Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.730
Filter
1.
Behav Brain Res ; 469: 115065, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38782097

ABSTRACT

Acetaminophen (paracetamol) is one of the most popular analgesics for the management of fever and pain but few reports have investigated its antidepressant-like effect. Moreover, the role of the opioidergic pathway has been indicated in depression pathophysiology. This study aimed to examine the involvement of the opioid receptors in the antidepressant-like effect of acetaminophen after acute and sub-chronic administration using mice forced swimming test (FST). Our finding showed that administration of acetaminophen (50 and 100 mg/kg, i.p.) 30 min before the FST produced an antidepressant effect which was reduced by naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist). Moreover, we observed that acetaminophen in higher doses (200 and 400 mg/kg) was ineffective. Also, the response of the non-effective dose of acetaminophen (25 mg/kg) was potentiated by the non-effective dose of morphine (0.1 mg/kg) in the FST that was antagonized by naloxone. Also, in contrast to morphine (10 mg/kg), acetaminophen (100 mg/kg, i.p.) induced neither tolerance to the anti-immobility behavior nor withdrawal syndrome after repeated administration. In addition, RT-PCR showed that hippocampal mu- and kappa-opioid receptor mRNA expression increased in mice after repeated administration of acetaminophen; however, morphine therapy for 6 days did not affect kappa-opioid receptor expression. Our findings demonstrated that acetaminophen in lower doses but not high doses revealed an antidepressant-like activity without inducing tolerance and withdrawal syndromes. Moreover, the observed effect of acetaminophen may be via altering the opioid system, particularly hippocampal mu- and kappa-receptors.


Subject(s)
Acetaminophen , Antidepressive Agents , Dose-Response Relationship, Drug , Naloxone , Narcotic Antagonists , Animals , Acetaminophen/pharmacology , Acetaminophen/administration & dosage , Male , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Narcotic Antagonists/administration & dosage , Swimming , Depression/drug therapy , Depression/metabolism , Morphine/pharmacology , Morphine/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Analgesics, Non-Narcotic/pharmacology , Analgesics, Non-Narcotic/administration & dosage , Receptors, Opioid/metabolism , Receptors, Opioid/drug effects , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/drug effects
2.
Chem Commun (Camb) ; 60(47): 6007-6010, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787679

ABSTRACT

The enantioselective de novo synthesis of pharmacologically important 14-hydroxy-6-oxomorphinans is described. 4,5-Desoxynaltrexone and 4,5-desoxynaloxone were prepared using this route and their biological activities against the opioid receptors were measured.


Subject(s)
Morphinans , Stereoisomerism , Morphinans/chemistry , Morphinans/chemical synthesis , Naltrexone/analogs & derivatives , Naltrexone/chemistry , Naltrexone/chemical synthesis , Molecular Structure , Narcotic Antagonists/chemical synthesis , Receptors, Opioid/metabolism
3.
Eur J Pharmacol ; 975: 176648, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759706

ABSTRACT

Opioids are used for pain relief in patients suffering from acute myocardial ischemia or infarction. Clinical and laboratory studies demonstrate that morphine treated patients or the experimental animal model suffering acute myocardial ischemia and reperfusion, may worsen myocardial viability. As transient receptor potential vanilloid 1 (TRPV1) plays important roles in pain sensation and cardio-protection, we query whether opioids may exacerbate myocardial viability via interaction with TRPV1 activity in the pain relief. We found the co-expressions of TRPV1 and opioid µ, δ and κ receptors in adult rat cardiomyocytes. Intravenous injection of morphine (0.3 mg/kg) at 20 min after induction of myocardial ischemia, in the rat model of acute myocardial ischemia and reperfusion, induced significant reduction of phosphorylated TRPV1 (p-TRPV1) in the ventricular myocardium and increase in serum cardiac troponin I (cTnI), compared with the ischemia/reperfusion controls (all P < 0.05). The effects of morphine were completely reversed by selective opioid µ, δ and κ receptor antagonists. While significant upregulation of p-TRPV1 (P < 0.05) and improvement of ±dP/dt max (all P < 0.05) were detected in the animals giving the same dose of morphine before induction of myocardial ischemia. The changes in p-TRPV1 correlate with the alterations of cTnI (r = -0.5840, P = 0.0283) and ±dP/dt max (r = 0.8084, P = 0.0005 and r = -0.8133, P = 0.0004, respectively). The findings of this study may indicate that potentiation and attenuation of TRPV1 sensitivity correlate with the improvement of the cardiac performance and the aggravation of myocardial viability, respectively, by giving morphine before and during myocardial ischemia and reperfusion.


