Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.760
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167489, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39233260

ABSTRACT

Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized by disrupted immune function. Indeed, gut microbiota dysbiosis and metabolomic profile alterations, are hallmarks of IBD. In this scenario, metabolite-sensing G-protein coupled receptors (GPCRs), involved in several biological processes, have emerged as pivotal players in the pathophysiology of IBD. The aim of this study was to characterize the axis microbiota-metabolite-GPCR in intestinal surgical resections from IBD patients. Results showed that UC patients had a lower microbiota richness and bacterial load, with a higher proportion of the genus Cellulosimicrobium and a reduced proportion of Escherichia, whereas CD patients showed a decreased abundance of Enterococcus. Furthermore, metabolomic analysis revealed alterations in carboxylic acids, fatty acids, and amino acids in UC and CD samples. These patients also exhibited upregulated expression of most metabolite-sensing GPCRs analysed, which positively correlated with pro-inflammatory and pro-fibrotic markers. The role of GPR109A was studied in depth and increased expression of this receptor was detected in epithelial cells and cells from lamina propria, including CD68+ macrophages, in IBD patients. The treatment with ß-hydroxybutyrate increased gene expression of GPR109A, CD86, IL1B and NOS2 in U937-derived macrophages. Besides, when GPR109A was transiently silenced, the mRNA expression and secretion of IL-1ß, IL-6 and TNF-α were impaired in M1 macrophages. Finally, the secretome from siGPR109A M1 macrophages reduced the gene and protein expression of COL1A1 and COL3A1 in intestinal fibroblasts. A better understanding of metabolite-sensing GPCRs, such as GPR109A, could establish their potential as therapeutic targets for managing IBD.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Macrophages , Receptors, G-Protein-Coupled , Receptors, Nicotinic , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Dysbiosis/microbiology , Dysbiosis/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Male , Macrophages/metabolism , Macrophages/microbiology , Female , Adult , Middle Aged , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Collagen Type I, alpha 1 Chain , Collagen Type I/metabolism , Collagen Type I/genetics , Crohn Disease/microbiology , Crohn Disease/metabolism , Crohn Disease/pathology
2.
Cell Mol Life Sci ; 81(1): 337, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120784

ABSTRACT

The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.


Subject(s)
Calcium , Receptors, Nicotinic , Animals , Rats , Acetylcholine/metabolism , Acetylcholine/pharmacology , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Molecular Dynamics Simulation , Patch-Clamp Techniques , Protein Subunits/metabolism , Protein Subunits/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Xenopus laevis
3.
BMC Genomics ; 25(1): 813, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210249

ABSTRACT

BACKGROUND: The invasive pest Spotted-Wing Drosophila, Drosophila suzukii (Matsumura), causes extensive damage and production losses of soft-skinned fruits. Native to Asia, the species has now spread worldwide, with first reports in Portugal in 2012. In this study, we focus on the genomic signatures of the recent Portuguese invasion, in the context of worldwide patterns established in previous works. We analyzed whole genome pool sequencing data from three Portuguese populations (N = 240) sampled in 2019 and 2021. RESULTS: The correlation of allele frequencies suggested that Portuguese populations are related to South European ones, indicating a Mediterranean invasion route. While two populations exhibited levels of genetic variation comparable to others in the invasive range, a third showed low levels of genetic diversity, which may result from a recent colonization of the region. Genome-wide analyses of natural selection identified ten genes previously associated with D. suzukii's invasive capacity, which may have contributed to the species' success in Portugal. Additionally, we pinpointed six genes evolving under positive selection across Portuguese populations but not in European ones, which is indicative of local adaptation. One of these genes, nAChRalpha7, encodes a nicotinic acetylcholine receptor, which are known targets for insecticides widely used for D. suzukii control, such as neonicotinoids and spinosyns. Although spinosyn resistance has been associated with mutations in the nAChRalpha6 in other Drosophila species, the putative role of nAChRalpha7 in insecticide resistance and local adaptation in Portuguese D. suzukii populations encourages future investigation. CONCLUSIONS: Our results highlight the complex nature of rapid species invasions and the role of rapid local adaptation in determining the invasive capacity of these species.


