Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.837
Filter
1.
Nat Commun ; 15(1): 4152, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755120

ABSTRACT

Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.


Subject(s)
Dorsal Raphe Nucleus , Optogenetics , Serotonergic Neurons , Serotonin , Animals , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/physiology , Male , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Mice , Serotonin/metabolism , Magnetic Resonance Imaging , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Mice, Inbred C57BL , Brain/metabolism , Brain/physiology , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
2.
PLoS One ; 19(5): e0304601, 2024.
Article in English | MEDLINE | ID: mdl-38820310

ABSTRACT

Both clinical and animal studies demonstrated that seizure-induced respiratory arrest (S-IRA) contributes importantly to sudden unexpected death in epilepsy (SUDEP). It has been shown that enhancing serotonin (5-HT) function relieves S-IRA in animal models of SUDEP, including DBA/1 mice. Direct activation of 5-HT3 and 5-HT4 receptors suppresses S-IRA in DBA/1 mice, indicating that these receptors are involved in S-IRA. However, it remains unknown if other subtypes of 5-HT receptors are implicated in S-IRA in DBA/1 mice. In this study, we investigated the action of an agonist of the 5-HT1A (8-OH-DPAT), 5-HT2A (TCB-2), 5-HT2B (BW723C86), 5-HT2C (MK-212), 5-HT6 (WAY-208466) and 5-HT7 (LP-211) receptor on S-IRA in DBA/1 mice. An agonist of the 5-HT receptor or a vehicle was intraperitoneally administered 30 min prior to acoustic simulation, and the effect of each drug/vehicle on the incidence of S-IRA was videotaped for offline analysis. We found that the incidence of S-IRA was significantly reduced by TCB-2 at 10 mg/kg (30%, n = 10; p < 0.01, Fisher's exact test) but was not altered by other agonists compared with the corresponding vehicle controls in DBA/1 mice. Our data demonstrate that 5-HT2A receptors are implicated in S-IRA, and 5-HT1A, 5-HT2B, 5-HT2C, 5-HT6 and 5-HT7 receptors are not involved in S-IRA in DBA/1 mice.


Subject(s)
Mice, Inbred DBA , Receptors, Serotonin , Seizures , Animals , Receptors, Serotonin/metabolism , Seizures/metabolism , Mice , Male , Serotonin Receptor Agonists/pharmacology , Sudden Unexpected Death in Epilepsy/etiology , Disease Models, Animal
3.
Sci Adv ; 10(16): eadk4855, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38630816

ABSTRACT

Serotonin [5-hydroxytryptamine (5-HT)] acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1eR/5-HT1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed antimigraine properties. Using cryo-EM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.


Subject(s)
Mianserin , Serotonin , Humans , Mianserin/pharmacology , Antidepressive Agents , Receptors, Serotonin/metabolism , Signal Transduction
4.
Behav Brain Res ; 466: 115000, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38631659

ABSTRACT

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Subject(s)
Aging , Brain , Hydroxyindoleacetic Acid , Monoamine Oxidase , Serotonin Plasma Membrane Transport Proteins , Serotonin , Sex Characteristics , Tryptophan Hydroxylase , Zebrafish , Animals , Serotonin/metabolism , Male , Female , Aging/metabolism , Aging/physiology , Brain/metabolism , Monoamine Oxidase/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Hydroxyindoleacetic Acid/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Motor Activity/physiology , Behavior, Animal/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
5.
Cell Commun Signal ; 22(1): 233, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641599