Subject(s)
Morphine , Myocardial Reperfusion Injury , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Morphine/pharmacology , Phosphorylation/drug effects , Male , Rats , Time Factors , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Analgesics, Opioid/pharmacology , Receptors, Opioid/metabolism , Troponin I/metabolism , Troponin I/blood , Myocardium/metabolism , Myocardium/pathology
4.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612817

ABSTRACT

Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.


Subject(s)
Analgesics, Opioid , Oligopeptides , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptors, Opioid , Humans , Rats , Animals , Mice , Analgesics, Opioid/pharmacology , Ligands , Morphine , Opioid Peptides/pharmacology , Pain/drug therapy
5.
Bull Exp Biol Med ; 176(4): 433-436, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38488963

ABSTRACT

Hypoxia (20 min) and reoxygenation (30 min) were simulated on isolated rat cardiomyocytes to evaluate the cytoprotective effect of selective δ2-opioid receptor agonist deltorphin II, opioid receptor antagonist naloxone methiodide, µ-opioid receptor antagonist CTAP, κ-opioid receptor antagonist nor-binaltorphimine, ε1-opioid receptor antagonist BNTX, and δ2-opioid receptors naltriben. Deltorphin II was administered 5 min before reoxygenation, antagonists were administered 10 min before reoxygenation. The cytoprotective effect of deltorphin II was assessed by the number of cardiomyocytes survived after hypoxia/reoxygenation, as well as by the lactate dehydrogenase content in the incubation medium. It has been established that the cytoprotective effect of deltorphin II occurs at a concentration of 64 nmol/liter and is associated with activation of δ2-opioid receptors.


Subject(s)
Narcotic Antagonists , Receptors, Opioid , Rats , Animals , Narcotic Antagonists/pharmacology , Receptors, Opioid, delta/genetics , Myocytes, Cardiac , Receptors, Opioid, mu , Hypoxia
6.
Food Funct ; 15(9): 4773-4784, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38469873

ABSTRACT

Raphanus sativus L. cv. Sango, commonly known as red radish, is widely consumed around the world as a vegetable, but its benefit in pain relief is not sufficiently investigated. This study aimed to evaluate the antinociceptive effects of R. sativus and a possible mechanism of action. An aqueous extract of R. sativus sprouts (AERSS) was investigated by parenteral (10, 30, and 100 mg kg-1, i.p.) and enteral (500 mg kg-1, p.o.) administration in the neurogenic and inflammatory phases of the formalin test, where gastric damage was also evaluated as a possible adverse effect. Ketorolac (5 mg kg-1, i.p.) was used as the reference drug. Endogenous opioid and 5-HT1A serotonin receptors, as well as the cAMP/NO-cGMP pathways, were explored in the study of a possible mechanism of action by using their corresponding antagonists: naloxone, 1 mg kg-1, i.p., WAY100635, 1 mg kg-1, i.p., and enzymatic activators or inhibitors, respectively. Sulforaphane (SFN), a known bioactive metabolite, was analyzed using electroencephalography (EEG) to evidence its central involvement. A significant and dose-dependent antinociceptive activity was observed with the AERSS resembling the antinociceptive effect of the reference drug, with an equivalent significant response with a dose of 500 mg kg-1, p.o. without causing gastric damage. The participation of the endogenous opioid and 5-HT1A serotonin receptors at central and peripheral levels was also observed, with a differential participation of cAMP/NO-cGMP. SFN as one metabolite produced significant changes in the EEG analysis, reinforcing its effects on the CNS. Our preclinical evidence supports the benefits of consuming Raphanus sativus cv. Sango sprouts for pain relief.


