Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.830
Filter
1.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771932

ABSTRACT

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Subject(s)
Aedes , Azo Compounds , Insecticides , Neonicotinoids , Nitro Compounds , Pyrazoles , Animals , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Aedes/drug effects , Larva/drug effects , Larva/growth & development , Insect Proteins/chemistry , Insect Proteins/metabolism , Behavior, Animal/drug effects , Light , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, GABA/metabolism , Receptors, GABA/chemistry
2.
J Agric Food Chem ; 72(23): 12967-12974, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814790

ABSTRACT

Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.


Subject(s)
Hemiptera , Insect Proteins , Insecticides , Neonicotinoids , Receptors, Nicotinic , Animals , Insecticides/chemistry , Insecticides/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Hemiptera/chemistry , Hemiptera/genetics , Hemiptera/drug effects , Hemiptera/metabolism , Structure-Activity Relationship , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Aplysia/chemistry , Aplysia/metabolism , Aplysia/genetics , Nicotine/chemistry , Nicotine/metabolism , Nicotine/analogs & derivatives , Nicotine/pharmacology
3.
J Agric Food Chem ; 72(23): 12956-12966, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38820064

ABSTRACT

Bees, one of the most vital pollinators in the ecosystem and agriculture, are currently threatened by neonicotinoids. To explore the molecular mechanisms of neonicotinoid toxicity to bees, the different binding modes of imidacloprid, thiacloprid, and flupyradifurone with nicotinic acetylcholine receptor (nAChR) α1ß1 and cytochrome P450 9Q3 (CYP9Q3) were studied using homology modeling and molecular dynamics simulations. These mechanisms provided a basis for the design of compounds with a potential low bee toxicity. Consequently, we designed and synthesized a series of triazinone derivatives and assessed their bioassays. Among them, compound 5a not only displayed substantially insecticidal activities against Aphis glycines (LC50 = 4.40 mg/L) and Myzus persicae (LC50 = 6.44 mg/L) but also had low toxicity to Apis mellifera. Two-electrode voltage clamp recordings further confirmed that compound 5a interacted with the M. persicae nAChR α1 subunit but not with the A. mellifera nAChR α1 subunit. This work provides a paradigm for applying molecular toxic mechanisms to the design of compounds with low bee toxicity, thereby aiding the future rational design of eco-friendly nicotinic insecticides.


Subject(s)
Insect Proteins , Insecticides , Neonicotinoids , Receptors, Nicotinic , Bees/drug effects , Animals , Insecticides/chemistry , Insecticides/toxicity , Neonicotinoids/chemistry , Neonicotinoids/toxicity , Neonicotinoids/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Insect Proteins/chemistry , Insect Proteins/metabolism , Aphids/drug effects , Nitro Compounds/chemistry , Nitro Compounds/toxicity , Drug Design , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Molecular Dynamics Simulation , Protein Binding , Thiazines
4.
J Agric Food Chem ; 72(20): 11331-11340, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38721769

ABSTRACT

Research on mesoionic structures in pesticide design has gained significant attention in recent years. However, the 1-position of pyridino[1,2-a]pyrimidine is usually designed with 2-chlorothiazole, 2-chloropyridine, or cyano moieties commonly found in neonicotinoid insecticides. In order to enrich the available pharmacophore library, here, we disclose a series of new pyridino[1,2-a]pyrimidine mesoionics bearing indole-containing substituents at the 1-position. Most of these target compounds are confirmed to have good insecticidal activity against aphids through bioevaluation. In addition, a three-dimensional structure-activity relationship model is established to allow access to optimal compound F45 with an LC50 value of 2.97 mg/L. This value is comparable to the property achieved by the positive control triflumezopyrim (LC50 = 2.94 mg/L). Proteomics and molecular docking analysis suggest that compound F45 has the potential to modulate the functioning of the aphid nervous system through its interaction with neuronal nicotinic acetylcholine receptors. This study expands the existing pharmacophore library for the future development of new mesoionic insecticides based on 1-position modifications of the pyridino[1,2-a]pyrimidine scaffold.


