Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.436
Filter
1.
PLoS One ; 19(5): e0303507, 2024.
Article in English | MEDLINE | ID: mdl-38748623

ABSTRACT

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Subject(s)
Diabetes Insipidus, Nephrogenic , Receptors, Vasopressin , Receptors, Vasopressin/genetics , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism , Humans , HEK293 Cells , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , Mutation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Deamino Arginine Vasopressin/pharmacology , beta-Arrestins/metabolism , Animals
2.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38782603

ABSTRACT

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Subject(s)
Chemotaxis , Monocytes , Receptors, Chemokine , Receptors, Vasopressin , Humans , Monocytes/metabolism , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , THP-1 Cells , Protein Multimerization , HEK293 Cells , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , CRISPR-Cas Systems , Signal Transduction , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-1/genetics , Ligands
3.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709918

ABSTRACT

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Subject(s)
Anxiety , Arginine Vasopressin , Social Behavior , Animals , Female , Male , Mice , Anxiety/metabolism , Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Optogenetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Septal Nuclei/metabolism , Septal Nuclei/physiology
4.
Front Endocrinol (Lausanne) ; 15: 1390203, 2024.
Article in English | MEDLINE | ID: mdl-38803478

ABSTRACT

Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.


Subject(s)
Brain , Receptors, Oxytocin , Receptors, Vasopressin , Animals , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Male , Brain/metabolism , Rodentia/metabolism , Rats , Species Specificity , Autoradiography , Arvicolinae/metabolism , Oxytocin/metabolism , Cricetinae , Social Behavior , Female
5.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695074

ABSTRACT

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Subject(s)
Deamino Arginine Vasopressin , Kidney Tubules, Collecting , Mice, Knockout , Animals , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/drug effects , Deamino Arginine Vasopressin/pharmacology , Kidney Concentrating Ability/drug effects , Arginine Vasopressin/metabolism , Male , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Aquaporin 2/metabolism , Aquaporin 2/genetics , Antidiuretic Agents/pharmacology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Mice, Inbred C57BL , Water Deprivation , Osmolar Concentration , Sodium/urine , Sodium/metabolism , Vasopressins/metabolism , Benzazepines
6.
Peptides ; 177: 171226, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38649033

ABSTRACT

Close contact between lactating rodent mothers and their infants is essential for effective nursing. Whether the mother's effort to retrieve the infants to their nest requires the vasopressin-signaling via V1b receptor has not been fully defined. To address this question, V1b receptor knockout (V1bKO) and control mice were analyzed in pup retrieval test. Because an exploring mother in a new test cage randomly accessed to multiple infants in changing backgrounds over time, a computer vision-based deep learning analysis was applied to continuously calculate the distances between the mother and the infants as a parameter of their relationship. In an open-field, a virgin female V1bKO mice entered fewer times into the center area and moved shorter distances than wild-type (WT). While this behavioral pattern persisted in V1bKO mother, the pup retrieval test demonstrated that total distances between a V1bKO mother and infants came closer in a shorter time than with a WT mother. Moreover, in the medial preoptic area, parts of the V1b receptor transcripts were detected in galanin- and c-fos-positive neurons following maternal stimulation by infants. This research highlights the effectiveness of deep learning analysis in evaluating the mother-infant relationship and the critical role of V1b receptor in pup retrieval during the early lactation phase.


Subject(s)
Maternal Behavior , Mice, Knockout , Receptors, Vasopressin , Animals , Female , Mice , Maternal Behavior/physiology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Lactation/genetics , Deep Learning , Animals, Newborn , Preoptic Area/metabolism
7.
Peptides ; 177: 171229, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663583

ABSTRACT

Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.


Subject(s)
Arginine Vasopressin , Circadian Rhythm , Homeostasis , Suprachiasmatic Nucleus , Animals , Arginine Vasopressin/metabolism , Arginine Vasopressin/genetics , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Homeostasis/genetics , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Humans , Mice , Circadian Clocks/genetics , Circadian Clocks/physiology , Neurons/metabolism , Mice, Knockout , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism
8.
Horm Behav ; 161: 105521, 2024 May.
Article in English | MEDLINE | ID: mdl-38452613

ABSTRACT

The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa. We first used SCUBA to observe the behaviour of focal group members and then measured transcript abundance of key components of the AVP and OXT systems across different brain regions. While AVP is often associated with male-typical behaviours, we found that dominant females had higher expression of avp and its receptor (avpr1a2) in the preoptic area of the brain compared to either dominant males or subordinates of either sex. Dominant females also generally had the highest levels of leucyl-cystinyl aminopeptidase (lnpep)-which inactivates AVP and OXT-throughout the brain, potentially indicating greater overall activity (i.e., production, release, and turnover) of the AVP system in dominant females. Expression of OXT and its receptors did not differ across social ranks. However, dominant males that visited the brood chamber more often had lower preoptic expression of OXT receptor a (oxtra) suggesting a negative relationship between OXT signalling and parental care in males of this species. Overall, these results advance our understanding of the relationships between complex social behaviours and neuroendocrine systems under natural settings.