Subject(s)
Analgesics , Isothiocyanates , Plant Extracts , Raphanus , Signal Transduction , Animals , Humans , Male , Mice , Analgesics/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Isothiocyanates/pharmacology , Pain/drug therapy , Plant Extracts/pharmacology , Raphanus/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Opioid/metabolism , Signal Transduction/drug effects , Sulfoxides/pharmacology
7.
J Neural Transm (Vienna) ; 131(5): 491-494, 2024 05.
Article in English | MEDLINE | ID: mdl-38436758

ABSTRACT

Synthetic and semi-synthetic opioids are prescribed for the management of severe pain conditions, but their long-term use is often leading to physical dependence and addiction disorders. Understanding the complex neurobiology of the opioid system in preclinical models will be essential for the development of safe and efficacious analgesics. With rising numbers of synthetic opioid users and overdose cases, a better understanding of the neuroanatomical and cellular pathways associated with physical dependence and addiction is expected to guide treatment approaches for opioid use disorders. In this commentary, we highlight the importance of advanced genetic mouse models for studying the regional effects of opioid receptors, and we discuss the need of genetic mouse models for the investigation of the regional, circuit and cell compartment-specific role of intracellular mediators of opioid actions.


Subject(s)
Analgesics, Opioid , Disease Models, Animal , Opioid-Related Disorders , Receptors, Opioid , Animals , Mice , Analgesics, Opioid/pharmacology , Opioid-Related Disorders/genetics , Receptors, Opioid/genetics , Receptors, Opioid/metabolism , Humans
8.
Physiol Rep ; 12(5): e15965, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444051

ABSTRACT

Intravenous (systemic) bolus injection of fentanyl (FNT) reportedly induces an immediate vagal-mediated apnea; however, the precise origin of vagal afferents responsible for this apnea remains unknown. We tested whether intralaryngeal (local) application of FNT would also trigger an apnea and whether the apneic response to both local and systemic administration of FNT was laryngeal afferent-mediated. Cardiorespiratory responses to FNT were recorded in anesthetized male adult rats with and without bilateral sectioning of the superior laryngeal nerve (SLNx) or peri-SLN capsaicin treatment (SLNcap) to block local C-fiber signal conduction. Opioid mu-receptor (MOR)-immunoreactivity was detected in laryngeal C- and myelinated neurons. We found that local and systemic administration of FNT elicited an immediate apnea. SLNx, rather than SLNcap, abolished the apneic response to local FNT application though MORs were abundantly expressed in both laryngeal C- and myelinated neurons. Importantly, SLNx failed to affect the apneic response to systemic FNT administration. These results lead to the conclusion that laryngeal afferents' MORs are responsible for the apneic response to local, but not systemic, administration of FNT.


Subject(s)
Body Fluids , Fentanyl , Male , Animals , Rats , Fentanyl/pharmacology , Apnea/chemically induced , Administration, Cutaneous , Administration, Intravenous , Receptors, Opioid
9.
Hum Brain Mapp ; 45(4): e26645, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445523

ABSTRACT

Rewards are a broad category of stimuli inducing approach behavior to aid survival. Extensive evidence from animal research has shown that wanting (the motivation to pursue a reward) and liking (the pleasure associated with its consumption) are mostly regulated by dopaminergic and opioidergic activity in dedicated brain areas. However, less is known about the neuroanatomy of dopaminergic and opioidergic regulation of reward processing in humans, especially when considering different types of rewards (i.e., social and nonsocial). To fill this gap of knowledge, we combined dopaminergic and opioidergic antagonism (via amisulpride and naltrexone administration) with functional neuroimaging to investigate the neurochemical and neuroanatomical bases of wanting and liking of matched nonsocial (food) and social (interpersonal touch) rewards, using a randomized, between-subject, placebo-controlled, double-blind design. While no drug effect was observed at the behavioral level, brain activity was modulated by the administered compounds. In particular, opioid antagonism, compared to placebo, reduced activity in the medial orbitofrontal cortex during consumption of the most valued social and nonsocial rewards. Dopamine antagonism, however, had no clear effects on brain activity in response to reward anticipation. These findings provide insights into the neurobiology of human reward processing and suggest a similar opioidergic regulation of the neural responses to social and nonsocial reward consumption.