Subject(s)
Aphids , Drug Design , Indoles , Insecticides , Molecular Docking Simulation , Pyrimidines , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Animals , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Aphids/drug effects , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/drug effects
5.
ACS Chem Neurosci ; 15(11): 2322-2333, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38804618

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The Aplysia californica acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs. In this study, we optimized protein-painting-based mass spectrometry to identify regions of interaction between the Ac-AChBP and several nAChR ligands. Using molecular dyes that adhere to the surface of a solubilized Ac-AChBP complex, we identified amino acid residues that constitute a contact site within the Ac-AChBP for α-bungarotoxin, choline, nicotine, and amyloid-ß 1-42. By integrating innovation in protein painting mass spectrometry with computational structural modeling, we present a new experimental tool for analyzing protein interactions of the nAChR.


Subject(s)
Aplysia , Mass Spectrometry , Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Mass Spectrometry/methods , Binding Sites , Protein Binding/physiology , Carrier Proteins/metabolism , Bungarotoxins/pharmacology , Bungarotoxins/metabolism , Bungarotoxins/chemistry , Acetylcholine/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Models, Molecular
6.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731447

ABSTRACT

Neuromuscular blocking agents (NMBAs) are routinely used during anesthesia to relax skeletal muscle. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels; NMBAs can induce muscle paralysis by preventing the neurotransmitter acetylcholine (ACh) from binding to nAChRs situated on the postsynaptic membranes. Despite widespread efforts, it is still a great challenge to find new NMBAs since the introduction of cisatracurium in 1995. In this work, an effective ensemble-based virtual screening method, including molecular property filters, 3D pharmacophore model, and molecular docking, was applied to discover potential NMBAs from the ZINC15 database. The results showed that screened hit compounds had better docking scores than the reference compound d-tubocurarine. In order to further investigate the binding modes between the hit compounds and nAChRs at simulated physiological conditions, the molecular dynamics simulation was performed. Deep analysis of the simulation results revealed that ZINC257459695 can stably bind to nAChRs' active sites and interact with the key residue Asp165. The binding free energies were also calculated for the obtained hits using the MM/GBSA method. In silico ADMET calculations were performed to assess the pharmacokinetic properties of hit compounds in the human body. Overall, the identified ZINC257459695 may be a promising lead compound for developing new NMBAs as an adjunct to general anesthesia, necessitating further investigations.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Neuromuscular Blocking Agents , Receptors, Nicotinic , Neuromuscular Blocking Agents/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Humans , Drug Discovery/methods , Protein Binding , Binding Sites , Ligands
7.
J Phys Chem B ; 128(19): 4577-4589, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38696590

ABSTRACT

The binding affinity of nicotinoids to the binding residues of the α4ß2 variant of the nicotinic acetylcholine receptor (nAChR) was identified as a strong predictor of the nicotinoid's addictive character. Using ab initio calculations for model binding pockets of increasing size composed of 3, 6, and 14 amino acids (3AA, 6AA, and 14AA) that are derived from the crystal structure, the differences in binding affinity of 6 nicotinoids, namely, nicotine (NIC), nornicotine (NOR), anabasine (ANB), anatabine (ANT), myosmine (MYO), and cotinine (COT) were correlated to their previously reported doses required for increases in intracranial self-stimulation (ICSS) thresholds, a metric for their addictive function. By employing the many-body decomposition, the differences in the binding affinities of the various nicotinoids could be attributed mainly to the proton exchange energy between the pyridine and non-pyridine rings of the nicotinoids and the interactions between them and a handful of proximal amino acids, namely Trp156, Trpß57, Tyr100, and Tyr204. Interactions between the guest nicotinoid and the amino acids of the binding pocket were found to be mainly classical in nature, except for those between the nicotinoid and Trp156. The larger pockets were found to model binding structures more accurately and predicted the addictive character of all nicotinoids, while smaller models, which are more computationally feasible, would only predict the addictive character of nicotinoids that are similar to nicotine. The present study identifies the binding affinity of the guest nicotinoid to the host binding pocket as a strong descriptor of the nicotinoid's addiction potential, and as such it can be employed as a fast-screening technique for the potential addiction of nicotine analogs.