Subject(s)
Arginine Vasopressin , Cichlids , Oxytocin , Social Behavior , Animals , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Arginine Vasopressin/metabolism , Male , Female , Cichlids/metabolism , Cichlids/physiology , Cichlids/genetics , Brain/metabolism , Cystinyl Aminopeptidase/metabolism , Cystinyl Aminopeptidase/genetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Behavior, Animal/physiology , Social Dominance
9.
J Med Chem ; 67(7): 5935-5944, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38509003

ABSTRACT

The dysregulated intracellular cAMP in the kidneys drives cystogenesis and progression in autosomal dominant polycystic kidney disease (ADPKD). Mounting evidence supports that vasopressin V2 receptor (V2R) antagonism effectively reduces cAMP levels, validating this receptor as a therapeutic target. Tolvaptan, an FDA-approved V2R antagonist, shows limitations in its clinical efficacy for ADPKD treatment. Therefore, the pursuit of better-in-class V2R antagonists with an improved efficacy remains pressing. Herein, we synthesized a set of peptide V2R antagonists. Peptide 33 exhibited a high binding affinity for the V2R (Ki = 6.1 ± 1.5 nM) and an extended residence time of 20 ± 1 min, 2-fold that of tolvaptan. This prolonged interaction translated into sustained suppression of cAMP production in washout experiments. Furthermore, peptide 33 exhibited improved efficacies over tolvaptan in both ex vivo and in vivo models of ADPKD, underscoring its potential as a promising lead compound for the treatment of ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Humans , Tolvaptan/therapeutic use , Tolvaptan/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/metabolism , Antidiuretic Hormone Receptor Antagonists/pharmacology , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Kidney/metabolism , Vasopressins/metabolism , Receptors, Vasopressin/metabolism
10.
Peptides ; 174: 171166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309582

ABSTRACT

Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.


Subject(s)
Nervous System Diseases , Vasopressins , Humans , Vasopressins/therapeutic use , Vasopressins/metabolism , Hypothalamus/metabolism , Pituitary Gland/metabolism , Brain/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Receptors, Vasopressin/metabolism , Arginine Vasopressin/metabolism
11.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315242

ABSTRACT

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Subject(s)
Diabetes Mellitus, Type 2 , Inflammasomes , Humans , Rats , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Intestinal Barrier Function , Case-Control Studies , Inflammation , Obesity/complications , RNA, Messenger/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, Angiotensin/metabolism , Receptors, Vasopressin/metabolism
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 474-481, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38247327

ABSTRACT

Arginine vasopressin (AVP) is a key contributor to heart failure (HF), but the underlying mechanisms remain unclear. In the present study, a mouse model of HF and human cardiomyocyte (HCM) cells treated with dDAVP are generated in vivo and in vitro, respectively. Hematoxylin and eosin (HE) staining is used to evaluate the morphological changes in the myocardial tissues. A colorimetric method is used to measure the iron concentration, Fe 2+ concentration and malondialdehyde (MDA) level. Western blot analysis is used to examine the protein levels of the V1a receptor (V1aR), calcineurin (CaN), nuclear factor of activated T cells isoform C3 (NFATC3), glutathione peroxidase 4 (GPX4) and acyl-CoA synthase long chain family member 4 (ACSL4). Immunoprecipitation (IP) and luciferase reporter assays are performed to determine the interaction between NFATC3 and ACSL4. Both in vivo and in vitro experiments reveal that the V1aR-CaN-NFATC3 signaling pathway and ferroptosis are upregulated in HFs, which are verified by the elevated protein levels of V1aR, CaN, NFATC3 and ACSL4; reduced GPX4 protein level; and enhanced Fe 2+ and MDA levels. We further find that inhibiting NFATC3 by suppressing the V1aR/CaN/NFATC3 pathway via V1aR/CaN inhibitors or sh-NFATC3 not only alleviates HF but also inhibits AVP-induced ferroptosis. Mechanistically, sh-NFATC3 significantly reverses the increase in AVP-induced ACSL4 protein level, Fe 2+ concentration, and MDA level by directly interacting with ACSL4. Our results demonstrate that AVP enhances ACSL4 expression by activating the V1aR/CaN/NFATC3 pathway to induce ferroptosis, thus contributing to HF. This study may lead to the proposal of a novel therapeutic strategy for HF.


