Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimmunol ; 335: 577020, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31445379

ABSTRACT

TL1A/DR3/DcR3 pathway is an important mediator of inflammatory responses and contributes to the pathogenesis of several chronic inflammatory diseases. Therefore, we analysed PBMC gene expression of these molecules in 30 relapsing-remitting multiple sclerosis (RRMS) patients, 8 secondary progressive MS (SPMS), 9 primary progressive MS (PPMS), 11 clinically isolated syndrome (CIS) patients, and 16 healthy controls (HCs), to evaluate their biomarker potential in MS. The results showed significant decrease in TL1A expression in RRMS compared to other study groups. TL1A as a marker of inflammation, we found its higher expression among treatment näive RRMS patients as compared to HCs and among patients who were treated with DMTs. Moreover, TL1A expression was found to be associated with the clinical and MRI findings of MS patients suggesting its possible involvement in the establishment or preservation of immune system homeostasis or in the regulation of inflammatory activity. Taken together, these findings suggest the TL1A should be evaluated further for its potential as a candidate biomarker of inflammatory activity and the marker of therapeutic response to immunomodulatory treatments in MS.


Subject(s)
Multiple Sclerosis/immunology , Receptors, Tumor Necrosis Factor, Member 25/biosynthesis , Receptors, Tumor Necrosis Factor, Member 6b/biosynthesis , Tumor Necrosis Factor Ligand Superfamily Member 15/biosynthesis , Adult , Biomarkers/analysis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Receptors, Tumor Necrosis Factor, Member 25/analysis , Receptors, Tumor Necrosis Factor, Member 6b/analysis , Transcriptome , Tumor Necrosis Factor Ligand Superfamily Member 15/analysis
2.
Cancer Invest ; 27(2): 163-70, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19235588

ABSTRACT

Lupeol (Lup-20(29)-en-3H-ol), a novel dietary triterpene, was found in fruits, vegetables, and several medicinal plants. Here, we investigated its growth-inhibitory effect and associated mechanisms in hepatocellular carcinoma SMMC7721 cells. Lupeol treatment resulted in significant inhibition of cell viability in a dose-dependent manner and caused apoptotic death of this cell line with activation of caspase3 expression. Caspase8 inhibitor pretreatment was found to partially block the apoptosis induced by Lupeol. Moreover, Lupeol specifically caused a significant decrease in the expression of Death receptor 3 (DR3) mRNA and protein and a significant elevated expression of FADD mRNA whereas Fas mRNA and protein expression was not detectable. Further more, knockdown of DR3 by small interfering RNA inhibited the growth and induced apoptosis of hepatocellular carcinoma cell. These results suggested that Lupeol treatment induced growth inhibition and apoptosis in SMMC7721 cells, the mechanism is due to down-regulation of DR3 expression. We demonstrated that Lupeol appears to be a promising chemopreventive agent for treating hepatocellular carcinoma, and DR3 may be an important target for liver cancer therapy.


Subject(s)
Apoptosis/drug effects , Liver Neoplasms/drug therapy , Receptors, Tumor Necrosis Factor, Member 25/antagonists & inhibitors , Triterpenes/pharmacology , Caspase 3/analysis , Caspase 8/physiology , Cell Line, Tumor , Cell Survival/drug effects , Fas-Associated Death Domain Protein/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Pentacyclic Triterpenes , RNA, Messenger/analysis , Receptors, Tumor Necrosis Factor, Member 25/analysis , Receptors, Tumor Necrosis Factor, Member 25/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...