Subject(s)
Brain , Receptors, Nicotinic , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Humans , Binding Sites , Brain/metabolism , Nicotine/chemistry , Nicotine/analogs & derivatives , Nicotine/metabolism , Anabasine/chemistry , Anabasine/metabolism , Anabasine/analogs & derivatives , Models, Molecular , Protein Binding , Pyridines/chemistry , Pyridines/metabolism , Cotinine/chemistry , Cotinine/metabolism , Cotinine/analogs & derivatives , Alkaloids
8.
J Agric Food Chem ; 72(21): 11968-11979, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38759145

ABSTRACT

With the aim of identifying novel neonicotinoid insecticides with low bee toxicity, a series of compounds bearing thiazolidine moiety, which has been shown to be low bee toxic, were rationally designed through substructure splicing strategy and evaluated insecticidal activities. The optimal compounds A24 and A29 exhibited LC50 values of 30.01 and 17.08 mg/L against Aphis craccivora, respectively. Electrophysiological studies performed on Xenopus oocytes indicated that compound A29 acted on insect nAChR, with EC50 value of 50.11 µM. Docking binding mode analysis demonstrated that A29 bound to Lymnaea stagnalis acetylcholine binding protein through H-bonds with the residues of D_Arg55, D_Leu102, and D_Val114. Quantum mechanics calculation showed that A29 had a higher highest occupied molecular orbit (HOMO) energy and lower vertical ionization potential (IP) value compared to the high bee toxic imidacloprid, showing potentially low bee toxicity. Bee toxicity predictive model also indicated that A29 was nontoxic to honeybees. Our present work identified an innovative insecticidal scaffold and might facilitate the further exploration of low bee toxic neonicotinoid insecticides.


Subject(s)
Insecticides , Neonicotinoids , Thiazolidines , Animals , Insecticides/chemistry , Insecticides/toxicity , Bees/drug effects , Neonicotinoids/chemistry , Neonicotinoids/toxicity , Thiazolidines/chemistry , Thiazolidines/toxicity , Molecular Docking Simulation , Insect Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/toxicity , Aphids/drug effects , Aphids/genetics , Structure-Activity Relationship , Molecular Structure , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry
9.
J Biol Chem ; 300(5): 107266, 2024 May.
Article in English | MEDLINE | ID: mdl-38583864

ABSTRACT

We describe molecular-level functional changes in the α4ß2 nicotinic acetylcholine receptor by a leucine residue insertion in the M2 transmembrane domain of the α4 subunit associated with sleep-related hyperkinetic epilepsy. Measurements of agonist-elicited single-channel currents reveal the primary effect is to stabilize the open channel state, while the secondary effect is to promote reopening of the channel. These dual effects prolong the durations of bursts of channel openings equally for the two major stoichiometric forms of the receptor, (α4)2(ß2)3 and (α4)3(ß2)2, indicating the functional impact is independent of mutant copy number per receptor. Altering the location of the residue insertion within M2 shows that functionally pivotal structures are confined to a half turn of the M2 α-helix. Residue substitutions within M2 and surrounding α-helices reveal that both intrasubunit and intersubunit interactions mediate the increase in burst duration. These interactions impacting burst duration depend linearly on the size and hydrophobicity of the substituting residue. Together, the results reveal a novel structural region of the α4ß2 nicotinic acetylcholine receptor in which interhelical interactions tune the stability of the open channel state.


Subject(s)
Ion Channel Gating , Receptors, Nicotinic , Animals , Humans , HEK293 Cells , Ion Channel Gating/genetics , Mutagenesis, Insertional , Protein Domains , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Xenopus laevis
10.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588428

ABSTRACT

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Subject(s)
Receptors, Cholinergic , Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Muscles , Ion Transport , Lipids
11.
Sci Rep ; 14(1): 9392, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658769

ABSTRACT

A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.


