ABSTRACT
Ligand-gated ion channels (LGICs) are cell surface integral proteins that mediate the fast neurotransmission in the nervous system. LGICs require auxiliary subunits for their trafficking, assembly and pharmacological modulation. Auxiliary subunits do not form functional homomeric receptors, but are reported to assemble with the principal subunits in order to modulate their pharmacological profiles. For example, nACh receptors are built at least by co-assemble of α and ß subunits, and the neuronal auxiliary subunits ß3 and α5 and muscle type ß, δ, γ, and ϵ determine the agonist affinity of these receptors. Serotonergic 5-HT3B, 5-HT3C, 5-HT3D and 5-HT3E are reported to assemble with the 5-HT3A subunit to modulate its pharmacological profile. Functional studies evaluating the role of γ2 and δ auxiliary subunits of GABAA receptors have made important advances in the understanding of the action of benzodiazepines, ethanol and neurosteroids. Glycine receptors are composed principally by α1-3 subunits and the auxiliary subunit ß determines their synaptic location and their pharmacological response to propofol and ethanol. NMDA receptors appear to be functional as heterotetrameric channels. So far, the existence of NMDA auxiliary subunits is controversial. On the other hand, Kainate receptors are modulated by NETO 1 and 2. AMPA receptors are modulated by TARPs, Shisa 9, CKAMP44, CNIH2-3 auxiliary proteins reported that controls their trafficking, conductance and gating of channels. P2X receptors are able to associate with auxiliary Pannexin-1 protein to modulate P2X7 receptors. Considering the pharmacological relevance of different LGICs auxiliary subunits in the present work we will highlight the therapeutic potential of these modulator proteins.
Subject(s)
Ligand-Gated Ion Channels/drug effects , Animals , Humans , Ion Channel Gating/drug effects , Ligand-Gated Ion Channels/chemistry , Ligand-Gated Ion Channels/metabolism , Models, Molecular , Protein Subunits , Receptors, AMPA/chemistry , Receptors, AMPA/drug effects , Receptors, AMPA/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Receptors, Glutamate/chemistry , Receptors, Glutamate/drug effects , Receptors, Glutamate/metabolism , Receptors, Glycine/chemistry , Receptors, Glycine/drug effects , Receptors, Glycine/metabolism , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/drug effects , Receptors, Kainic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Receptors, Purinergic P2X/chemistry , Receptors, Purinergic P2X/drug effects , Receptors, Purinergic P2X/metabolism , Receptors, Serotonin, 5-HT3/chemistry , Receptors, Serotonin, 5-HT3/drug effects , Receptors, Serotonin, 5-HT3/metabolismABSTRACT
Morbidity and mortality from diabetes mellitus (DM) are serious worldwide concerns. By the year 2030, the estimated number of diabetic patients will reach a staggering 439 million worldwide. Diabetes mellitus type 2 (DM2), which involves disturbances in both insulin secretion and resistance, is the most common form of diabetes and affects approximately 5 to 7% of the world's population. When a patient with DM2 cannot regulate his or her blood glucose levels through diet, weight loss, or exercise, oral medications, such as hypoglycemic agents (i.e., sulphonylureas, biguanides, alpha glucosidase inhibitors and thiazolidinediones), are crucial. Here, we discuss some physiological aspects of P2 receptors on pancreatic ß-cells, which express a variety of P2 receptor isoforms. These receptors enhance glucose-dependent insulin release. In addition, we speculate on the potential of purinergic compounds as novel or additional treatments for Type 2 Diabetes mellitus.
Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Receptors, Purinergic P2X/drug effects , Receptors, Purinergic P2Y/drug effects , Receptors, Purinergic P2/drug effects , Animals , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Immunohistochemistry , Insulin-Secreting Cells/metabolism , Mice , Phosphorylation , Purinergic P2 Receptor Agonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Rats , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Bötzinger complex (BötC)] and inspiratory [pre-Bötzinger complex (pre-BötC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BötC) enhanced the tachypneic (120 ± 9 vs. 180 ± 9 cpm; P < 0.01) and attenuated the pressor response (55 ± 2 vs. 15 ± 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BötC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BötC reduced chemoreflex tachypneic response (127 ± 6 vs. 70 ± 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BötC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 ± 2 vs. 157 ± 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BötC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BötC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.