Subject(s)
Ferroptosis , Heart Failure , Mice , Animals , Humans , Arginine Vasopressin/metabolism , Receptors, Vasopressin/metabolism , Protein Isoforms , NFATC Transcription Factors
13.
Biomed Pharmacother ; 171: 116068, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176129

ABSTRACT

Cirrhosis is a liver disease that leads to increased intrahepatic resistance, portal hypertension (PH), and splanchnic hyperemia resulting in ascites, variceal bleeding, and hepatorenal syndrome. Terlipressin, a prodrug that converts to a short half-life vasopressin receptor 1 A (V1a) full agonist [8-Lys]-Vasopressin (LVP), is an intravenous treatment for PH complications, but hyponatremia and ischemic side effects require close monitoring. We developed PHIN-214 which converts into PHIN-156, a more biologically stable V1a partial agonist. PHIN-214 enables once-daily subcutaneous administration without causing ischemia or tissue necrosis and has a 10-fold higher therapeutic index than terlipressin in healthy rats. As V1a partial agonists, PHIN-214 and PHIN-156 exhibited maximum activities of 28 % and 42 % of Arginine vasopressin (AVP), respectively. The potency of PHIN-156 and LVP relative to AVP is comparable for V1a (5.20 and 1.65 nM, respectively) and V1b (102 and 115 nM, respectively) receptors. However, the EC50 of PHIN-156 to the V2 receptor was 26-fold higher than that of LVP, indicating reduced potential for dilutional hyponatremia via V2 agonism compared to terlipressin/LVP. No significant off-target binding to 87 toxicologically relevant receptors were observed when evaluated in vitro at 10 µM concentration. In bile duct ligated rats with PH, subcutaneous PHIN-214 reduced portal pressure by 13.4 % ± 3.4 in 4 h. These collective findings suggest that PHIN-214 could be a novel pharmacological treatment for patients with PH, potentially administered outside of hospital settings, providing a safe and convenient alternative for managing PH and its complications.


Subject(s)
Esophageal and Gastric Varices , Hyponatremia , Humans , Rats , Animals , Receptors, Vasopressin/metabolism , Terlipressin , Gastrointestinal Hemorrhage , Vasopressins , Arginine Vasopressin/pharmacology
14.
Am J Physiol Renal Physiol ; 326(1): F57-F68, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37916285

ABSTRACT

Tolvaptan, a vasopressin antagonist selective for the V2-subtype vasopressin receptor (V2R), is widely used in the treatment of hyponatremia and autosomal-dominant polycystic kidney disease (ADPKD). Its effects on signaling in collecting duct cells have not been fully characterized. Here, we perform RNA-seq in a collecting duct cell line (mpkCCD). The data show that tolvaptan inhibits the expression of mRNAs that were previously shown to be increased in response to vasopressin including aquaporin-2, but also reveals mRNA changes that were not readily predictable and suggest off-target actions of tolvaptan. One such action is activation of the MAPK kinase (ERK1/ERK2) pathway. Prior studies have shown that ERK1/ERK2 activation is essential in the regulation of a variety of cellular and physiological processes and can be associated with cell proliferation. In immunoblotting experiments, we demonstrated that ERK1/ERK2 phosphorylation in mpkCCD cells was significantly reduced by vasopressin, in contrast to the increases seen in non-collecting-duct cells overexpressing V2R in prior studies. We also found that tolvaptan has a strong effect to increase ERK1/ERK2 phosphorylation in the presence of vasopressin and that tolvaptan's effect to increase ERK1/ERK2 phosphorylation is absent in mpkCCD cells in which both protein kinase A (PKA)-catalytic subunits have been deleted. Thus, it appears that the tolvaptan effect to increase ERK activation is PKA-dependent and is not due to an off-target effect of tolvaptan. We conclude that in cells expressing V2R at endogenous levels: 1) vasopressin decreases ERK1/ERK2 activation; 2) in the presence of vasopressin, tolvaptan increases ERK1/ERK2 activation; and 3) these effects are PKA-dependent.NEW & NOTEWORTHY Vasopressin is a key hormone that regulates the function of the collecting duct of the kidney. ERK1 and ERK2 are enzymes that play key roles in physiological regulation in all cells. The authors used collecting duct cell cultures to investigate the effects of vasopressin and the vasopressin receptor antagonist tolvaptan on ERK1 and ERK2 phosphorylation and activation.