Subject(s)
Drosophila , Introduced Species , Animals , Drosophila/genetics , Portugal , Genomics , Genetic Variation , Selection, Genetic , Gene Frequency , Genome, Insect , Receptors, Nicotinic/genetics
4.
Eur J Pharmacol ; 980: 176830, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39032761

ABSTRACT

Understanding the agonist concentration-response curve (CRC) is the cornerstone in pharmacology. While CRC parameters, agonist potency (EC50) and efficacy (maximum response, Imax) are well-studied, the role of unliganded gating (minimum response, Imin) on CRC is often overlooked. This study explores the effect of unliganded gating on agonist response in muscle-type acetylcholine (ACh) receptors, focusing on the underexplored role of Imin in modulating EC50 and Imax. Three Gain-of-Function (GOF) mutations that increase, and two Loss-of-Function (LOF) mutations that decrease the unliganded gating equilibrium constant (L0) were studied using automated patch-clamp electrophysiology. GOF mutations enhanced agonist potency, whereas LOF mutations reduced it. The calculated CRC aligned well with empirical results, indicating that agonist CRC can be estimated from knowledge of L0. Reduction in agonist efficacy due to LOF mutations was calculated and subsequently validated using single-channel patch-clamp electrophysiology, a factor often obscured in normalized CRC. The study also evaluated the combined impact of mutations (L0) on CRC, confirming the predictive model. Further, no significant energetic coupling between distant residues (>15 Å) was found, indicating that the mutations' effects are localized and do not alter overall agonist affinity. These findings substantiate the role of unliganded gating in modulating agonist responses and establishes a predictive model for estimating CRC parameters from known changes in L0. The study highlights the importance of intrinsic activity in receptor theory.


Subject(s)
Ion Channel Gating , Mutation , Nicotinic Agonists , Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Ion Channel Gating/drug effects , Humans , Nicotinic Agonists/pharmacology , Ligands , Dose-Response Relationship, Drug , Animals , HEK293 Cells
5.
Pestic Biochem Physiol ; 203: 105996, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084770

ABSTRACT

Thiacloprid, a neonicotinoid insecticide, has become one of the major control agents for the pine sawyer beetle, Monochamus alternatus Hope, however, the mechanism of detoxification is unknown. We demonstrate that glutathione S-transferases (GSTs) and nicotinic acetylcholine receptors (nAChRs) are involved in the rapid detoxification of thiacloprid in M. alternatus larvae. The activity of detoxification enzyme GSTs was significantly higher, while the activity of acetylcholinesterase (AChE) was inhibited under thiacloprid exposure. The inhibition of AChE activity led to lethal over-stimulation of the cholinergic synapse, which was then released by the rapid downregulation of nAChRs. Meanwhile, GSTs were overexpressed to detoxify thiacloprid accordingly. A total of 3 nAChR and 12 GST genes were identified from M. alternatus, among which ManAChRα2 and MaGSTs1 were predicted to confer thiacloprid tolerance. RNA interference (RNAi) was subsequently conducted to confirm the function of ManAChRα2 and MaGSTs1 genes in thiacloprid detoxification. The successful knock-down of the ManAChRα2 gene led to lower mortality of M. alternatus under LC30 thiacloprid treatment, and the suppression of the MaGSTs1 gene increased the mortality rate of M. alternatus. However, the mortality rate has no significant difference with controls when thiacloprid was fed together with both dsMaGSTs1 and dsManAChRα2. Molecular docking modeled the molecular basis for interaction between MaGSTs1/ManAChR and thiacloprid. This study highlights the important roles that ManAChRα2 and MaGSTs1 genes play in thiacloprid detoxification through transcriptional regulation and enzymatic metabolization, and proposes a new avenue for integrated pest management that combines pesticides and RNAi technology as an efficient strategy for M. alternatus control.


