Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Rev. Hosp. Ital. B. Aires (2004) ; 38(1): 5-10, mar. 2018. tab.
Article in English | LILACS | ID: biblio-1023455

ABSTRACT

The dysfunction in the serotoninergic neurotransmission has been classically associated with major depressive disorder (MDD); however, other pathways and processes seem to have a role in this illness, such as neurogenesis and related molecules: the Brain-Derived Neurotrophic Factor (BDNF) and the Apolipoprotein E (APOE). There are many reports that indicate an association between certain polymorphism in these genes and MDD. The aim of our study was to analyze the possible association between MDD and polymorphisms in HTR2A (5-hydroxytryptamine receptor 2A), BDNF and APOE genes in a sample of the Argentinean population previously studied for 2 polymorphisms in SLC6A4 (Solute Carrier Family 6 Member 4) gene. Five polymorphisms were studied (rs6311 and rs6313 in HTR2A; rs429358 and rs7412 in APOE, and rs6265 in BDNF) in 95 MDD patients and 107 non-related controls. No statistically significant differences were observed between groups when analyzing the association with a single marker using logistic regression; however, when a possible combinatory effect of the polymorphisms (including previously studied polymorphisms in SLC6A4 gene) was analyzed using a dominant model for the risk alleles, the genotypes L/S_10/12_G/A (OR=3.57(95%CI=1.43-8.93); p=0.004, adjusted p-value=0.01) in SLC6A4 and BDNF genes and L/S_10/12_T/C_3/3_G/A in SLC6A4, HTR2A, APOE and BDNF genes (OR=5.99(95%CI=1.66-21.56); p=0.002, adjusted p-value=0.07), were more prevalent in patients than in controls (20%vs.6% and 15%vs.3%, respectively). Even though it is necessary to replicate these findings in a larger population, our results suggest a possible interaction between molecules involved in neurogenesis (BDNF and APOE), serotoninergic neurotransmission (SLC6A4 and HTR2A) and the pathogenesis of MDD. (AU)


La disfunción en la neurotransmisión serotoninérgica ha sido clásicamente asociada con el trastorno depresivo mayor (TDM); sin embargo, otras vías y procesos parecerían tener un rol en esta enfermedad, como la neurogénesis y moléculas asociadas: el factor neurotrófico derivado del cerebro (BDNF) y la apoliproteína E (APOE). Existen reportes en los que se establecen asociaciones entre polimorfismos en estos genes y el TDM. El objetivo de nuestro trabajo fue analizar la posible asociación entre el TDM y polimorfismos en los genes HTR2A (receptor 5-hidroxitriptamina 2A), BDNF y APOE en una muestra de la población argentina previamente estudiada para 2 polimorfismos en el gen SLC6A4 (transportador soluble familia 6 miembro 4). Se estudiaron 5 polimorfismos (rs6311 y rs6313 en HTR2A; rs429358 y rs7412 en APOE; rs6265 en BDNF) en 95 pacientes con TDM y 107 controles no relacionados. No se observaron diferencias significativas entre grupos al analizar la asociación por regresión logística con un único marcador; cuando se analizó el posible efecto combinatorio de polimorfismos (incluyendo los previamente estudiados para el gen SCL6A4) usando un modelo dominante para los alelos de riesgo, los genotipos L/S_10/12_G/A (OR=3,57(95%CI=1,43-8,93); p=0,004, valor-p-ajustado=0,01) en SLC6A4 y BDNF y L/S_10/12_T/C_3/3_G/A en SLC6A4, HTR2A, APOE y BDNF (OR=5,99(95%CI=1,66-21,56); p=0,002, valor-p-ajustado=0,07), fueron más prevalentes en pacientes que controles (20%vs.6% y 15%vs.3% respectivamente). Si bien es necesario replicar estos hallazgos en una población más grande, nuestros resultados sugieren una posible interacción entre moléculas involucradas en la neurogénesis (BDNF y APOE), la neurotransmisión serotoninérgica (SLC6A4 y HTR2A) y la patogenia de la depresión mayor. (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Young Adult , Apolipoproteins E/deficiency , Polymorphism, Genetic , Brain-Derived Neurotrophic Factor/deficiency , Receptors, Serotonin, 5-HT2/deficiency , Depressive Disorder, Major/genetics , Serotonin Plasma Membrane Transport Proteins/deficiency , Apolipoproteins E/genetics , Argentina/epidemiology , Brain-Derived Neurotrophic Factor/genetics , Receptors, Serotonin, 5-HT2/genetics , Depressive Disorder, Major/pathology , Serotonin Plasma Membrane Transport Proteins/genetics
2.
Neurosci Res ; 64(3): 280-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19447297