ABSTRACT

BACKGROUND: Multiple neurodegenerative diseases are induced by the formation and deposition of protein aggregates. In particular, the microtubule-associated protein Tau leads to the development of so-called tauopathies characterized by the aggregation of hyperphosphorylated Tau within neurons. We recently showed that the constitutive activity of the serotonin receptor 7 (5-HT7R) is required for Tau hyperphosphorylation and aggregation through activation of the cyclin-dependent kinase 5 (CDK5). We also demonstrated physical interaction between 5-HT7R and CDK5 at the plasma membrane suggesting that the 5-HT7R/CDK5 complex is an integral part of the signaling network involved in Tau-mediated pathology. METHODS: Using biochemical, microscopic, molecular biological, computational and AI-based approaches, we investigated structural requirements for the formation of 5-HT7R/CDK5 complex. RESULTS: We demonstrated that 5-HT7R domains responsible for coupling to Gs proteins are not involved in receptor interaction with CDK5. We also created a structural model of the 5-HT7R/CDK5 complex and refined the interaction interface. The model predicted two conserved phenylalanine residues, F278 and F281, within the third intracellular loop of 5-HT7R to be potentially important for complex formation. While site-directed mutagenesis of these residues did not influence Gs protein-mediated receptor signaling, replacement of both phenylalanines by alanine residues significantly reduced 5-HT7R/CDK5 interaction and receptor-mediated CDK5 activation, leading to reduced Tau hyperphosphorylation and aggregation. Molecular dynamics simulations of 5-HT7R/CDK5 complex for wild-type and receptor mutants confirmed binding interface stability of the initial model. CONCLUSIONS: Our results provide a structural basis for the development of novel drugs targeting the 5-HT7R/CDK5 interaction interface for the selective treatment of Tau-related disorders, including frontotemporal dementia and Alzheimer's disease.


Subject(s)
Cyclin-Dependent Kinase 5 , Enzyme Activation , Receptors, Serotonin , Humans , Alzheimer Disease/metabolism , Cyclin-Dependent Kinase 5/chemistry , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Phosphorylation , Receptors, Serotonin/chemistry , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Signal Transduction
6.
Cell Rep ; 43(5): 114140, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656873

ABSTRACT

Women are more vulnerable to stress and have a higher likelihood of developing mood disorders. The serotonin (5HT) system has been highly implicated in stress response and mood regulation. However, sex-dependent mechanisms underlying serotonergic regulation of stress vulnerability remain poorly understood. Here, we report that adult hippocampal neural stem cells (NSCs) of the Ascl1 lineage (Ascl1-NSCs) in female mice express functional 5HT1A receptors (5HT1ARs), and selective deletion of 5HT1ARs in Ascl1-NSCs decreases the Ascl1-NSC pool only in females. Mechanistically, 5HT1AR deletion in Ascl1-NSCs of females leads to 5HT-induced depolarization mediated by upregulation of 5HT7Rs. Furthermore, repeated restraint stress (RRS) impairs Ascl1-NSC maintenance through a 5HT1AR-mediated mechanism. By contrast, Ascl1-NSCs in males express 5HT7R receptors (5HT7Rs) that are downregulated by RRS, thus maintaining the Ascl1-NSC pool. These findings suggest that sex-specific expression of distinct 5HTRs and their differential interactions with stress may underlie sex differences in stress vulnerability.


Subject(s)
Hippocampus , Neural Stem Cells , Receptors, Serotonin , Stress, Psychological , Animals , Neural Stem Cells/metabolism , Female , Hippocampus/metabolism , Male , Mice , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics , Stress, Psychological/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Sex Characteristics , Mice, Inbred C57BL , Serotonin/metabolism
7.
Acta Cir Bras ; 39: e392324, 2024.
Article in English | MEDLINE | ID: mdl-38629654

ABSTRACT

PURPOSE: Patients have been severely suffered from cancer associated pain, and pancreatic cancer is the most severe form of cancer associated with pain. There are very few options available to manage it. The present report evaluated the effect of 5HT2A on pancreatic cancer associated pain. METHODS: Pancreatic cancer was induced by injecting SW 1,990 cells (~3×106 in a 20 µL suspension) into the pancreas and formed a 2-3-mm vesicle using an inoculator fitted with a 26-gauge needle in BALB/c-nu mice. Survival rate and body weight of the mice were observed. Pain behaviour testing was performed at the end of each week (third and fourth week) after surgery. Inflammatory mediators and HDAC 2 proteins were determined in the spinal tissue using quantitative real-time polymerase chain reaction. RESULTS: There was improvement in the survival rate and body weight in 5HT2A antagonist treated group than pancreatic cancer group of mice. Moreover, 5HT2A antagonist ameliorated the alteration in pain behaviour of pancreatic cancer mice. mRNA expression of HDAC2 and level of inflammatory cytokines were reduced in the spinal tissue of 5HT 2A antagonist treated group than pancreatic cancer group of mice. CONCLUSIONS: Data revealed that 5HT2A antagonist ameliorates pain associated with pancreatic cancer mice by HDAC inhibition and inflammatory cytokines. The result of investigation supports that modulation of 5HT2A receptor could be used clinically to protects neuropathic pain in pancreatic cancer.