Subject(s)
Coleoptera , Glutathione Transferase , Insecticides , Neonicotinoids , Receptors, Nicotinic , Thiazines , Animals , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Coleoptera/drug effects , Coleoptera/genetics , Coleoptera/metabolism , Thiazines/pharmacology , Thiazines/metabolism , Thiazines/toxicity , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Insecticides/toxicity , Insecticides/pharmacology , Insecticides/metabolism , Larva/drug effects , Larva/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Inactivation, Metabolic , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , Pyridines/pharmacology
6.
PLoS Biol ; 22(7): e3002728, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39028754

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.


Subject(s)
Fatty Liver , Hepatocytes , Liver , Receptors, Nicotinic , Signal Transduction , Animals , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Humans , Liver/metabolism , Liver/pathology , Mice , Fatty Liver/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Male , Macrophages/metabolism , Acetylcholine/metabolism , Mice, Knockout , Disease Models, Animal
7.
Biochem Biophys Res Commun ; 731: 150400, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39024975

ABSTRACT

Neuromuscular signal transmission is affected in various diseases including myasthenia gravis, congenital myasthenic syndromes, and sarcopenia. We used an ATF2-luciferase system to monitor the phosphorylation of MuSK in HEK293 cells introduced with MUSK and LRP4 cDNAs to find novel chemical compounds that enhanced agrin-mediated acetylcholine receptor (AChR) clustering. Four compounds with similar chemical structures carrying benzene rings and heterocyclic rings increased the luciferase activities 8- to 30-folds, and two of them showed continuously graded dose dependence. The effects were higher than that of disulfiram, a clinically available aldehyde dehydrogenase inhibitor, which we identified to be the most competent preapproved drug to enhance ATF2-luciferase activity in the same assay system. In C2C12 myotubes, all the compounds increased the area, intensity, length, and number of AChR clusters. Three of the four compounds increased the phosphorylation of MuSK, but not of Dok7, JNK. ERK, or p38. Monitoring cell toxicity using the neurite elongation of NSC34 neuronal cells as a surrogate marker showed that all the compounds had no effects on the neurite elongation up to 1 µM. Extensive docking simulation and binding structure prediction of the four compounds with all available human proteins using AutoDock Vina and DiffDock showed that the four compounds were unlikely to directly bind to MuSK or Dok7, and the exact target remained unknown. The identified compounds are expected to serve as a seed to develop a novel therapeutic agent to treat defective NMJ signal transmission.


Subject(s)
Muscle Fibers, Skeletal , Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Animals , Mice , Cell Line , Humans , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Genes, Reporter , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Multigene Family , Signal Transduction/drug effects , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neurites , Bungarotoxins/pharmacology , Benzene/pharmacology , Heterocyclic Compounds/pharmacology , Molecular Docking Simulation
8.
J Neuromuscul Dis ; 11(5): 1011-1020, 2024.
Article in English | MEDLINE | ID: mdl-38995797

ABSTRACT

Background: Congenital myasthenic syndromes (CMS) are a group of rare but often treatable inherited disorders of neuromuscular transmission characterized by fatigable skeletal muscle weakness. In this paper we present the largest phenotypic analysis to date of a cohort of patients carrying the pathogenic variant c.1327delG in the CHRNE gene, leading to CHRNE-CMS. Objective: This study aims to identify the phenotypic variability in CMS associated with c.1327delG mutation in the CHRNE gene. Methods: Disease specific symptoms were assessed using specific standardized tests for autoimmune myasthenia (Quantitative Myasthenia Gravis score) as well as patient-reported scales for symptom severity. Evaluated clinical manifestations included ocular symptoms (ophthalmoparesis and ptosis), bulbar weakness, axial muscle weakness, proximal and distal muscle weakness, and respiratory function. Patients were allocated into three groups according to clinical impression of disease severity: mild, moderate, and severe. Results: We studied 91 Bulgarian Roma patients, carrying the same causative homozygous CHRNE c.1327delG mutation. Bulbar weakness was present in patients throughout all levels of severity of CHRNE-CMS in this study. However, difficulties in eating and swallowing are more prominent characteristics in the moderate and severe clinical phenotypes. Diplopia and ptosis resulting from fatigue of the extraocular muscles were permanent features regardless of disease severity or age. Levels of axial, proximal and distal muscle weakness were variable between disease groups. The statistical analysis showed significant differences between the patients in the three groups, emphasizing a possible variation in symptom manifestation in the evaluated patient population despite the disease originating from the same genetic mutation. Impairment of respiratory function was more prominent in severely affected patients, which might result from loss of compensatory muscle function in those individuals. Conclusion: Results from our study indicate significant phenotypic heterogeneity leading to mild, moderate, or severe clinical manifestation in CHRNE-CMS, despite the genotypic homogeneity.


