Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.864
Filter
1.
J Headache Pain ; 25(1): 81, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760739

ABSTRACT

BACKGROUND: Recent animal and clinical findings consistently highlight the critical role of calcitonin gene-related peptide (CGRP) in chronic migraine (CM) and related emotional responses. CGRP antibodies and receptor antagonists have been approved for CM treatment. However, the underlying CGRP-related signaling pathways in the pain-related cortex remain poorly understood. METHODS: The SD rats were used to establish the CM model by dural infusions of inflammatory soup. Periorbital mechanical thresholds were assessed using von-Frey filaments, and anxiety-like behaviors were observed via open field and elevated plus maze tests. Expression of c-Fos, CGRP and NMDA GluN2B receptors was detected using immunofluorescence and western blotting analyses. The excitatory synaptic transmission was detected by whole-cell patch-clamp recording. A human-used adenylate cyclase 1 (AC1) inhibitor, hNB001, was applied via insula stereotaxic and intraperitoneal injections in CM rats. RESULTS: The insular cortex (IC) was activated in the migraine model rats. Glutamate-mediated excitatory transmission and NMDA GluN2B receptors in the IC were potentiated. CGRP levels in the IC significantly increased during nociceptive and anxiety-like activities. Locally applied hNB001 in the IC or intraperitoneally alleviated periorbital mechanical thresholds and anxiety behaviors in migraine rats. Furthermore, CGRP expression in the IC decreased after the hNB001 application. CONCLUSIONS: Our study indicated that AC1-dependent IC plasticity contributes to migraine and AC1 may be a promising target for treating migraine in the future.


Subject(s)
Anxiety , Calcitonin Gene-Related Peptide , Cerebral Cortex , Disease Models, Animal , Migraine Disorders , Rats, Sprague-Dawley , Animals , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Calcitonin Gene-Related Peptide/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Anxiety/metabolism , Anxiety/drug therapy , Rats , Male , Adenylyl Cyclases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
2.
Exp Brain Res ; 242(6): 1507-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719948

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer's disease and related tauopathies.


Subject(s)
Alzheimer Disease , Calcineurin Inhibitors , Disease Models, Animal , Mice, Transgenic , Tacrolimus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Tacrolimus/pharmacology , Calcineurin Inhibitors/pharmacology , Mice , Maze Learning/drug effects , Maze Learning/physiology , Calcineurin/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , tau Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Synapses/drug effects , Synapses/metabolism , Disks Large Homolog 4 Protein/metabolism
3.
Neurobiol Learn Mem ; 212: 107939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762038

ABSTRACT

Recognizing and remembering another individual in a social context could be beneficial for individual fitness. Especially in agonistic encounters, remembering an opponent and the previous fight could allow for avoiding new conflicts. Considering this, we hypothesized that this type of social interaction forms a long-term recognition memory lasting several days. It has been shown that a second encounter 24 h later between the same pair of zebrafish males is resolved with lower levels of aggression. Here, we evaluated if this behavioral change could last for longer intervals and a putative mechanism associated with memory storage: the recruitment of NMDA receptors. We found that if a pair of zebrafish males fight and fight again 48 or 72 h later, they resolve the second encounter with lower levels of aggression. However, if opponents were exposed to MK-801 (NMDA receptor antagonist) immediately after the first encounter, they solved the second one with the same levels of aggression: that is, no reduction in aggressive behaviors was observed. These amnesic effect suggest the formation of a long-term social memory related to recognizing a particular opponent and/or the outcome and features of a previous fight.


Subject(s)
Aggression , Dizocilpine Maleate , Memory Consolidation , Memory, Long-Term , Zebrafish , Animals , Zebrafish/physiology , Male , Aggression/physiology , Aggression/drug effects , Memory Consolidation/physiology , Memory Consolidation/drug effects , Dizocilpine Maleate/pharmacology , Memory, Long-Term/physiology , Memory, Long-Term/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Social Behavior , Excitatory Amino Acid Antagonists/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology
4.
Zhonghua Er Ke Za Zhi ; 62(6): 559-564, 2024 Jun 02.
Article in Chinese | MEDLINE | ID: mdl-38763879