Subject(s)
Cancer Pain , Neuralgia , Pancreatic Neoplasms , Animals , Humans , Mice , Body Weight , Cancer Pain/drug therapy , Cancer Pain/prevention & control , Cytokines , Disease Models, Animal , Mice, Inbred BALB C , Neuralgia/drug therapy , Pancreatic Neoplasms/complications , Receptors, Serotonin/metabolism
8.
Eur J Med Chem ; 270: 116349, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38555856

ABSTRACT

Serotonergic (5-hydroxytryptamine; 5-HT) receptors play critical roles in neurological and psychological disorders such as schizophrenia, anxiety, depression, and Alzheimer's diseases. Therefore, it is particularly important to develop novel radioligands or modify the existing ones to identify the serotonergic receptors involved in psychiatric disorders. Among the 16 subtypes of serotonergic systems, only technetium-99m based radiopharmaceuticals have been evaluated for serotonin-1A (5-HT1A), serotonin-2A (5-HT2A), 5-HT1A/7 heterodimers and serotonin receptor neurotransmitter (SERT). This review focuses on recent efforts in the design, synthesis and evaluation of 99mTc-radioligands used for single photon emission computerized tomography (SPECT) imaging of serotonergic (5-HT) receptors. Additionally, the discussion will cover aspects such as chemical structure, in vitro/vivo stability, affinity toward serotonin receptors, blood-brain barrier permeation (BBB), and biodistribution study.


Subject(s)
Brain , Serotonin , Humans , Brain/metabolism , Tissue Distribution , Blood-Brain Barrier/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Radiopharmaceuticals/chemistry , Technetium/chemistry , Receptors, Serotonin/metabolism
9.
Pharmacol Res ; 203: 107154, 2024 May.
Article in English | MEDLINE | ID: mdl-38521286

ABSTRACT

Serotonin, while conventionally recognized as a neurotransmitter in the CNS, has recently gained attention for its role in the kidney. Specifically, serotonin is not only synthesized in the kidney, but it also regulates glomerular function, vascular resistance, and mitochondrial homeostasis. Because of serotonin's importance to mitochondrial health, this review is focused on the role of serotonin and its receptors in mitochondrial function in the context of acute kidney injury, chronic kidney disease, and diabetic kidney disease, all of which are characterized by mitochondrial dysfunction and none of which has approved pharmacological treatments. Evidence indicates that activation of certain serotonin receptors can stimulate mitochondrial biogenesis (MB) and restore mitochondrial homeostasis, resulting in improved renal function. Serotonin receptor agonists that induce MB are therefore of interest as potential therapeutic strategies for renal injury and disease. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is associated with many human renal diseases such as acute kidney injury, chronic kidney disease, and diabetic kidney disease, which are associated with increased morbidity and mortality. Unfortunately, none of these pathologies has an FDA-approved pharmacological intervention, underscoring the urgency of identifying new therapeutics for such disorders. Studies show that induction of mitochondrial biogenesis via serotonin (5-hydroxytryptamine, 5-HT) receptors reduces kidney injury markers, restores mitochondrial and renal function after kidney injury, and decreases mortality, suggesting that targeting 5-HT receptors may be a promising therapeutic avenue for mitochondrial dysfunction in kidney diseases. While numerous reviews describe the importance of mitochondria and mitochondrial quality control mechanisms in kidney disease, the relevance of 5-HT receptor-mediated mitochondrial metabolic modulation in the kidney has yet to be thoroughly explored.


Subject(s)
Kidney Diseases , Mitochondria , Serotonin , Animals , Humans , Kidney/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology , Mitochondria/metabolism , Mitochondria/pathology , Organelle Biogenesis , Receptors, Serotonin/metabolism , Serotonin/metabolism , Serotonin Receptor Agonists/pharmacology , Serotonin Receptor Agonists/therapeutic use
10.
J Neuropathol Exp Neurol ; 83(3): 144-160, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38323418

ABSTRACT

The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.