Subject(s)
Frameshift Mutation , Myasthenic Syndromes, Congenital , Phenotype , Receptors, Nicotinic , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/physiopathology , Male , Female , Adult , Adolescent , Young Adult , Child , Receptors, Nicotinic/genetics , Middle Aged , Child, Preschool , Severity of Illness Index , Bulgaria , Muscle Weakness/genetics , Muscle Weakness/physiopathology
9.
Open Biol ; 14(7): 240057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043224

ABSTRACT

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Subject(s)
Anopheles , Guanidines , Insecticides , Mosquito Vectors , Neonicotinoids , Nitro Compounds , Receptors, Nicotinic , Animals , Anopheles/metabolism , Anopheles/genetics , Anopheles/drug effects , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/chemistry , Guanidines/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Xenopus laevis , Ligands , Pyridines/pharmacology , Malaria/transmission , Malaria/parasitology , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazines/pharmacology , Thiazines/chemistry , Oocytes/metabolism , Oocytes/drug effects , Female , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry
10.
Sci Rep ; 14(1): 14193, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902419

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and ß4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3ß4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable. Here, we successfully uncovered the expression of endogenous nAChRs containing α3 and ß4 subunits in the MHb-IPN pathway using novel specific antibodies and a fixative glyoxal that enables simultaneous detection of synaptic and extrasynaptic molecules. Immunofluorescence and immunoelectron microscopy revealed that both subunits were predominantly localized to the extrasynaptic cell surface of somatodendritic and axonal compartments of MHb neurons but not at their synaptic junctions. Immunolabeling for α3 and ß4 subunits disappeared in α5ß4-knockout brains, which we used as negative controls. The enriched and diffuse extrasynaptic expression along the MHb-IPN pathway suggests that α3ß4-containing nAChRs may enhance the excitability of MHb neurons and neurotransmitter release from their presynaptic terminals in the IPN. The revealed distribution pattern provides a molecular and anatomical basis for understanding the functional role of α3ß4-containing nAChRs in the crucial pathway of nicotine dependence.


Subject(s)
Habenula , Interpeduncular Nucleus , Receptors, Nicotinic , Animals , Male , Mice , Habenula/metabolism , Interpeduncular Nucleus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Synapses/metabolism
12.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934417

ABSTRACT

Spermatogonial stem cells (SSCs) undergo self-renewal division to sustain spermatogenesis. Although it is possible to derive SSC cultures in most mouse strains, SSCs from a 129 background never proliferate under the same culture conditions, suggesting they have distinct self-renewal requirements. Here, we established long-term culture conditions for SSCs from mice of the 129 background (129 mice). An analysis of 129 testes showed significant reduction of GDNF and CXCL12, whereas FGF2, INHBA and INHBB were higher than in testes of C57BL/6 mice. An analysis of undifferentiated spermatogonia in 129 mice showed higher expression of Chrna4, which encodes an acetylcholine (Ach) receptor component. By supplementing medium with INHBA and Ach, SSC cultures were derived from 129 mice. Following lentivirus transduction for marking donor cells, transplanted cells re-initiated spermatogenesis in infertile mouse testes and produced transgenic offspring. These results suggest that the requirements of SSC self-renewal in mice are diverse, which has important implications for understanding self-renewal mechanisms in various animal species.