Subject(s)
MAP Kinase Signaling System , Receptors, Vasopressin , Tolvaptan/pharmacology , Tolvaptan/metabolism , Receptors, Vasopressin/metabolism , Phosphorylation , Kidney/metabolism , Antidiuretic Hormone Receptor Antagonists/pharmacology , Antidiuretic Hormone Receptor Antagonists/metabolism , Vasopressins/pharmacology , Vasopressins/metabolism
15.
Front Endocrinol (Lausanne) ; 14: 1176199, 2023.
Article in English | MEDLINE | ID: mdl-37790608

ABSTRACT

The diabetic kidney disease (DKD) is the major cause of the chronic kidney disease (CKD). Enhanced plasma vasopressin (VP) levels have been associated with the pathophysiology of DKD and CKD. Stimulation of VP release in DKD is caused by glucose-dependent reset of the osmostat leading to secondary pathophysiologic effects mediated by distinct VP receptor types. VP is a stress hormone exhibiting the antidiuretic action in the kidney along with broad adaptive effects in other organs. Excessive activation of the vasopressin type 2 (V2) receptor in the kidney leads to glomerular hyperfiltration and nephron loss, whereas stimulation of vasopressin V1a or V1b receptors in the liver, pancreas, and adrenal glands promotes catabolic metabolism for energy mobilization, enhancing glucose production and aggravating DKD. Increasing availability of selective VP receptor antagonists opens new therapeutic windows separating the renal and extra-renal VP effects for the concrete applications. Improved understanding of these paradigms is mandatory for further drug design and translational implementation. The present concise review focuses on metabolic effects of VP affecting DKD pathophysiology.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Vasopressins/metabolism , Receptors, Vasopressin/metabolism , Glucose
16.
J Neuroendocrinol ; 35(7): e13304, 2023 07.
Article in English | MEDLINE | ID: mdl-37267441

ABSTRACT

Parenting induces many neurological and behavioral changes that enable parents to rear offspring. Vasopressin plays an important role in this process via its effects on cognition, affect, and neuroplasticity, and in some cases, via interactions with decreased parental androgens. Thus far, the role of these hormones has been primarily studied in rodents. To address this gap, we explored vasopressin receptors and androgens in titi monkeys, a pair-bonding and biparental primate species. In Studies 1 and 2, we used receptor autoradiography to correlate arginine vasopressin receptor 1a (AVPR1a) binding in the hippocampus (Study 1, n = 10) and the rest of the forebrain (Study 2, n = 23) with parental status, parental experience, parity, infant carrying, and pair affiliation. We found that parents exhibited lower AVPR1a binding than non-parents throughout most brain regions assessed, with especially strong effects in the hippocampus (ß = -.61), superior colliculus (ß = -.88), lateral septum (ß = -.35), and medial preoptic area (ß = -.29). The other measures of parental experience also tended to be negatively associated with AVPR1a binding across different brain regions. In Study 3 (n = 44), we compared pre- and postpartum urinary androgen levels in parents and non-parents and found that mothers exhibited a sustained androgen decrease across 3-4 months postpartum (relative to 3 months prepartum; ß ranged from -.72 to -.62 for different comparisons). For males, we found that multiparous fathers exhibited decreased androgen levels at 1-2 weeks postpartum (ß = -.25) and at 3-4 months postpartum (ß = -.40) compared to the prepartum, indicating both immediate and long-term reductions with subsequent paternal experience. Together, the results of this study suggest that decreases in AVPR1a binding and circulating androgens are associated with parental behavior and physiology in titi monkeys.


Subject(s)
Androgens , Receptors, Vasopressin , Male , Humans , Animals , Pregnancy , Female , Receptors, Vasopressin/metabolism , Androgens/metabolism , Callicebus/metabolism , Brain/metabolism , Postpartum Period
17.
Expert Opin Ther Pat ; 33(5): 385-395, 2023.
Article in English | MEDLINE | ID: mdl-37226495