Subject(s)
Sudden Infant Death , Infant , Animals , Humans , Aged , Medulla Oblongata/metabolism , Serotonin/metabolism , Receptors, Serotonin/metabolism
11.
Brain Res ; 1830: 148815, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38387714

ABSTRACT

Antipsychotic drugs (APDs) are the primary pharmacological treatment for schizophrenia, a complex disorder characterized by altered neuronal connectivity. Atypical or second-generation antipsychotics, such as Risperidone (RSP) and Clozapine (CZP) predominantly block dopaminergic D2 and serotonin receptor 2A (5-HT2A) neurotransmission. Both compounds also exhibit affinity for the 5-HT7R, with RSP acting as an antagonist and CZP as an inverse agonist. Our study aimed to determine whether RSP and CZP can influence neuronal morphology through a 5-HT7R-mediated mechanism. Here, we demonstrated that CZP promotes neurite outgrowth of early postnatal cortical neurons, and the 5-HT7R mediates its effect. Conversely, RSP leads to a reduction of neurite length of early postnatal cortical neurons, in a 5-HT7R-independent way. Furthermore, we found that the effects of CZP, mediated by 5-HT7R activation, require the participation of ERK and Cdk5 kinase pathways. At the same time, the modulation of neurite length by RSP does not involve these pathways. In conclusion, our findings provide valuable insights into the morphological changes induced by these two APDs in neurons and elucidate some of the associated molecular pathways. Investigating the 5-HT7R-dependent signaling pathways underlying the neuronal morphogenic effects of APDs may contribute to the identification of novel targets for the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents , Clozapine , Antipsychotic Agents/pharmacology , Drug Inverse Agonism , Neurons/metabolism , Receptors, Serotonin/metabolism , Neurites/metabolism , Clozapine/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism
12.
J Neurochem ; 168(6): 1097-1112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38323657

ABSTRACT

Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.


Subject(s)
Drosophila melanogaster , Ketamine , Locomotion , Receptors, Serotonin , Selective Serotonin Reuptake Inhibitors , Animals , Ketamine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Receptors, Serotonin/metabolism , Receptors, Serotonin/drug effects , Locomotion/drug effects , Receptors, Glutamate/metabolism , Receptors, Glutamate/drug effects , Behavior, Animal/drug effects , Serotonin/metabolism , Feeding Behavior/drug effects , Dose-Response Relationship, Drug , Larva , Fluoxetine/pharmacology , Antidepressive Agents/pharmacology
13.
Nutrients ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398793

ABSTRACT

Lactobacillus species have been shown to alleviate gut inflammation and oxidative stress. However, the effect of different lactobacilli components on gut inflammation has not been well studied. This study aims to identify the differences in the effect and mechanisms of different forms and components of Limosilactobacillus mucosae (LM) treatment in the alleviation of gut inflammation using a colitis mouse model that is induced by dextran sodium sulfate (DSS). Seventy-two C57BL/6 mice were divided into six groups: control, DSS, live LM+DSS (LM+DSS), heat-killed LM+DSS (HKLM+DSS), LM cell-free supernatant + DSS (LMCS+DSS), and MRS medium + DSS (MRS+DSS). The mice were treated with different forms and components of LM for two weeks before DSS treatment. After that, the mice were sacrificed for an assessment of their levels of inflammatory cytokines, serotonin (5-HT) receptors (HTRs), and tryptophan metabolites. The results showed that, compared to other treatments, LMCS was more effective (p < 0.05) in the alleviation of DSS-induced body weight loss and led to an increase in the disease activity index score. All three forms and components of LM increased (p < 0.05) the levels of indole-3-acetic acid but reduced (p < 0.05) the levels of 5-HT in the colon. HKLM or LMCS reduced (p < 0.05) the percentages of CD3+CD8+ cytotoxic T cells but increased (p < 0.05) the percentages of CD3+CD4+ T helper cells in the spleen. LM or HKLM increased (p < 0.05) abundances of CD4+Foxp3+ regulatory T cells in the spleen. The LM and LMCS treatments reduced (p < 0.05) the expression of the pro-inflammatory cytokines Il6 and Il17a. The mice in the HKLM+DSS group had higher (p < 0.05) mRNA levels of the anti-inflammatory cytokine Il10, the cell differentiation and proliferation markers Lgr5 and Ki67, the 5-HT degradation enzyme Maoa, and HTRs (Htr1a, Htr2a, and Htr2b) in the colon. All three forms and components of LM reduced the phosphorylation of STAT3. The above findings can help to optimize the functionality of probiotics and develop new dietary strategies that aid in the maintenance of a healthy gut.


