT

The neutrophil formyl peptide receptors, FPR1 and FPR2, play critical roles for inflammatory reactions, and receptor-specific antagonists/inhibitors can possibly be used to facilitate the resolution of pathological inflammatory reactions. A 10-aa-long rhodamine-linked and membrane-permeable peptide inhibitor (PBP10) has such a potential. This FPR2 selective inhibitor adopts a phosphatidylinositol 4,5-bisphosphate-binding sequence in the cytoskeletal protein gelsolin. A core peptide, RhB-QRLFQV, is identified that displays inhibitory effects as potent as the full-length molecule. The phosphatidylinositol 4,5-bisphosphate-binding capacity of PBP10 was not in its own sufficient for inhibition. A receptor in which the presumed cytoplasmic signaling C-terminal tail of FPR2 was replaced with that of FPR1 retained the PBP10 sensitivity, suggesting that the tail of FPR2 was not on its own critical for inhibition. This gains support from the fact that the effect of cell-penetrating lipopeptide (a pepducin), suggested to act primarily through the third intracellular loop of FPR2, was significantly inhibited by PBP10. The third intracellular loops of FPR1 and FPR2 differ in only two amino acids, but an FPR2 mutant in which these two amino acids were replaced by those present in FPR1 retained the PBP10 sensitivity. In summary, we conclude that the inhibitory activity on neutrophil function of PBP10 is preserved in the core sequence RhB-QRLFQV and that neither the third intracellular loop of FPR2 nor the cytoplasmic tail of the receptor alone is responsible for the specific inhibition.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Gelsolin/chemistry , Gelsolin/physiology , Peptides/chemistry , Peptides/physiology , Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/physiology , Receptors, Lipoxin/chemistry , Receptors, Lipoxin/physiology , Amino Acid Sequence , Cell Membrane Permeability/immunology , Dose-Response Relationship, Immunologic , Gelsolin/metabolism , HL-60 Cells , Humans , Molecular Sequence Data , Neutrophil Activation/immunology , Peptides/metabolism , Protein Binding/immunology , Protein Structure, Tertiary , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism
20.
J Biol Chem ; 287(29): 24690-7, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22610094

ABSTRACT

Understanding how proresolving agonists selectively activate FPR2/ALX is a crucial step in the clarification of proresolution molecular networks that can be harnessed for the design of novel therapeutics for inflammatory disease. FPR2/ALX, a G protein-coupled receptor belonging to the formyl peptide receptor (FPR) family, conveys the biological functions of a variety of ligands, including the proresolution mediators annexin A1 (AnxA1) and lipoxin A(4), as well as the activating and proinflammatory protein serum amyloid A. FPR2/ALX is the focus of intense screening for novel anti-inflammatory therapeutics, and the small molecule compound 43 was identified as a receptor ligand. Here, we used chimeric FPR1 and FPR2/ALX clones (stably transfected in HEK293 cells) to identify the N-terminal region and extracellular loop II as the FPR2/ALX domain required for AnxA1-mediated signaling. Genomic responses were also assessed with domain-specific effects emerging, so the N-terminal region is required for AnxA1 induction of JAG1 and JAM3, whereas it is dispensable for modulation of SGPP2. By comparison, serum amyloid A non-genomic responses were reliant on extracellular loops I and II, whereas the small molecule compound 43 activated extracellular loop I with downstream signaling dependent on transmembrane region II. In desensitization experiments, the N-terminal region was dispensable for AnxA1-induced FPR2/ALX down-regulation in both the homologous and heterologous desensitization modes.


Subject(s)
Annexin A1/chemistry , Annexin A1/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Blotting, Western , Calcium/metabolism , Flow Cytometry , HEK293 Cells , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Receptors, Formyl Peptide/chemistry , Receptors, Lipoxin/chemistry , Serum Amyloid A Protein/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...