ABSTRACT

Objective: To analyze the clinical features of children with refractory N-methyl-D-aspartate (NMDA) receptor antibody encephalitis treated with tocilizumab. Methods: Demographic and clinical manifeatations, immunotherapy and prognosis data of 9 children with refractory NMDA receptor antibody encephalitis who received tocilizumab in the Department of Pediatrics Neurology, XiangYa Hospital of Central South University from August 2021 to September 2023 were collected retrospectively. Prognosis was evaluated using the modified Rankin scale at initial diagnosis, at the initiation of tocilizumab treatment, and at the last follow-up. Treatment related complications, neuroimaging, and electroencephalography data were analyzed. Results: Among the 9 children, 6 were male and 3 were female, with an onset age of 4.2 (2.8, 8.7) years. At the onset of the disease, 9 children had a modified Rankin scale score of 5. When tocilizumab treatment was initiated, 7 children had a score of 5, and 2 children had a score of 4. The interval between the onset and initiation of tocilizumab treatment was 12 (5, 27) months, and the treatment frequency was 8 (5, 13) times. The follow-up time was 2.8 (1.5, 3.7) years. At the last follow-up, the symptoms of 9 children, including movement disorder, sleep disorder, consciousness disorder, silence and autonomic dysfunction, were improved to varying degrees, and none of them had seizures. At the last follow-up, 4 cases with a modified Rankin scale score of 0, 1 case with a score of 1, 2 cases with a score of 3, 1 case with a score of 4 and 1 case with a score of 5. The modified Rankin scale at the last follow-up was significantly different from that at the start of tocilizumab (Z=-2.56, P=0.014). All children had no serious adverse reactions during the treatment. Conclusions: After treatment with tocilizumab, the symptoms in patients with refractory NMDA receptor antibody encephalitis, including movement disorder, sleep disorder, consciousness disorder, silence and autonomic dysfunction were improved, and none of them had seizures. The modified Rankin scale were improved, and the safety was good.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Antibodies, Monoclonal, Humanized , Electroencephalography , Humans , Female , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Child , Child, Preschool , Retrospective Studies , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Prognosis , Treatment Outcome , Receptors, N-Methyl-D-Aspartate/immunology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
5.
Proc Natl Acad Sci U S A ; 121(22): e2402732121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768339

ABSTRACT

Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.


Subject(s)
Ketamine , Receptors, N-Methyl-D-Aspartate , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Humans , Kinetics , Electroencephalography , Excitatory Amino Acid Antagonists/pharmacology , Models, Neurological
6.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
7.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38653560

ABSTRACT

Forebrain neurons deprived of activity become hyperactive when activity is restored. Rebound activity has been linked to spontaneous seizures in vivo following prolonged activity blockade. Here, we measured the time course of rebound activity and the contributing circuit mechanisms using calcium imaging, synaptic staining, and whole-cell patch clamp in organotypic slice cultures of mouse neocortex. Calcium imaging revealed hypersynchronous activity increasing in intensity with longer periods of deprivation. While activity partially recovered 3 d after slices were released from 5 d of deprivation, they were less able to recover after 10 d of deprivation. However, even after the longer period of deprivation, activity patterns eventually returned to baseline levels. The degree of deprivation-induced rebound was age-dependent, with the greatest effects occurring when silencing began in the second week. Pharmacological blockade of NMDA receptors indicated that hypersynchronous rebound activity did not require activation of Hebbian plasticity. In single-neuron recordings, input resistance roughly doubled with a concomitant increase in intrinsic excitability. Synaptic imaging of pre- and postsynaptic proteins revealed dramatic reductions in the number of presumptive synapses with a larger effect on inhibitory than excitatory synapses. Putative excitatory synapses colocalizing PSD-95 and Bassoon declined by 39 and 56% following 5 and 10 d of deprivation, but presumptive inhibitory synapses colocalizing gephyrin and VGAT declined by 55 and 73%, respectively. The results suggest that with prolonged deprivation, a progressive reduction in synapse number is accompanied by a shift in the balance between excitation and inhibition and increased cellular excitability.