Subject(s)
Colitis , Serotonin , Animals , Mice , Serotonin/metabolism , Hot Temperature , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/therapy , Lactobacillus/metabolism , Inflammation/metabolism , Cytokines/metabolism , Receptors, Serotonin/metabolism , Immunity , Dextran Sulfate/adverse effects , Disease Models, Animal , Colon/metabolism
14.
Behav Brain Res ; 463: 114922, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38408524

ABSTRACT

Studies on the social modulation of fear have revealed that in social species, individuals in a distressed state show better recovery from aversive experiences when accompanied - referred to as social buffering. However, the underlying mechanisms remain unknown, hindering the understanding of such an approach. Our previous data showed that the presence of a conspecific during the extinction task inhibited the retrieval of fear memory without affecting the extinction memory in the retention test. Here, we investigate the role of serotonergic receptors (5-HTRs), specifically 5-HT2A, 5-HT5A, and 5-HT6 in the medial prefrontal cortex (mPFC), In the retention of extinction after the extinction task, in the absence or presence of social support. Extinction training was conducted on 60-day-old male Wistar rats either alone or with a conspecific (a familiar cagemate, non-fearful). The antagonists for these receptors were administered directly into the mPFC immediately after the extinction training. The results indicate that blocking 5-HT5A (SB-699551-10 µg/side) and 5-HT6 (SB-271046A - 10 µg/side) receptors in the mPFC impairs the consolidation of CFC in the social support group. Interestingly, blocking 5-HT2A receptors (R65777 - 4 µg/side) in the mPFC led to impaired CFC specifically in the group undergoing extinction training alone. These findings contribute to a better understanding of brain mechanisms and neuromodulation associated with social support during an extinction protocol. They are consistent with previously published research, suggesting that the extinction of contextual fear conditioning with social support involves distinct neuromodulatory processes compared to when extinction training is conducted alone.


Subject(s)
Extinction, Psychological , Learning , Receptor, Serotonin, 5-HT2A , Receptors, Serotonin , Animals , Male , Rats , Brain , Prefrontal Cortex , Rats, Wistar , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Serotonin/metabolism
15.
Handb Clin Neurol ; 199: 43-50, 2024.
Article in English | MEDLINE | ID: mdl-38307661

ABSTRACT

5-Hydroxytryptamine (HT)/serotonin receptor agonism has been a long-recognized property of triptan medications, and more recently, the study and development of medications with selective binding to the 1F receptor subtype have been explored. While the exact mechanism contributing to decreased symptoms of an acute migraine attack remains unclear, selective 5-HT1F agonists have demonstrated clinical efficacy with lasmiditan as the only approved medication from this class to date. Lasmiditan lacks vasoconstrictive properties, giving it utility in specific patient populations in whom triptans should be avoided. Availability, central nervous system (CNS) side effects, and 8-hour driving restriction may affect its clinical use.


Subject(s)
Piperidines , Receptors, Serotonin , Serotonin 5-HT1 Receptor Agonists , Humans , Benzamides/adverse effects , Piperidines/adverse effects , Pyridines/adverse effects , Receptors, Serotonin/metabolism , Tryptamines/therapeutic use , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Agonists/therapeutic use
16.
J Mol Biol ; 436(7): 168454, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38266980

ABSTRACT

Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation is dependent on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.