ABSTRACT

Chronic administration of antipsychotic drugs produces adaptive responses at the cellular and molecular levels that may be responsible for both the main therapeutic effects and rebound psychosis, which is often observed upon discontinuation of these drugs. Here we show that some antipsychotic drugs produce significant functional changes in serotonergic neurons that directly impact feeding behavior in the model organism, Caenorhabditis elegans. In particular, antipsychotic drugs acutely suppress pharyngeal pumping, which is regulated by serotonin from the NSM neurons. By contrast, withdrawal from food and drug is accompanied by a striking recovery and overshoot in the rate of pharyngeal pumping. This rebound response is absent or diminished in mutant strains that lack tryptophan hydroxylase (TPH-1) or the serotonin receptors SER-7 and SER-1, and is blocked by serotonin antagonists, which implicates serotonergic mechanisms in this adaptive response. Consistent with this, continuous drug exposure stimulates an increase in serotonin and the number of varicosities along the NSM processes. Cyclosporin A and calcineurin mutant strains mimic the effects of the antipsychotic drugs and reveal a potential role for the calmodulin-calcineurin signaling pathway in the response of serotonergic neurons. Similar molecular and cellular changes may contribute to the long-term adaptive response to antipsychotic drugs in patients.


Subject(s)
Adaptation, Physiological/drug effects , Antipsychotic Agents/administration & dosage , Caenorhabditis elegans , Calcineurin Inhibitors , Calcium Signaling , Serotonin/metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins , Cyclosporine/pharmacology , Enzyme Inhibitors/pharmacology , Feeding Behavior/drug effects , Humans , Imidazoles/pharmacology , Methiothepin/pharmacology , Neurons/drug effects , Neurons/metabolism , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism , Receptors, Serotonin/deficiency , Receptors, Serotonin, 5-HT2/deficiency , Serotonin Antagonists/pharmacology , Tryptophan Hydroxylase/metabolism
3.
J Neurosci ; 25(49): 11231-8, 2005 Dec 07.
Article in English | MEDLINE | ID: mdl-16339018

ABSTRACT

Serotonin (5-hydroxytryptamine; 5-HT) plays key roles in sleep-wakefulness regulation. Evidence indicates that 5-HT2 receptors are involved mainly in non-rapid eye movement sleep (NREMS) regulation and respiratory control. Here, we investigated the relative contribution of 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor subtypes to NREMS and breathing during sleep, using 5-HT2 subtype-selective ligands in wild-type (5-HT(2A)+/+) and knock-out (5-HT(2A)-/-) mice that do not express 5-HT(2A) receptors. Acute blockade of 5-HT(2A) receptors induced an increase in NREMS in 5-HT(2A)+/+ mice, but not 5-HT(2A)-/- mutants, which spontaneously expressed less NREMS than wild-type animals. In 5-HT(2A)+/+ mice, 5-HT(2B) receptor blockade produced a reduction of NREMS, whereas receptor activation induced an increase in this sleep stage. These effects were less pronounced in 5-HT(2A)-/- mice, indicating a lower sensitivity of 5-HT(2B) receptors in mutants, with no change in 5-HT(2B) mRNA. Blockade of 5-HT(2C) receptors had no effect on NREMS in both strains. In addition, an increase in EEG power density after sleep deprivation was observed in 5-HT(2A)+/+ mice but not in 5-HT(2A)-/- mice. Whole-body plethysmographic recordings indicated that 5-HT(2A) receptor blockade in 5-HT(2A)+/+ mice reduced NREMS apneas and bradypneas that occurred after sighs. In contrast, in 5-HT(2A)-/- mutants, NREMS apneas were not modified, and bradypnea after sighs were more pronounced. Our results demonstrate that 5-HT exerts a 5-HT(2B)-mediated facilitation of NREMS, and an influence respectively inhibitory on NREMS and facilitatory on sleep apnea generation, via 5-HT(2A) receptors. Moreover, 5-HT(2A) gene knock-out leads to functional compensations yielding adaptive changes opposite to those caused by pharmacological blockade of 5-HT(2A) receptors in 5-HT(2A)+/+ mice.


Subject(s)
Adaptation, Physiological/physiology , Pulmonary Ventilation/physiology , Receptors, Serotonin, 5-HT2/genetics , Sleep/physiology , Wakefulness/physiology , Adaptation, Physiological/genetics , Animals , Male , Mice , Mice, Knockout , Pulmonary Ventilation/genetics , Receptor, Serotonin, 5-HT2A/deficiency , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Serotonin, 5-HT2/deficiency , Serotonin 5-HT2 Receptor Agonists , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Sleep/drug effects , Sleep/genetics , Sleep Deprivation/genetics , Sleep Deprivation/metabolism , Wakefulness/drug effects , Wakefulness/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...