Subject(s)
Disks Large Homolog 4 Protein , Neocortex , Animals , Neocortex/physiology , Disks Large Homolog 4 Protein/metabolism , Neurons/physiology , Neurons/metabolism , Organ Culture Techniques , Synapses/physiology , Patch-Clamp Techniques , Mice , Mice, Inbred C57BL , Female , Calcium/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Time Factors , Nerve Tissue Proteins
8.
J Ethnopharmacol ; 330: 118270, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38685368

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cheonwangbosimdan (CWBSD), a herbal medicine traditionally used for anxiety, insomnia, depression, and heart palpitations, has been reported to have anti-anxiety, antidepressant, cognitive improvement, and neuroprotective effects. AIM OF THE STUDY: The purpose of this study was to determine if CWBSD could affect post-traumatic stress disorder (PTSD)-like behaviors because it has prioritized clinical use over mechanism study. MATERIALS AND METHODS: A single prolonged stress (SPS) mouse model, a well-established animal model of PTSD, was used to investigate whether standardized CWBSD could mitigate PTSD-like behaviors through robust behavioral tests, including the elevated plus-maze test and marble burying test for measuring anxiety-like behaviors, the splash test, forced swimming test, and tail suspension test for evaluating depression-like behaviors, and the Y-maze test and novel object recognition test for assessing cognitive function. Additionally, a fear extinction test was employed to determine whether CWBSD might reverse fear memory extinction deficits. Amygdala tissue was isolated from SPS-treated mouse brain and subjected to Western blotting or quantitative PCR to explore mechanisms by which CWBSD could mitigate PTSD-like behaviors. RESULTS: CWBSD ameliorated emotional impairments and cognitive dysfunction in an SPS-induced PTSD-like mouse model. It also mitigated deficits in abnormal fear memory extinction. Protein expression levels of N-methyl-D-aspartate (NMDA) receptor subunit 2B (GluN2B) and phosphorylation levels of Ca2+/calmodulin-dependent protein kinase II in the amygdala were increased in SPS model mice and normalized by CWBSD. Additionally, co-administration of CWBSD and GluN2B-containing NMDA receptor antagonist, ifenprodil, at each sub-effective dose promoted fear memory extinction. CONCLUSIONS: CWBSD can alleviate SPS-induced PTSD-like behaviors by normalizing GluN2B-containing NMDA receptor activity in the amygdala. Therefore, CWBSD could be a promising candidate for PTSD treatment with fewer adverse effects and better efficacy than existing therapies.


Subject(s)
Behavior, Animal , Disease Models, Animal , Receptors, N-Methyl-D-Aspartate , Stress Disorders, Post-Traumatic , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/metabolism , Male , Mice , Behavior, Animal/drug effects , Mice, Inbred C57BL , Fear/drug effects , Amygdala/drug effects , Amygdala/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Anxiety/drug therapy , Anxiety/psychology
9.
Neuroscience ; 547: 98-107, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38657727

ABSTRACT

OBJECTIVE: Postoperative pain remains one of the most common complaints after surgery, and appropriate treatments are limited. METHODS: We therefore investigated the effect of the anti-nociceptive properties of magnesium sulfate (MgSO4), an N-methyl-D-aspartate (NMDA) receptor antagonist, on incision-induced postoperative pain and peripheral and central nervous system inflammation. RESULTS: We found that local MgSO4 administration dose-dependently increases paw withdrawal latency, indicating reduced peripheral postoperative pain. Furthermore, MgSO4 inhibited the expression of interleukin-1ß (IL-1ß) and inducible nitric oxide synthase (iNOS) and phosphorylation of the NMDA receptor NR1 subunit in injured paw tissue and significantly attenuated microglial and astrocytic activation in the ipsilateral lumbar spinal cord dorsal horn. CONCLUSION: Locally administered MgSO4 has potential for development as an adjunctive therapy for preventing central nociceptive sensitization.


Subject(s)
Inflammation , Magnesium Sulfate , Nociception , Pain, Postoperative , Rats, Sprague-Dawley , Animals , Magnesium Sulfate/pharmacology , Magnesium Sulfate/administration & dosage , Male , Nociception/drug effects , Pain, Postoperative/drug therapy , Pain, Postoperative/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Rats , Disease Models, Animal , Spinal Cord/drug effects , Spinal Cord/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Central Nervous System Sensitization/drug effects , Central Nervous System Sensitization/physiology , Microglia/drug effects , Microglia/metabolism , Analgesics/pharmacology , Analgesics/administration & dosage , Interleukin-1beta/metabolism , Nitric Oxide Synthase Type II/metabolism
10.
Schizophr Res ; 267: 432-440, 2024 May.
Article in English | MEDLINE | ID: mdl-38642484