Subject(s)
Dopamine , Narcotic Antagonists , Animals , Humans , Narcotic Antagonists/pharmacology , Emotions , Touch , Receptors, Opioid
10.
Behav Pharmacol ; 35(2-3): 114-121, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38451023

ABSTRACT

We hypothesized that opioid receptor antagonists would inhibit motivated behavior produced by a natural reward. To evaluate motivated responses to a natural reward, mice were given access to running wheels for 71.5 h in a multi-configuration testing apparatus. In addition to a running wheel activity, locomotor activity (outside of the wheel), food and water intake, and access to a food container were measured in the apparatus. Mice were also tested separately for novel-object exploration to investigate whether naloxone affects behavior unrelated to natural reward. In untreated mice wheel running increased from day 1 to day 3. The selective µ-opioid receptor antagonist ß-funaltrexamine (ß-FNA) (5 mg/kg) slightly decreased wheel running, but did not affect the increase in wheel running from day 1 to day 3. The non-selective opioid receptor antagonist naloxone produced a greater reduction in wheel running than ß-FNA and eliminated the increase in wheel running that occurred over time in the other groups. Analysis of food access, locomotor behavior, and behavior in the novel-object test suggested that the reduction in wheel running was selective for this highly reinforcing behavior. These results indicate that opioid receptor antagonism reduces responses to the natural rewarding effects of wheel running and that these effects involve multiple opioid receptors since the non-selective opioid receptor antagonist had greater effects than the selective µ-opioid receptor antagonist. It is possible that at the doses employed, other receptor systems than opioid receptors might be involved, at least in part, in the effect of naloxone and ß-FNA.


Subject(s)
Motor Activity , Narcotic Antagonists , Animals , Mice , Narcotic Antagonists/pharmacology , Motivation , Naloxone/pharmacology , Receptors, Opioid
11.
Peptides ; 174: 171165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307418

ABSTRACT

Endogenous opioid peptides serve as potent analgesics through the opioid receptor (OR) activation. However, they often suffer from poor metabolic stability, low lipophilicity, and low blood-brain barrier permeability. Researchers have developed many strategies to overcome the drawbacks of current pain medications and unwanted biological effects produced by the interaction with opioid receptors. Here, we tested multifunctional enkephalin analogs LYS739 (MOR/DOR agonist and KOR partial antagonist) and LYS744 (MOR/DOR agonist and KOR full antagonist) under in vivo conditions in comparison with MOR agonist, morphine. We applied 2D electrophoretic resolution to investigate differences in proteome profiles of crude membrane (CM) fractions isolated from the rat brain cortex and hippocampus exposed to the drugs (10 mg/kg, seven days). Our results have shown that treatment with analog LYS739 induced the most protein changes in cortical and hippocampal samples. The identified proteins were mainly associated with energy metabolism, cell shape and movement, apoptosis, protein folding, regulation of redox homeostasis, and signal transduction. Among these, the isoform of mitochondrial ATP synthase subunit beta (ATP5F1B) was the only protein upregulation in the hippocampus but not in the brain cortex. Contrarily, the administration of analog LYS744 caused a small number of protein alterations in both brain parts. Our results indicate that the KOR full antagonism, together with MOR/DOR agonism of multifunctional opioid ligands, can be beneficial in treating chronic pain states by reducing changes in protein expression levels but retaining analgesic efficacy.


Subject(s)
Morphine , Receptors, Opioid, mu , Rats , Animals , Morphine/pharmacology , Receptors, Opioid, mu/metabolism , Receptors, Opioid/metabolism , Analgesics, Opioid/pharmacology , Analgesics , Enkephalins/metabolism , Hippocampus/metabolism , Brain/metabolism
12.
Molecules ; 29(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338317

ABSTRACT

µ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and ß-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited ß-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.


Subject(s)
Receptors, Opioid, mu , Receptors, Opioid , Humans , Receptors, Opioid/metabolism , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/adverse effects , Analgesics/pharmacology , beta-Arrestins/metabolism
13.
Neuropharmacology ; 248: 109866, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38364970

ABSTRACT

The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self-administration and relapse to drug-seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch-clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons.


Subject(s)
Dopamine , Receptors, Opioid , Rats , Male , Animals , Receptors, Opioid/metabolism , Ventral Tegmental Area/metabolism , Nociceptin Receptor , Receptors, GABA-B , Nociceptin , Dopaminergic Neurons/metabolism , gamma-Aminobutyric Acid , Opioid Peptides/pharmacology
14.
Behav Brain Res ; 462: 114895, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38316167