Subject(s)
Amino Acids , Antifungal Agents , Drug Design , Insecticides , Molecular Docking Simulation , Insecticides/pharmacology , Insecticides/chemical synthesis , Insecticides/chemistry , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Amino Acids/chemistry , Aphids/drug effects , Tetranychidae/drug effects , Structure-Activity Relationship , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Microbial Sensitivity Tests
12.
Proc Natl Acad Sci U S A ; 121(19): e2319913121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683987

ABSTRACT

The muscle-type nicotinic acetylcholine receptor is a transmitter-gated ion channel residing in the plasma membrane of electrocytes and striated muscle cells. It is present predominantly at synaptic junctions, where it effects rapid depolarization of the postsynaptic membrane in response to acetylcholine released into the synaptic cleft. Previously, cryo-EM of intact membrane from Torpedo revealed that the lipid bilayer surrounding the junctional receptor has a uniquely asymmetric and ordered structure, due to a high concentration of cholesterol. It is now shown that this special lipid environment influences the transmembrane (TM) folding of the protein. All five submembrane MX helices of the membrane-intact junctional receptor align parallel to the surface of the cholesterol-ordered lipids in the inner leaflet of the bilayer; also, the TM helices in the outer leaflet are splayed apart. However in the structure obtained from the same protein after extraction and incorporation in nanodiscs, the MX helices do not align to a planar surface, and the TM helices arrange compactly in the outer leaflet. Realignment of the MX helices of the nanodisc-solved structure to a planar surface converts their adjoining TM helices into an obligatory splayed configuration, characteristic of the junctional receptor. Thus, the form of the receptor sustained by the special lipid environment of the synaptic junction is the one that mediates fast synaptic transmission; whereas, the nanodisc-embedded protein may be like the extrajunctional form, existing in a disordered lipid environment.


Subject(s)
Lipid Bilayers , Receptors, Nicotinic , Torpedo , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Animals , Torpedo/metabolism , Cryoelectron Microscopy , Cholesterol/metabolism , Cholesterol/chemistry , Cell Membrane/metabolism , Protein Folding , Models, Molecular
13.
Br J Pharmacol ; 181(13): 1973-1992, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38454578

ABSTRACT

BACKGROUND AND PURPOSE: α4ß2 nicotinic acetylcholine (nACh) receptors assemble in two stoichiometric forms, one of which is potentiated by calcium. The sites of calcium binding that underpin potentiation are not known. EXPERIMENTAL APPROACH: To identify calcium binding sites, we applied cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations to each stoichiometric form of the α4ß2 nACh receptor in the presence of calcium ions. To test whether the identified calcium sites are linked to potentiation, we generated mutants of anionic residues at the sites, expressed wild type and mutant receptors in clonal mammalian fibroblasts, and recorded ACh-elicited single-channel currents with or without calcium. KEY RESULTS: Both cryo-EM and MD simulations show calcium bound to a site between the extracellular and transmembrane domains of each α4 subunit (ECD-TMD site). Substituting alanine for anionic residues at the ECD-TMD site abolishes stoichiometry-selective calcium potentiation, as monitored by single-channel patch clamp electrophysiology. Additionally, MD simulation reveals calcium association at subunit interfaces within the extracellular domain. Substituting alanine for anionic residues at the ECD sites reduces or abolishes stoichiometry-selective calcium potentiation. CONCLUSIONS AND IMPLICATIONS: Stoichiometry-selective calcium potentiation of the α4ß2 nACh receptor is achieved by calcium association with topographically distinct sites framed by anionic residues within the α4 subunit and between the α4 and ß2 subunits. Stoichiometry-selective calcium potentiation could result from the greater number of calcium sites in the stoichiometric form with three rather than two α4 subunits. The results are relevant to modulation of signalling via α4ß2 nACh receptors in physiological and pathophysiological conditions.