ABSTRACT

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Subject(s)
Disease Models, Animal , Dizocilpine Maleate , Estradiol , Poly I-C , Prenatal Exposure Delayed Effects , Prepulse Inhibition , Raloxifene Hydrochloride , Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Female , Estradiol/pharmacology , Raloxifene Hydrochloride/pharmacology , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Pregnancy , Prepulse Inhibition/drug effects , Dizocilpine Maleate/pharmacology , Poly I-C/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Rats , Excitatory Amino Acid Antagonists/pharmacology , Male , Selective Estrogen Receptor Modulators/pharmacology , Estrogens/pharmacology , Motor Activity/drug effects
11.
Eur J Neurosci ; 59(9): 2260-2275, 2024 May.
Article in English | MEDLINE | ID: mdl-38411499

ABSTRACT

The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.


Subject(s)
Muscimol , Rats, Long-Evans , Recognition, Psychology , Animals , Male , Female , Rats , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Baclofen/pharmacology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Mental Recall/drug effects , Mental Recall/physiology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Characteristics , GABA-B Receptor Agonists/pharmacology
12.
Neuropsychopharmacol Rep ; 44(2): 333-341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38376999

ABSTRACT

AIM: The therapeutic potential of N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, particularly ketamine, in mood disorders, is linked to their modulation of dopamine dynamics in the medial prefrontal cortex (mPFC). However, conflicting effects of distinct NMDAR antagonists, like ketamine and phencyclidine, on mPFC dopamine levels stem from variances in their receptor affinity profiles. This study investigates the impact of intermittent subchronic administration of an NMDAR antagonist on dopamine synthesis capacity and responsiveness within the mPFC, focusing on Dizocilpine (MK-801), a highly selective NMDAR antagonist. METHODS: In vivo microdialysis and high-performance liquid chromatography assessed extracellular dopamine levels in the mPFC following subchronic MK-801 treatment. Locomotor activity was measured using a computed video tracking system. RESULTS: Intermittent subchronic MK-801 administration, followed by a 24-h withdrawal, preserved both dopamine synthesis capacity and responsiveness to MK-801 challenge in the mPFC. However, altered locomotor activity was observed, deviating from previous findings indicating impaired dopamine synthesis and responsiveness in the mPFC with twice-daily subchronic NMDAR antagonist treatment. CONCLUSION: These findings offer crucial biochemical insights into the diverse impacts of NMDAR antagonists on dopamine dynamics and the distinct therapeutic mechanisms associated with ketamine in depression treatment. However, further investigation is imperative to pinpoint potential inconsistencies stemming from variances in drug type, dosage, or administration frequency.


Subject(s)
Dizocilpine Maleate , Dopamine , Excitatory Amino Acid Antagonists , Prefrontal Cortex , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/administration & dosage , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Animals , Dopamine/metabolism , Dopamine/biosynthesis , Male , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Rats , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Locomotion/drug effects , Rats, Sprague-Dawley , Microdialysis/methods
13.
Eur J Neurosci ; 59(9): 2403-2415, 2024 May.
Article in English | MEDLINE | ID: mdl-38385841

ABSTRACT

Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 µg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 µg/kg), but not the high dose (.05 µg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.


Subject(s)
Disease Models, Animal , Dizocilpine Maleate , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1 , Receptor, Serotonin, 5-HT1A , Schizophrenia , Animals , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Schizophrenia/metabolism , Dizocilpine Maleate/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Male , Mice , Female , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/agonists , Cannabinoids/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Antipsychotic Agents/pharmacology
14.
Neuropsychopharmacology ; 49(6): 905-914, 2024 May.
Article in English | MEDLINE | ID: mdl-38177696

ABSTRACT

The NMDA receptor (NMDAR) antagonist ketamine has shown great potential as a rapid-acting antidepressant; however, its use is limited by poor oral bioavailability and a side effect profile that necessitates in-clinic dosing. GM-1020 is a novel NMDAR antagonist that was developed to address these limitations of ketamine as a treatment for depression. Here, we present the preclinical characterization of GM-1020 alongside ketamine, for comparison. In vitro, we profiled GM-1020 for binding to NMDAR and functional inhibition using patch-clamp electrophysiology. In vivo, GM-1020 was assessed for antidepressant-like efficacy using the Forced Swim Test (FST) and Chronic Mild Stress (CMS), while motor side effects were assessed in spontaneous locomotor activity and on the rotarod. The pharmacokinetic properties of GM-1020 were profiled across multiple preclinical species. Electroencephalography (EEG) was performed to determine indirect target engagement and provide a potentially translational biomarker. These results demonstrate that GM-1020 is an orally bioavailable NMDAR antagonist with antidepressant-like efficacy at exposures that do not produce unwanted motor effects.