Subject(s)
Mice, Inbred C57BL , Spermatogenesis , Spermatogonia , Testis , Animals , Male , Mice , Spermatogonia/cytology , Spermatogonia/metabolism , Spermatogenesis/genetics , Spermatogenesis/physiology , Testis/metabolism , Testis/cytology , Cell Self Renewal , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/cytology , Cells, Cultured , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Mice, Inbred Strains , Cell Differentiation , Cell Proliferation , Stem Cells/cytology , Stem Cells/metabolism , Mice, Transgenic
13.
BMC Psychiatry ; 24(1): 436, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862938

ABSTRACT

BACKGROUND: Substance use disorder (SUD) is a complex illness that can be attributed to the interaction between environmental and genetic factors. The nicotinic receptor gene cluster on chromosome 15 has a plausible association with SUD, particularly with nicotine dependence. METHODS: This study investigated 15 SNPs within the CHRNA5, CHRNA3, and CHRNB4 genes. Sequencing was used for genotyping 495 Jordanian males with SUD and 497 controls matched for age, gender, and descent. RESULTS: Our findings revealed that none of the tested alleles or genotypes were correlated with SUD. However, our analysis suggests that the route of substance use was linked to rs1051730 (P value = 0.04), rs8040868 (P value = 0.01) of CHRNA3, and rs16969968 (P value = 0.03) of CHRNA5. Additionally, a correlation was identified between rs3813567 of the CHRNB4 gene and the age at substance use onset (P value = 0.04). CONCLUSIONS: Variants in CHRNA5, CHRNA3, and CHRNB4 may interact with SUD features that can influence the development and progression of the disorder among Jordanians.


Subject(s)
Nerve Tissue Proteins , Polymorphism, Single Nucleotide , Receptors, Nicotinic , Substance-Related Disorders , Humans , Receptors, Nicotinic/genetics , Male , Jordan/epidemiology , Substance-Related Disorders/genetics , Substance-Related Disorders/epidemiology , Polymorphism, Single Nucleotide/genetics , Adult , Nerve Tissue Proteins/genetics , Genetic Predisposition to Disease/genetics , Case-Control Studies , Genotype , Young Adult , Middle Aged , Alleles
14.
Pestic Biochem Physiol ; 202: 105921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879297

ABSTRACT

The evolution of resistance to insecticides poses a significant threat to pest management programs. Understanding the molecular mechanisms underlying insecticide resistance is essential to design sustainable pest control and resistance management programs. The fall armyworm, Spodoptera frugiperda, is an important insect pest of many crops and has a remarkable ability to evolve resistance to insecticides. In this study, we employed bulk segregant analysis (BSA) combined with DNA and RNA sequencing to characterize the molecular basis of spinetoram resistance in S. frugiperda. Analysis of genomic data derived from spinetoram selected and unselected bulks and the spinetoram-resistant and susceptible parental strains led to the identification of a three-nucleotide deletion in the gene encoding the nicotinic acetylcholine receptor α6 subunit (nAChR α6). Transcriptome profiling identified the upregulation of few genes encoding detoxification enzymes associated with spinetoram resistance. Thus, spinetoram resistance in S. frugiperda appears to be mediated mainly by target site insensitivity with a minor role of detoxification enzymes. Our findings provide insight into the mechanisms underpinning resistance to spinetoram in S. frugiperda and will inform the development of strategies to control this highly damaging, globally distributed crop pest.


Subject(s)
Insecticide Resistance , Insecticides , Spodoptera , Animals , Spodoptera/genetics , Spodoptera/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Insecticides/toxicity , Gene Expression Profiling , Transcriptome , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Macrolides
15.
Front Immunol ; 15: 1371831, 2024.
Article in English | MEDLINE | ID: mdl-38840910