ABSTRACT

The nucleus accumbens (NAc) is a critical region for regulating the appetitive and consummatory aspects of motivated behavior. Previous work has shown differential effects of NAc µ-, δ-, and κ- receptor stimulation on food intake and for shifting motivation within an effort-based choice (EBC) task. However, the motivational role of the nociceptin opioid peptide (NOP) receptor, a fourth member of the opioid receptor family, is less well understood. These experiments therefore characterized the effect of NAc injections of nociceptin, the endogenous ligand for the NOP receptor, on consummatory and appetitive motivation. Three groups of male Sprague-Dawley rats received nociceptin injections into the NAc core prior to testing in a progressive ratio lever pressing task, an EBC task, or a palatable feeding assay. In the feeding experiment, 10 nmol of nociceptin increased consumption in the first 30 min, but this increase was not sustained through the end of the 2-hr session. Additionally, nociceptin injections did not alter breakpoint in the progressive ratio task. However, in the EBC task, nociceptin significantly decreased breakpoint for sugar pellets without affecting consumption of rat chow. These data suggest that NAc NOP receptor stimulation transiently increases consummatory motivation toward palatable diets and inhibits appetitive motivation when alternate food options are freely available. This pattern of effects contrasts with those obtained following NAc stimulation of other opioid receptors, suggesting that the four opioid receptor classes each serve unique roles in modulating food-directed motivation within the NAc core.


Subject(s)
Feeding Behavior , Motivation , Nociceptin , Nucleus Accumbens , Animals , Male , Rats , Nociceptin/metabolism , Nociceptin Receptor , Opioid Peptides/metabolism , Rats, Sprague-Dawley , Receptors, Opioid/metabolism
15.
Transl Psychiatry ; 14(1): 125, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413576

ABSTRACT

Mood and anxiety disorders are leading causes of disability worldwide and are major contributors to the global burden of diseases. Neuropeptides, such as oxytocin and opioid peptides, are important for emotion regulation. Previous studies have demonstrated that oxytocin reduced depression- and anxiety-like behavior in male and female mice, and opioid receptor activation reduced depression-like behavior. However, it remains unclear whether the endogenous opioid system interacts with the oxytocin system to facilitate emotion regulation in male and female mice. We hypothesized that opioid receptor blockade would inhibit the anxiolytic- and antidepressant-like effects of oxytocin. In this study, we systemically administered naloxone, a preferential µ-opioid receptor antagonist, and then intracerebroventricularly administered oxytocin. We then tested mice on the elevated zero maze and the tail suspension tests, respective tests of anxiety- and depression-like behavior. Contrary to our initial hypothesis, naloxone potentiated the anxiolytic-like, but not the antidepressant-like, effect of oxytocin. Using a selective µ-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, and a selective κ-opioid receptor antagonist, norbinaltorphimine, we demonstrate that µ-opioid receptor blockade potentiated the anxiolytic-like effect of oxytocin, whereas κ-opioid receptor blockade inhibited the oxytocin-induced anxiolytic-like effects. The present results suggest that endogenous opioids can regulate the oxytocin system to modulate anxiety-like behavior. Potential clinical implications of these findings are discussed.


Subject(s)
Anti-Anxiety Agents , Narcotic Antagonists , Mice , Male , Female , Animals , Narcotic Antagonists/pharmacology , Anti-Anxiety Agents/pharmacology , Oxytocin/pharmacology , Receptors, Opioid , Receptors, Opioid, mu , Naloxone/pharmacology , Antidepressive Agents/pharmacology
16.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338936

ABSTRACT

Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.


Subject(s)
Brain Injuries, Traumatic , Nociceptin Receptor , Nociceptin , Animals , Rats , Analgesics, Opioid , Brain Injuries, Traumatic/genetics , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , RNA, Messenger/metabolism
17.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334624

ABSTRACT

The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-ß-arrestin-1 complex. Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of ß-arrestin-1 to the PER2 promoter. Furthermore, we observed that ß-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances ß-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via ß-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2.