Subject(s)
Antidepressive Agents , Receptors, N-Methyl-D-Aspartate , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/pharmacology , Antidepressive Agents/pharmacokinetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Rats , Mice , Administration, Oral , Rats, Sprague-Dawley , Biological Availability , Ketamine/administration & dosage , Ketamine/pharmacology , Depression/drug therapy , Motor Activity/drug effects , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacokinetics , Humans
15.
J Biomol Struct Dyn ; 42(5): 2586-2602, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37325873

ABSTRACT

Alzheimer's disease (AD) is a chronic neurodegenerative condition characterized by progressive cognitive impairment. While the formation of ß-amyloid plaques and neurofibrillary tangles are the hallmarks features of AD, the downstream consequence of these byproducts is the disruption of the cholinergic and glutamatergic neural systems. Growing evidence for the existence of interplay between AChE and NMDARs has opened up new venues for the discovery of novel ligands endowed with anticholinesterase and NMDAR-blocking activity. Plants belonging to the stachys genus have been extensively explored for having a broad range of therapeutic applications and have been used traditionally for millennia, to treat various CNS-related disorders, which makes them the ideal source of novel therapeutics. The present study was designed to identify natural dual-target inhibitors for AChE and NMDAR deriving from stachys genus for their potential use in AD. Using molecular docking, drug-likeness-profiling, MD simulation and MMGBSA calculations, an in-house database of biomolecules pertaining to the stachys genus was shortlisted based on their binding affinity, overall stability and critical ADMET parameters. Pre- and post-MD analysis revealed that Isoorientin effectively binds to AChE and NMDAR with various vital interactions, exhibits a stable behavior with minor fluctuations relative to two clinical drugs used as positive control, and displays strong and consistent interactions that lasted for the majority of the simulation. Findings from this study have elucidated the rationale behind the traditional use of Stachys plants for the treatment of AD and could provide new impetus for the development of novel dual-target therapeutics for AD treatment.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Stachys , Humans , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Computer Simulation , Molecular Docking Simulation , Stachys/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
16.
Nature ; 622(7984): 802-809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853123

ABSTRACT

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.


Subject(s)
Antidepressive Agents , Depression , Habenula , Ketamine , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Antidepressive Agents/administration & dosage , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Habenula/drug effects , Habenula/metabolism , Half-Life , Ketamine/administration & dosage , Ketamine/metabolism , Ketamine/pharmacokinetics , Ketamine/pharmacology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Time Factors , Protein Binding
17.
J Med Chem ; 66(16): 11573-11588, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37580890

ABSTRACT

Negative allosteric modulation of GluN2B subunit-containing NMDA receptors prevents overstimulation, resulting in neuroprotective effects. Since the phenol of prominent negative allosteric modulators is prone to rapid glucuronidation, its bioisosteric replacement by an indazole was envisaged. The key step in the synthesis was a Sonogashira reaction of non-protected iodoindazoles with propargylpiperidine derivatives. Modification of the alkynyl moiety allowed the introduction of several functional groups. The synthesized indazoles showed very high GluN2B affinity but limited selectivity over σ receptors. Molecular dynamics simulations revealed the same molecular interactions with the ifenprodil binding site as the analogous phenols. In two-electrode voltage-clamp experiments, enantiomeric 3-(4-benzylpiperidin-1-yl)-1-(1H-indazol-5-yl)propan-1-ols (S)-10a and (R)-10a displayed higher inhibitory activity than ifenprodil. In contrast to phenolic GluN2B antagonists, the indazoles were not conjugated with glucuronic acid. It can be concluded that the phenol of potent GluN2B antagonists can be replaced bioisosterically by an indazole, retaining the high GluN2B affinity and activity but inhibiting glucuronidation.