ABSTRACT

INTRODUCTION: Arginine-vasopressin hormone (AVP) is a key regulator in many essential physiological processes. The effect of AVP is mediated through three receptors within the body, these are the G protein-coupled vasopressin receptors, namely V1a, V1b (also called V3), and V2. Numerous studies investigated the role of these receptors in certain pathological conditions; therefore, stimulation or inhibition of these receptors may be a treatment option in these diseases. AREAS COVERED: In this manuscript, the authors summarize recent patent activity (2018-2022) associated with vasopressin receptor antagonists (selective V1a or V2, and dual-acting V1a/V2), focusing mostly on chemical structures, their modifications, and potential clinical applications. Patent search was carried out using SciFinder, Espacenet, Patentscope, Cortellis Competitive Intelligence, and Derwent Innovation databases. EXPERT OPINION: In recent years, vasopressin receptor antagonists have been in the spotlight of drug discovery, especially V1a selective molecules. Publishing balovaptan as a possible treatment for autism spectrum disorder (ASD), greatly increased the interest in CNS-acting vasopressin antagonists. In addition, peripherally active selective V2 and dual-acting V1a/V2 antagonists have also been developed. Although clinical trials were unsuccessful in many cases, there is still potential in the research of vasopressin receptor antagonists as shown by several currently ongoing clinical trials.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Patents as Topic , Antidiuretic Hormone Receptor Antagonists/chemistry , Antidiuretic Hormone Receptor Antagonists/pharmacology , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Drug Development , Research/trends , Clinical Trials as Topic , Humans , Receptors, Vasopressin/metabolism
18.
Neuroscience ; 522: 33-41, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37172688

ABSTRACT

The nonapeptide system modulates a diversity of social behaviors, including aggression, parental care, affiliation, sexual behavior, and pair bonding. Such social behaviors are regulated through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin V1a receptor (AVPR1A) in the brain. Nonapeptide receptor distributions have been mapped for several species, however, studies have demonstrated that there is substantial variation across species. Mongolian gerbils (Meriones unguiculatus) are an excellent organism for studying family dynamics, social development, pair bonding, and territorial aggression. Although an increasing number of studies are examining the neural mechanisms of social behavior in Mongolian gerbils, nonapeptide receptor distributions have yet to be characterized for this species. Here we conducted receptor autoradiography to map distributions of OXTR and AVPR1A binding throughout the basal forebrain and midbrain of female and male Mongolian gerbils. Further, we assessed whether gonadal sex influenced binding densities in brain regions important for social behavior and reward, however, we observed no effects of sex on OXTR or AVPR1A binding densities. These findings provide mapping distributions of nonapeptide receptors in male and female Mongolian gerbils, laying a foundation for future studies that seek to manipulate the nonapeptide system to examine nonapeptide-mediated social behavior.


Subject(s)
Basal Forebrain , Receptors, Oxytocin , Animals , Male , Female , Receptors, Oxytocin/metabolism , Gerbillinae , Basal Forebrain/metabolism , Vasopressins/metabolism , Mesencephalon/metabolism , Receptors, Vasopressin/metabolism , Oxytocin/pharmacology , Social Behavior , DNA-Binding Proteins/metabolism
19.
Adv Kidney Dis Health ; 30(3): 245-260, 2023 05.
Article in English | MEDLINE | ID: mdl-37088527

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Renal Insufficiency , United States , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Tolvaptan/therapeutic use , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Vasopressins/therapeutic use , Receptors, Vasopressin/metabolism , Renal Insufficiency/drug therapy
20.
J Med Chem ; 66(5): 3621-3634, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36732931

ABSTRACT

Vasopressin V2 receptors (V2R) are a promising drug target for autosomal dominant polycystic kidney disease (ADPKD). As previous research demonstrated that the residence time of V2R antagonists is critical to their efficacy in both ex vivo and in vivo models of ADPKD, we performed extensive structure-kinetic relationship (SKR) analyses on a series of benzodiazepine derivatives. We found that subtle structural modifications of the benzodiazepine derivatives dramatically changed their binding kinetics but not their affinity. Compound 18 exhibited a residence time of 77 min, which was 7.7-fold longer than that of the reference compound tolvaptan (TVP). Accordingly, compound 18 exhibited higher efficacy compared to TVP in an in vivo model of ADPKD. Overall, our study exemplifies a kinetics-directed medicinal chemistry effort for the development of efficacious V2R antagonists. We envision that this strategy may also have general applicability in other therapeutic areas.


Subject(s)
Anti-Anxiety Agents , Polycystic Kidney, Autosomal Dominant , Humans , Antidiuretic Hormone Receptor Antagonists/pharmacology , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Polycystic Kidney, Autosomal Dominant/drug therapy , Tolvaptan/pharmacology , Tolvaptan/therapeutic use , Vasopressins/pharmacology , Vasopressins/metabolism , Hypnotics and Sedatives , Anticonvulsants/therapeutic use , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Receptors, Vasopressin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...