Subject(s)
Neoplasms , Receptors, Opioid , Humans , beta-Arrestins , Receptors, Opioid/genetics , Keratinocytes , Circadian Rhythm/physiology , beta-Arrestin 1 , Enkephalin, Methionine
18.
Psychopharmacology (Berl) ; 241(5): 1001-1010, 2024 May.
Article in English | MEDLINE | ID: mdl-38270614

ABSTRACT

RATIONALE: Recently, we demonstrated that the activation of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) signaling facilitates depressive-like behaviors. Additionally, literature findings support the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal (HPA) axis. OBJECTIVES: Considering that dysfunctional HPA axis is strictly related to stress-induced psychopathologies, we aimed to study the role of the HPA axis in the pro-depressant effects of NOP agonists. METHODS: Mice were treated prior to stress with the NOP agonist Ro 65-6570, and immobility time in the forced swimming task and corticosterone levels were measured. Additionally, the role of endogenous glucocorticoids and CRF was investigated using the glucocorticoid receptor antagonist mifepristone and the CRF1 antagonist antalarmin in the mediation of the effects of Ro 65-6570. RESULTS: The NOP agonist in a dose-dependent manner further increased the immobility of mice in the second swimming session compared to vehicle. By contrast, under the same conditions, the administration of the NOP antagonist SB-612111 before stress reduced immobility, while the antidepressant nortriptyline was inactive. Concerning in-serum corticosterone in mice treated with vehicle, nortriptyline, or SB-612111, a significant decrease was observed after re-exposition to stress, but no differences were detected in Ro 65-6570-treated mice. Administration of mifepristone or antalarmin blocked the Ro 65-6570-induced increase in the immobility time in the second swimming session. CONCLUSIONS: Present findings suggest that NOP agonists increase vulnerability to depression by hyperactivating the HPA axis and then increasing stress circulating hormones and CRF1 receptor signaling.


Subject(s)
Cycloheptanes , Imidazoles , Opioid Peptides , Piperidines , Receptors, Opioid , Spiro Compounds , Mice , Animals , Receptors, Opioid/physiology , Opioid Peptides/metabolism , Glucocorticoids/pharmacology , Nortriptyline/pharmacology , Nociceptin Receptor , Corticosterone/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Mifepristone/pharmacology , Pituitary-Adrenal System/metabolism
19.
Biomed Pharmacother ; 171: 116134, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219389

ABSTRACT

Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on µ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.


Subject(s)
Secologanin Tryptamine Alkaloids , Substance Withdrawal Syndrome , Humans , Prospective Studies , Receptors, Opioid , Secologanin Tryptamine Alkaloids/adverse effects , Psychotropic Drugs
20.
Mol Pharmacol ; 105(3): 250-259, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38182431

ABSTRACT

Opioid analgesics are frequently associated with gastrointestinal side effects, including constipation, nausea, dysphagia, and reduced gastric motility. Though it has been shown that stimulation of opioid receptors expressed in enteric motor neurons contributes to opioid-induced constipation, it remains unclear whether activation of opioid receptors in gastric-projecting nodose ganglia neurons contributes to the reduction in gastric motility and emptying associated with opioid use. In the present study, whole-cell patch-clamp recordings were performed to determine the mechanism underlying opioid receptor-mediated modulation of Ca2+ currents in acutely isolated gastric vagal afferent neurons. Our results demonstrate that CaV2.2 channels provide the majority (71% ± 16%) of Ca2+ currents in gastric vagal afferent neurons. Furthermore, we found that application of oxycodone, U-50488, or deltorphin II on gastric nodose ganglia neurons inhibited Ca2+ currents through a voltage-dependent mechanism by coupling to the Gα i/o family of heterotrimeric G-proteins. Because previous studies have demonstrated that the nodose ganglia expresses low levels of δ-opioid receptors, we also determined the deltorphin II concentration-response relationship and assessed deltorphin-mediated Ca2+ current inhibition following exposure to the δ-opioid receptor antagonist ICI 174,864 (0.3 µM). The peak mean Ca2+ current inhibition following deltorphin II application was 47% ± 24% (EC50 = 302.6 nM), and exposure to ICI 174,864 blocked deltorphin II-mediated Ca2+ current inhibition (4% ± 4% versus 37% ± 20%). Together, our results suggest that analgesics targeting any opioid receptor subtype can modulate gastric vagal circuits. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric nodose ganglia neurons, agonists targeting all three classical opioid receptor subtypes (µ, δ, and κ) inhibit voltage-gated Ca2+ channels in a voltage-dependent mechanism by coupling to Gαi/o. These findings suggest that analgesics targeting any opioid receptor subtype would modulate gastric vagal circuits responsible for regulating gastric reflexes.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, kappa , Humans , Analgesics, Opioid/pharmacology , Receptors, Opioid, mu/physiology , Constipation , Neurons, Afferent , Receptors, Opioid , Analgesics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...