Subject(s)
Indazoles , Phenol , Receptors, N-Methyl-D-Aspartate , Binding Sites , Phenols/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Structure-Activity Relationship
18.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298821

ABSTRACT

Depression, a mental disorder that plagues the world, is a burden on many families. There is a great need for new, fast-acting antidepressants to be developed. N-methyl-D-aspartic acid (NMDA) is an ionotropic glutamate receptor that plays an important role in learning and memory processes and its TMD region is considered as a potential target to treat depression. However, due to the unclear binding sites and pathways, the mechanism of drug binding lacks basic explanation, which brings great complexity to the development of new drugs. In this study, we investigated the binding affinity and mechanisms of an FDA-approved antidepressant (S-ketamine) and seven potential antidepressants (R-ketamine, memantine, lanicemine, dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil) targeting the NMDA receptor by ligand-protein docking and molecular dynamics simulations. The results indicated that Ro 25-6981 has the strongest binding affinity to the TMD region of the NMDA receptor among the eight selected drugs, suggesting its potential effective inhibitory effect. We also calculated the critical binding-site residues at the active site and found that residues Leu124 and Met63 contributed the most to the binding energy by decomposing the free energy contributions on a per-residue basis. We further compared S-ketamine and its chiral molecule, R-ketamine, and found that R-ketamine had a stronger binding capacity to the NMDA receptor. This study provides a computational reference for the treatment of depression targeting NMDA receptors, and the proposed results will provide potential strategies for further antidepressant development and is a useful resource for the future discovery of fast-acting antidepressant candidates.


Subject(s)
Antidepressive Agents , Receptors, N-Methyl-D-Aspartate , Humans , Antidepressive Agents/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Protein Binding , Molecular Dynamics Simulation , Binding Sites , Ligands , Protein Conformation
19.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868208

ABSTRACT

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Subject(s)
Down Syndrome , Receptors, N-Methyl-D-Aspartate , beta 2-Microglobulin , Animals , Humans , Mice , beta 2-Microglobulin/metabolism , beta 2-Microglobulin/pharmacology , Cognitive Dysfunction/metabolism , Cross Reactions , Parabiosis , Proteomics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Down Syndrome/blood , Down Syndrome/metabolism
20.
ACS Chem Neurosci ; 14(7): 1278-1290, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36957993

ABSTRACT

The central nucleus of the amygdala (CeA) is a key brain region involved in emotional and stressor responses due to its many projections to autonomic regulatory centers. It is also a primary site of action from ethanol consumption. However, the influence of active metabolites of ethanol such as acetate on the CeA neural circuitry has yet to be elucidated. Here, we investigated the effect of acetate on CeA neurons with the axon projecting to the rostral ventrolateral medulla (CeA-RVLM), as well as quantified cytosolic calcium responses in primary neuronal cultures. Whole-cell patch-clamp recordings in brain slices containing autonomic CeA-RVLM neurons revealed a dose-dependent increase in neuronal excitability in response to acetate. N-Methyl-d-aspartate receptor (NMDAR) antagonists suppressed the acetate-induced increase in CeA-RVLM neuronal excitability and memantine suppressed the direct activation of NMDAR-dependent inward currents by acetate in brain slices. We observed that acetate increased cytosolic Ca2+ in a time-dependent manner in primary neuronal cell cultures. The acetate enhancement of calcium signaling was abolished by memantine. Computational modeling of acetic acid at NMDAR/NR1 glutamatergic and glycinergic sites suggests potential active site interactions. These findings suggest that within the CeA, acetate is excitatory at least partially through activation of NMDAR, which may underlie the impact of ethanol consumption on autonomic circuitry.


Subject(s)
Acetates , Central Amygdaloid Nucleus , Ethanol , Neurons , Receptors, N-Methyl-D-Aspartate , Acetates/metabolism , Acetates/pharmacology , Acetic Acid/metabolism , Action Potentials/drug effects , Calcium/metabolism , Catalytic Domain , Cells, Cultured , Central Amygdaloid Nucleus/cytology , Ethanol/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , Memantine/pharmacology , Neurons/drug effects , Neurons/metabolism , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sodium/pharmacology , Sodium Acetate/pharmacology , Synaptic Transmission/physiology , Animals , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...