Subject(s)
Brain , Gene Expression Regulation, Developmental , Histones , Neurogenesis , Placenta , Receptors, Serotonin , Serotonin Plasma Membrane Transport Proteins , Serotonin , Animals , Female , Mice , Pregnancy , Histones/metabolism , Mice, Transgenic , Placenta/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Transcriptome , Brain/embryology , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Neurogenesis/genetics
17.
ACS Chem Neurosci ; 15(2): 315-327, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38189238

ABSTRACT

Primary metabolites of mushroom tryptamines, psilocybin and baeocystin (i.e., psilocin and norpsilocin), exhibit potent agonist activity at the serotonin 2A receptor (5-HT2A) in vitro but differ in their 5-HT2A-mediated effects in vivo. In particular, psilocin produces centrally mediated psychedelic effects in vivo, whereas norpsilocin, differing only by the loss of an N-methyl group, is devoid of psychedelic-like effects. These observations suggest that the secondary methylamine group in norpsilocin impacts its central nervous system (CNS) bioavailability but not its receptor pharmacodynamics. To test this hypothesis, eight norpsilocin derivatives were synthesized with varied secondary alkyl-, allyl-, and benzylamine groups, primarily aiming to increase their lipophilicity and brain permeability. Structure-activity relationships for the norpsilocin analogues were evaluated using the mouse head-twitch response (HTR) as a proxy for CNS-mediated psychedelic-like effects. HTR studies revealed that extending the N-methyl group of norpsilocin by a single methyl group, to give the corresponding secondary N-ethyl analogue (4-HO-NET), was sufficient to produce psilocin-like activity (median effective dose or ED50 = 1.4 mg/kg). Notably, N-allyl, N-propyl, N-isopropyl, and N-benzyl derivatives also induced psilocin-like HTR activity (ED50 = 1.1-3.2 mg/kg), with variable maximum effects (26-77 total HTR events). By contrast, adding bulkier tert-butyl or cyclohexyl groups in the same position did not elicit psilocin-like HTRs. Pharmacological assessments of the tryptamine series in vitro demonstrated interactions with multiple serotonin receptor subtypes, including 5-HT2A, and other CNS signaling proteins (e.g., sigma receptors). Overall, our data highlight key structural requirements for CNS-mediated psychedelic-like effects of norpsilocin analogues.


Subject(s)
Hallucinogens , Mice , Animals , Hallucinogens/chemistry , Serotonin/metabolism , Receptors, Serotonin/metabolism , Brain/metabolism , Receptor, Serotonin, 5-HT2A/metabolism
18.
Mol Psychiatry ; 29(3): 671-685, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177350

ABSTRACT

Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.


Subject(s)
Brain Injuries , Hallucinogens , Neuronal Plasticity , Humans , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Neuronal Plasticity/drug effects , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Animals , Receptors, Serotonin/metabolism , Receptors, Serotonin/drug effects , Receptors, sigma/metabolism , Sigma-1 Receptor , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
19.
Sci Rep ; 14(1): 1396, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228622

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a major health problem leading to liver fibrosis and hepatocellular carcinoma, among other diseases, and for which there is still no approved drug treatment. Previous studies in animal models and in LX-2 cells have indicated a role for serotonin (5-HT) and 5-HT receptors in stellate cell activation and the development of NASH. In the current study, we investigated the extent to which these findings are applicable to a human NASH in vitro model consisting of human liver spheroids containing hepatocytes and non-parenchymal cells. Treatment of the spheroids with 5-HT or free fatty acids (FFA) induced fibrosis, whereas treatment of the spheroids with the 5-HT receptor antagonists ketanserin, pimavanserin, sarpogrelate, and SB269970 inhibited FFA-induced fibrosis via a reduction in stellate cell activation as determined by the expression of vimentin, TGF-ß1 and COL1A1 production. siRNA-based silencing of 5-HT2A receptor expression reduced the anti-fibrotic properties of ketanserin, suggesting a role for 5-HT receptors in general and 5-HT2A receptors in particular in the FFA-mediated increase in fibrosis in the human liver spheroid model. The results suggest a contribution of the 5-HT receptors in the development of FFA-induced human liver fibrosis with implications for further efforts in drug development.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Ketanserin/pharmacology , Serotonin/pharmacology , Serotonin/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Serotonin Antagonists/pharmacology , Liver/metabolism , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Receptors, Serotonin/metabolism , Liver Neoplasms/pathology
20.
Rev Neurosci ; 35(1): 1-20, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37415576

ABSTRACT

Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Humans , Serotonin/metabolism , Brain/metabolism , Autism Spectrum Disorder/metabolism , Receptors, Serotonin/metabolism , Membrane Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...