Subject(s)
Calcium , Cryoelectron Microscopy , Molecular Dynamics Simulation , Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Calcium/metabolism , Humans , Binding Sites , Animals
14.
J Phys Chem B ; 128(10): 2398-2411, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38445598

ABSTRACT

The activation of the muscular nicotinic acetylcholine receptor (nAChR) produces the opening of the channel, with the consequent increase in the permeability of cations, triggering an excitatory signal. Free fatty acids (FFA) are known to modulate the activity of the receptor as noncompetitive antagonists, acting at the membrane-AChR interface. We present molecular dynamics simulations of a model of nAChR in a desensitized closed state embedded in a lipid bilayer in which distinct membrane phospholipids were replaced by two different monounsaturated FFA that differ in the position of a double bond. This allowed us to detect and describe that the cis-18:1ω-9 FFA were located at the interface between the transmembrane segments of α2 and γ subunits diffused into the channel lumen with the consequent potential ability to block the channel to the passage of ions.


Subject(s)
Receptors, Nicotinic , Animals , Receptors, Nicotinic/chemistry , Molecular Dynamics Simulation , Oleic Acid , Binding Sites , Cell Membrane/metabolism , Torpedo/metabolism
15.
Eur Biophys J ; 53(1-2): 15-25, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233601

ABSTRACT

The α7 nicotinic acetylcholine receptor is a member of the nicotinic acetylcholine receptor family and is composed of five α7 subunits arranged symmetrically around a central pore. It is localized in the central nervous system and immune cells and could be a target for treating Alzheimer's disease and schizophrenia. Acetylcholine is a ligand that opens the channel, although prolonged application rapidly decreases the response. Ivermectin was reported as one of the positive allosteric modulators, since the binding of Ivermectin to the channel enhances acetylcholine-evoked α7 currents. One research has suggested that tilting motions of the nicotinic acetylcholine receptor are responsible for channel opening and activation. To verify this hypothesis applies to α7 nicotinic acetylcholine receptor, we utilized a diffracted X-ray tracking method to monitor the stable twisting and tilting motion of nAChR α7 without a ligand, with acetylcholine, with Ivermectin, and with both of them. The results show that the α7 nicotinic acetylcholine receptor twists counterclockwise with the channel transiently opening, transitioning to a desensitized state in the presence of acetylcholine and clockwise without the channel opening in the presence of Ivermectin. We propose that the conformational transition of ACh-bound nAChR α7 may be due to the collective twisting of the five α7 subunits, resulting in the compression and movement, either downward or upward, of one or more subunits, thus manifesting tilting motions. These tilting motions possibly represent the transition from the resting state to channel opening and potentially to the desensitized state.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Acetylcholine/chemistry , Acetylcholine/metabolism , Ligands , Ivermectin/pharmacology , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Allosteric Regulation
16.
Proteomics ; 24(1-2): e2300151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904306

ABSTRACT

The Cys-loop pentameric ligand-gated ion channels comprise a dynamic group of proteins that have been extensively studied for decades, yielding a wealth of findings at both the structural and functional levels. The nicotinic acetylcholine receptor (nAChR) is no exception, as it is part of this large protein family involved in proper organismal function. Our efforts have successfully produced a highly pure nAChR in detergent complex (nAChR-DC), enabling more robust studies to be conducted on it, including beginning to experiment with high-throughput crystallization. Our homogeneous product has been identified and extensively characterized with 100% identity using Nano Lc MS/MS and MALDI ToF/ToF for each nAChR subunit. Additionally, the N-linked glycans in the Torpedo californica-nAChR (Tc-nAChR) subunits have been identified. To study this, the Tc-nAChR subunits were digested with PNGase F and the released glycans were analyzed by MALDI-ToF. The MS results showed the presence of high-mannose N-glycan in all native Tc-nAChR subunits. Specifically, the oligommanose population Man8-9GlcNac2 with peaks at m/z 1742 and 1904 ([M + Na]+ ions) were observed.


Subject(s)
Nicotine , Receptors, Nicotinic , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Acetylcholine/metabolism , Torpedo/metabolism , Tandem Mass Spectrometry , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism
17.
Chemistry ; 30(7): e202302909, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37910861

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are drug targets for neurological diseases and disorders, but selective targeting of the large number of nAChR subtypes is challenging. Marine cone snail α-conotoxins are potent blockers of nAChRs and some have been engineered to achieve subtype selectivity. This engineering effort would benefit from rapid computational methods able to predict mutational energies, but current approaches typically require high-resolution experimental structures, which are not widely available for α-conotoxin complexes. Herein, five mutational energy prediction methods were benchmarked using crystallographic and mutational data on two acetylcholine binding protein/α-conotoxin systems. Molecular models were developed for six nAChR subtypes in complex with five α-conotoxins that were studied through 150 substitutions. The best method was a combination of FoldX and molecular dynamics simulations, resulting in a predictive Matthews Correlation Coefficient (MCC) of 0.68 (85 % accuracy). Novel α-conotoxin mutants designed using this method were successfully validated by experimental assay with improved pharmaceutical properties. This work paves the way for the rapid design of subtype-specific nAChR ligands and potentially accelerated drug development.


Subject(s)
Conotoxins , Receptors, Nicotinic , Conotoxins/chemistry , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Nicotinic Antagonists/chemistry , Mutation , Molecular Dynamics Simulation
18.
Biochemistry ; 62(23): 3373-3382, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37967580

ABSTRACT

α-Conotoxin GI is a competitive blocker of muscle-type acetylcholine receptors and holds the potential for being developed as a molecular probe or a lead compound for drug discovery. In this study, four fatty acid-modified α-conotoxin GI analogues of different lengths were synthesized by using a fatty acid modification strategy. Then, we performed a series of in vitro stability assays, albumin binding assays, and pharmacological activity assays to evaluate these modified mutants. The experimental results showed that the presence of fatty acids significantly enhanced the in vitro stability and albumin binding ability of α-conotoxin GI and that this effect was proportional to the length of the fatty acids used. Pharmacological activity tests showed that the modified mutants maintained a good acetylcholine receptor antagonistic activity. The present study shows that fatty acid modification can be an effective strategy to significantly improve conotoxin stability and albumin binding efficiency while maintaining the original targeting ion channel activity.


Subject(s)
Conotoxins , Receptors, Nicotinic , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Conotoxins/pharmacology , Conotoxins/chemistry , Fatty Acids
19.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37748043

ABSTRACT

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Subject(s)
Conotoxins , Conus Snail , Receptors, Nicotinic , Rats , Animals , Receptors, Nicotinic/chemistry , Conotoxins/chemistry , Conotoxins/pharmacology , Conus Snail/chemistry , Peptides/chemistry , Esters
20.
Protein Sci ; 32(9): e4718, 2023 09.
Article in English | MEDLINE | ID: mdl-37417463

ABSTRACT

Nicotinic acetylcholine receptors (N-AChRs) mediate fast synaptic signaling and are members of the pentameric ligand-gated ion channel (pLGIC) family. They rely on a network of accessory proteins in vivo for correct formation and transport to the cell surface. Resistance to cholinesterase 3 (RIC-3) is an endoplasmic reticulum protein that physically interacts with nascent pLGIC subunits and promotes their oligomerization. It is not known why some N-AChRs require RIC-3 in heterologous expression systems, whereas others do not. Previously we reported that the ACR-16 N-AChR from the parasitic nematode Dracunculus medinensis does not require RIC-3 in Xenopus laevis oocytes. This is unusual because all other nematode ACR-16, like the closely related Ascaris suum ACR-16, require RIC-3. Their high sequence similarity limits the number of amino acids that may be responsible, and the goal of this study was to identify them. A series of chimeras and point mutations between A. suum and D. medinensis ACR-16, followed by functional characterization with electrophysiology, identified two residues that account for a majority of the receptor requirement for RIC-3. ACR-16 with R/K159 in the cys-loop and I504 in the C-terminal tail did not require RIC-3 for functional expression. Mutating either of these to R/K159E or I504T, residues found in other nematode ACR-16, conferred a RIC-3 requirement. Our results agree with previous studies showing that these regions interact and are involved in receptor synthesis. Although it is currently unclear what precise mechanism they regulate, these residues may be critical during specific subunit folding and/or assembly cascades that RIC-3 may promote.


Subject(s)
Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Cholinesterases/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...