ABSTRACT

Introduction: Lung cancer, with the highest global mortality rate among cancers, presents a grim prognosis, often diagnosed at an advanced stage in nearly 70% of cases. Recent research has unveiled a novel mechanism of cell death termed disulfidptosis, which is facilitated by glucose scarcity and the protein SLC7A11. Methods: Utilizing the least absolute shrinkage and selection operator (LASSO) regression analysis combined with Cox regression analysis, we constructed a prognostic model focusing on disulfidptosis-related genes. Nomograms, correlation analyses, and enrichment analyses were employed to assess the significance of this model. Among the genes incorporated into the model, CHRNA5 was selected for further investigation regarding its role in LUAD cells. Biological functions of CHRNA5 were assessed using EdU, transwell, and CCK-8 assays. Results: The efficacy of the model was validated through internal testing and an external validation set, with further evaluation of its robustness and clinical applicability using a nomogram. Subsequent correlation analyses revealed associations between the risk score and infiltration of various cancer types, as well as oncogene expression. Enrichment analysis also identified associations between the risk score and pivotal biological processes and KEGG pathways. Our findings underscore the significant impact of CHRNA5 on LUAD cell proliferation, migration, and disulfidptosis. Conclusion: This study successfully developed and validated a robust prognostic model centered on disulfidptosis-related genes, providing a foundation for predicting prognosis in LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Nomograms , Receptors, Nicotinic , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Receptors, Nicotinic/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/genetics , Cell Line, Tumor , Male , Cell Proliferation/genetics , Female
16.
Biochem Pharmacol ; 225: 116263, 2024 07.
Article in English | MEDLINE | ID: mdl-38735444

ABSTRACT

Although α2 was the first neuronal nicotinic acetylcholine receptor (nAChR) receptor subunit to be cloned, due to its low level of expression in rodent brain, its study has largely been neglected. This study provides a comparison of the α2 and α4 structures and their functional similarities, especially in regard to the existence of low and high sensitivity forms based on subunit stoichiometry. We show that the pharmacological profiles of the low and high sensitivity forms of α2ß2 and α4ß2 receptors are very similar in their responses to nicotine, with high sensitivity receptors showing protracted responses. Sazetidine A, an agonist that is selective for the high sensitivity α4 receptors also selectively activates high sensitivity α2 receptors. Likewise, α2 receptors have similar responses as α4 receptors to the positive allosteric modulators (PAMs) desformylflustrabromine (dFBr) and NS9283. We show that the partial agonists for α4ß2 receptors, cytisine and varenicline are also partial agonists for α2ß2 receptors. Studies have shown that levels of α2 expression may be much higher in the brains of primates than those of rodents, suggesting a potential importance for human therapeutics. High-affinity nAChR have been studied in humans with PET ligands such as flubatine. We show that flubatine has similar activity with α2ß2 and α4ß2 receptors so that α2 receptors will also be detected in PET studies that have previously presumed to selectively detect α4ß2 receptors. Therefore, α2 receptors need more consideration in the development of therapeutics to manage nicotine addiction and declining cholinergic function in age and disease.


Subject(s)
Nicotinic Agonists , Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Animals , Nicotinic Agonists/pharmacology , Humans , Nicotine/pharmacology , Nicotine/metabolism , Xenopus laevis , Azetidines/pharmacology , Quinolizines/pharmacology , Varenicline/pharmacology , Azocines/pharmacology , Quinolizidine Alkaloids , Pyridines
17.
J Acoust Soc Am ; 155(5): 3183-3194, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38738939

ABSTRACT

Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.


Subject(s)
Acoustic Stimulation , Behavior, Animal , Noise , Animals , Female , Male , Mice , Auditory Pathways/physiology , Auditory Pathways/physiopathology , Auditory Perception/physiology , Auditory Threshold , Cochlea/physiology , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem , Hearing , Mice, Inbred C57BL , Mice, Knockout , Noise/adverse effects , Olivary Nucleus/physiology , Perceptual Masking , Phenotype , Receptors, Nicotinic/genetics , Receptors, Nicotinic/deficiency , Reflex, Startle
18.
Int J Biol Macromol ; 271(Pt 1): 132472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772455

ABSTRACT

The two most active disulfide bond isomers of the analgesic αO-conotoxin GeXIVA, namely GeXIVA[1, 2] and GeXIVA[1, 4], were subjected to Asp-scanning mutagenesis to determine the key amino acid residues for activity at the rat α9α10 nicotinic acetylcholine receptor (nAChR). These studies revealed the key role of arginine residues for the activity of GeXIVA isomers towards the α9α10 nAChR. Based on these results, additional analogues with 2-4 mutations were designed and tested. The analogues [T1A,D14A,V28K]GeXIVA[1, 2] and [D14A,I23A,V28K]GeXIVA[1, 4] were developed and showed sub-nanomolar activity for the α9α10 nAChR with IC50 values of 0.79 and 0.38 nM. The latter analogue had exceptional selectivity for the α9α10 receptor subtype over other nAChR subtypes and can be considered as a drug candidate for further development. Molecular dynamics of receptor-ligand complexes allowed us to make deductions about the possible causes of increases in the affinity of key GeXIVA[1, 4] mutants for the α9α10 nAChR.


Subject(s)
Arginine , Aspartic Acid , Conotoxins , Receptors, Nicotinic , Conotoxins/chemistry , Conotoxins/genetics , Conotoxins/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Animals , Arginine/chemistry , Rats , Aspartic Acid/chemistry , Aspartic Acid/genetics , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/pharmacology , Molecular Dynamics Simulation , Mutagenesis , Isomerism
19.
Biol Reprod ; 111(2): 472-482, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38713677

ABSTRACT

Neonicotinoids are the most widely used insecticides in the world. They are synthetic nicotine derivatives that act as nicotinic acetylcholine receptor agonists. Although parent neonicotinoids have low affinity for the mammalian nicotinic acetylcholine receptor, they can be activated in the environment and the body to positively charged metabolites with high affinity for the mammalian nicotinic acetylcholine receptor. Imidacloprid, the most popular neonicotinoid, and its bioactive metabolite desnitro-imidacloprid differentially interfere with ovarian antral follicle physiology in vitro, but their effects on ovarian nicotinic acetylcholine receptor subunit expression are unknown. Furthermore, ovarian nicotinic acetylcholine receptor subtypes have yet to be characterized in the ovary. Thus, this work tested the hypothesis that ovarian follicles express nicotinic acetylcholine receptors and their expression is differentially modulated by imidacloprid and desnitro-imidacloprid in vitro. We used polymerase chain reaction, RNA in situ hybridization, and immunohistochemistry to identify and localize nicotinic acetylcholine receptor subunits (α2, 4, 5, 6, 7 and ß1, 2, 4) expressed in neonatal ovaries (NO) and antral follicles. Chrnb1 was expressed equally in NO and antral follicles. Chrna2 and Chrnb2 expression was higher in antral follicles compared to NO and Chrna4, Chrna5, Chrna6, Chrna7, and Chrnb4 expression was higher in NO compared to antral follicles. The α subunits were detected throughout the ovary, especially in oocytes and granulosa cells. Imidacloprid and desnitro-imidacloprid dysregulated the expression of multiple nicotinic acetylcholine receptor subunits in NO, but only dysregulated one subunit in antral follicles. These data indicate that mammalian ovaries contain nicotinic acetylcholine receptors, and their susceptibility to imidacloprid and desnitro-imidacloprid exposure varies with the stage of follicle maturity.


Subject(s)
Insecticides , Neonicotinoids , Ovarian Follicle , Receptors, Nicotinic , Female , Animals , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Neonicotinoids/pharmacology , Mice , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Insecticides/pharmacology , Nitro Compounds/pharmacology , Ovary/drug effects , Ovary/metabolism
20.
J Mol Evol ; 92(3): 317-328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814340

ABSTRACT

Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.


Subject(s)
Coral Snakes , Elapid Venoms , Phylogeny , Receptors, Nicotinic , Elapid Venoms/genetics , Elapid Venoms/metabolism , Elapid Venoms/chemistry , Animals , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Coral Snakes/metabolism , Coral Snakes/genetics , Interferometry , Predatory Behavior/physiology , Elapidae/genetics , Elapidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL