Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230.760
Filter
1.
Carbohydr Polym ; 339: 122248, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823916

ABSTRACT

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.


Subject(s)
Bifidobacterium longum , Cellulose , Endo-1,4-beta Xylanases , Glucuronates , Glycoside Hydrolases , Oligosaccharides , Saccharum , Xylans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glucuronates/metabolism , Glucuronates/chemistry , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Xylans/metabolism , Xylans/chemistry , Saccharum/chemistry , Saccharum/metabolism , Cellulose/chemistry , Cellulose/metabolism , Bifidobacterium longum/enzymology , Bifidobacterium longum/metabolism , Hydrolysis , Substrate Specificity , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Disaccharides
2.
Mol Biol Rep ; 51(1): 713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824247

ABSTRACT

BACKGROUND: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS: Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS: The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.


Subject(s)
Moths , Peptide Hydrolases , Photorhabdus , Animals , Moths/microbiology , Peptide Hydrolases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolymph/metabolism , Proteomics/methods , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Microb Biotechnol ; 17(6): e14466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829370

ABSTRACT

Microbial communities from extreme environments are largely understudied, but are essential as producers of metabolites, including enzymes, for industrial processes. As cultivation of most microorganisms remains a challenge, culture-independent approaches for enzyme discovery in the form of metagenomics to analyse the genetic potential of a community are rapidly becoming the way forward. This study focused on analysing a metagenome from the cold and alkaline ikaite columns in Greenland, identifying 282 open reading frames (ORFs) that encoded putative carbohydrate-modifying enzymes with potential applications in, for example detergents and other processes where activity at low temperature and high pH is desired. Seventeen selected ORFs, representing eight enzyme families were synthesized and expressed in two host organisms, Escherichia coli and Aliivibrio wodanis. Aliivibrio wodanis demonstrated expression of a more diverse range of enzyme classes compared to E. coli, emphasizing the importance of alternative expression systems for enzymes from extremophilic microorganisms. To demonstrate the validity of the screening strategy, we chose a recombinantly expressed cellulolytic enzyme from the metagenome for further characterization. The enzyme, Cel240, exhibited close to 40% of its relative activity at low temperatures (4°C) and demonstrated endoglucanase characteristics, with a preference for cellulose substrates. Despite low sequence similarity with known enzymes, computational analysis and structural modelling confirmed its cellulase-family affiliation. Cel240 displayed activity at low temperatures and good stability at 25°C, activity at alkaline pH and increased activity in the presence of CaCl2, making it a promising candidate for detergent and washing industry applications.


Subject(s)
Cellulase , Cold Temperature , Detergents , Enzyme Stability , Escherichia coli , Metagenomics , Greenland , Detergents/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Cellulase/genetics , Cellulase/metabolism , Cellulase/chemistry , Metagenome , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Gene Expression , Open Reading Frames
4.
Pan Afr Med J ; 47: 114, 2024.
Article in English | MEDLINE | ID: mdl-38828426

ABSTRACT

Chronic kidney disease (CKD) is commonly complicated by anemia. Treating dialysis-dependent patients with anemia, including daprodustat and other inhibitors of prolyl hydroxylase of hypoxia-inducible factor, recombinant human erythropoietin (rhEPO), and iron supplements. We conducted this study to test our postulation; daprodustat is superior to rhEPO and other conventional treatments respecting efficacy and safety parameters. We made systematic search through PubMed, Web of Science, Scopus, and Cochrane. Seven unique trials were eventually included for systematic review; six of them with a sample size of 759 patients entered our network meta-analysis (NMA). Daprodustat 25-30 mg was associated with the greatest change in serum hemoglobin (MD=1.86, 95%CI= [1.20; 2.52]), ferritin (MD= -180.84, 95%CI= [-264.47; -97.20]), and total iron binding capacity (TIBC) (MD=11.03, 95%CI= [3.15; 18.92]) from baseline values. Dialysis-dependent patients with anemia had a significant increment in serum Hemoglobin and TIBC and a reduction in serum ferritin, in a dose-dependent manner, when administered daprodustat.


Subject(s)
Anemia , Barbiturates , Ferritins , Glycine , Hemoglobins , Renal Dialysis , Renal Insufficiency, Chronic , Humans , Anemia/drug therapy , Anemia/etiology , Hemoglobins/analysis , Hemoglobins/metabolism , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Glycine/analogs & derivatives , Glycine/administration & dosage , Ferritins/blood , Barbiturates/administration & dosage , Network Meta-Analysis , Erythropoietin/administration & dosage , Recombinant Proteins/administration & dosage , Dose-Response Relationship, Drug , Iron/administration & dosage
5.
Sci Rep ; 14(1): 12682, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
6.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831363

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Subject(s)
Antibodies, Monoclonal , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Porcine epidemic diarrhea virus/immunology , Antibodies, Monoclonal/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Swine , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral/immunology , Swine Diseases/virology , Swine Diseases/immunology , HEK293 Cells , Humans , Recombinant Proteins/immunology , Mice, Inbred BALB C , Mice , Fluorescent Antibody Technique, Indirect/veterinary
7.
Drug Des Devel Ther ; 18: 1933-1945, 2024.
Article in English | MEDLINE | ID: mdl-38831868

ABSTRACT

Introduction: Vascular ulcers constitute a serious global public health problem, responsible for causing a significant social and economic impact due to their recurrent, disabling nature and the need for prolonged therapies to cure them. Objective: To evaluate the use and efficacy of the rhEGF in the epithelialization of patients with a diagnosis of CEAP stage 6 venous insufficiency, in the two regimes of the health system in Colombia, the contributive (equivalent to a health system where citizens with payment capacity contribute a percentage of their salary) and the subsidized (equivalent to a health system where the state covers the vulnerable population and low socioeconomic level) versus the other treatments used. Methodology: Observational, descriptive, retrospective, multicenter study, in which 105 medical records with 139 ulcers were reviewed, in 2 centers, one belonging to the subsidized system and the other to the contributive system in Colombia. Results: The association with the epithelialization variable of the different treatment groups for ulcers according to the application of the mixed effect model test, for both regimes was for the Biologicals (EC 34.401/p = 0.000), Bioactive Agents (Hydrogels) (EC 24.735/p = 0.005) groups; for the rest of the treatment groups, the results were neither associated nor statistically significant. Conclusion: Intra- and perilesional therapy with rhEGF expands the therapeutic spectrum in patients with venous ulcers, regardless of the type of health system in which it will be applied, shortening the healing time and reaching a possible therapeutic goal, which according to this study there is an association with epithelialization regardless of the regime applied.


Subject(s)
Varicose Ulcer , Humans , Colombia , Varicose Ulcer/drug therapy , Varicose Ulcer/economics , Retrospective Studies , Male , Female , Middle Aged , Epidermal Growth Factor , Recombinant Proteins/economics , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Aged
8.
Front Immunol ; 15: 1341389, 2024.
Article in English | MEDLINE | ID: mdl-38698845

ABSTRACT

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.


Subject(s)
Antibodies, Monoclonal , Antibody-Producing Cells , COVID-19 , Recombinant Proteins , SARS-CoV-2 , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibody-Producing Cells/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Antibodies, Viral/immunology , Female
9.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727988

ABSTRACT

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Subject(s)
Akkermansia , Glucagon-Like Peptide 1 , Lactococcus lactis , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/genetics , Akkermansia/genetics , Akkermansia/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Humans , L Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Prep Biochem Biotechnol ; 54(5): 709-719, 2024 May.
Article in English | MEDLINE | ID: mdl-38692288

ABSTRACT

Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.


Subject(s)
Asparaginase , Escherichia coli , Recombinant Proteins , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Glycerol/metabolism , Gene Expression Regulation, Bacterial
11.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709366

ABSTRACT

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Gene Dosage , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Gene Expression , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry
12.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711081

ABSTRACT

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Subject(s)
Fermentation , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Biomass , Batch Cell Culture Techniques , Polysaccharides/metabolism , Polysaccharides/biosynthesis
13.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717487

ABSTRACT

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Subject(s)
Escherichia coli , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Substrate Specificity , Dipeptidases/metabolism , Dipeptidases/genetics , Dipeptidases/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molecular Docking Simulation , Multigene Family , Hydrogen-Ion Concentration , Dipeptides/metabolism , Temperature , Kinetics
14.
Mol Biol Rep ; 51(1): 628, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717629

ABSTRACT

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.


Subject(s)
Escherichia coli , Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/enzymology , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , Isopropyl Thiogalactoside/pharmacology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Culture Media
15.
Protein Expr Purif ; 220: 106499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703798

ABSTRACT

Monoclonal antibodies (mAbs) are a driving force in the biopharmaceutical industry. Therapeutic mAbs are usually produced in mammalian cells, but there has been a push towards the use of alternative production hosts, such as Escherichia coli. When the genes encoding for a mAb heavy and light chains are codon-optimized for E. coli expression, a truncated form of the heavy chain can form along with the full-length product. In this work, the role of codon optimization in the formation of a truncated product was investigated. This study used the amino acid sequences of several therapeutic mAbs and multiple optimization algorithms. It was found that several algorithms incorporate sequences that lead to a truncated product. Approaches to avoid this truncated form are discussed.


Subject(s)
Antibodies, Monoclonal , Escherichia coli , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Codon/genetics , Algorithms , Amino Acid Sequence , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Humans , Gene Expression , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/chemistry
16.
N Engl J Med ; 390(18): 1690-1698, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38718359

ABSTRACT

In patients with immune thrombotic thrombocytopenic purpura (iTTP), autoantibodies against the metalloprotease ADAMTS13 lead to catastrophic microvascular thrombosis. However, the potential benefits of recombinant human ADAMTS13 (rADAMTS13) in patients with iTTP remain unknown. Here, we report the clinical use of rADAMTS13, which resulted in the rapid suppression of disease activity and complete recovery in a critically ill patient whose condition had proved to be refractory to all available treatments. We also show that rADAMTS13 causes immune complex formation, which saturates the autoantibody and may promote its clearance. Our data support the role of rADAMTS13 as a novel adjunctive therapy in patients with iTTP.


Subject(s)
ADAMTS13 Protein , Purpura, Thrombotic Thrombocytopenic , Female , Humans , ADAMTS13 Protein/immunology , ADAMTS13 Protein/therapeutic use , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/immunology , Autoantibodies/blood , Autoantibodies/immunology , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/drug therapy , Purpura, Thrombotic Thrombocytopenic/immunology , Purpura, Thrombotic Thrombocytopenic/therapy , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Adult , Black or African American , Plasma Exchange , Treatment Outcome
17.
Article in English | MEDLINE | ID: mdl-38730558

ABSTRACT

Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB. ONE-SENTENCE SUMMARY: The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.


Subject(s)
Cyclophilins , Escherichia coli , Recombinant Proteins , Sporothrix , Sporothrix/genetics , Sporothrix/enzymology , Sporothrix/drug effects , Sporothrix/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression , Computational Biology , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism
18.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753978

ABSTRACT

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Subject(s)
Adipose Tissue , Lipoproteins, HDL , Animals , Mice , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Adipose Tissue/metabolism , Recombinant Proteins , Resveratrol/pharmacology , Resveratrol/chemistry , Obesity/drug therapy , Obesity/metabolism , Hydrogels/chemistry , Mice, Inbred C57BL , Humans , Male , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Drug Delivery Systems , Scavenger Receptors, Class B/metabolism
19.
PLoS One ; 19(5): e0303789, 2024.
Article in English | MEDLINE | ID: mdl-38768102

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disease caused by lowered activity of the enzyme alpha-L-iduronidase (IDUA). Current therapeutic options show limited efficacy and do not treat some important aspects of the disease. Therefore, it may be advantageous to identify strategies that could improve the efficacy of existing treatments. Pharmacological chaperones are small molecules that protect proteins from degradation, and their use in combination with enzyme replacement therapy (ERT) has been proposed as an alternative therapeutic strategy. Using the SEE-Tx® proprietary computational drug discovery platform, a new allosteric ligand binding cavity in IDUA was identified distal from the active site. Virtual high-throughput screening of approximately 5 million compounds using the SEE-Tx® docking platform identified a subset of small molecules that bound to the druggable cavity and functioned as novel allosteric chaperones of IDUA. Experimental validation by differential scanning fluorimetry showed an overall hit rate of 11.4%. Biophysical studies showed that one exemplary hit molecule GT-01803 bound to (Kd = 22 µM) and stabilized recombinant human IDUA (rhIDUA) in a dose-dependent manner. Co-administration of rhIDUA and GT-01803 increased IDUA activity in patient-derived fibroblasts. Preliminary in vivo studies have shown that GT-01803 improved the pharmacokinetic (PK) profile of rhIDUA, increasing plasma levels in a dose-dependent manner. Furthermore, GT-01803 also increased IDUA enzymatic activity in bone marrow tissue, which benefits least from standard ERT. Oral bioavailability of GT-01803 was found to be good (50%). Overall, the discovery and validation of a novel allosteric chaperone for rhIDUA presents a promising strategy to enhance the efficacy of existing treatments for MPS I. The compound's ability to increase rhIDUA activity in patient-derived fibroblasts and its good oral bioavailability underscore its potential as a potent adjunct to ERT, particularly for addressing aspects of the disease less responsive to standard treatment.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Iduronidase/metabolism , Iduronidase/genetics , Mucopolysaccharidosis I/drug therapy , Humans , Allosteric Regulation/drug effects , Animals , Mice , Enzyme Replacement Therapy/methods , Drug Discovery , Fibroblasts/metabolism , Fibroblasts/drug effects , Recombinant Proteins/metabolism , Enzyme Stability , Molecular Docking Simulation
20.
J Cancer Res Clin Oncol ; 150(5): 232, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703186

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the effect of combining Endostar with concurrent chemoradiotherapy (ECCRT) compared to concurrent chemoradiotherapy (CCRT) on the regression rate of retropharyngeal lymph nodes (RLNs) and the relationship between regression rate of RLNs and prognosis of patients with locally advanced nasopharyngeal carcinoma (LANPC). METHODS: A total of 122 LANPC patients with RLNs metastasis were included. Metastatic RLNs were delineated both before and after treatment slice by slice on the magnetic resonance images cross-section. The regression rate of RLNs, adverse effects (AE) were evaluated. The median regression rate of RLNs was taken as the cut-off value, and the patients were furtherly divided into high regression rate (HRR) group and low regression rate (LRR) group, then survival times were evaluated. RESULTS: The median regression rates of RLNs in the ECCRT and CCRT groups were 81% and 50%, respectively (P < 0.001). There was no statistically significant difference in the incidence of grade 3/4 AEs between the two groups, except for oral mucositis (ECCRT 26.23% vs. CCRT 44.26%, P = 0.037). The 3-year overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional failure-free survival (LRFFS) rates in the HRR and LRR groups were 85.48% and 86.67% (P = 0.983), 80.65% and 68.33% (P = 0.037), 83.87% and 85% (P = 0.704), 93.55% and 81.67% (P = 0.033), respectively. CONCLUSIONS: Patients in the ECCRT group had higher regression rates of RLNs and lower incidence of severe oral mucositis. Furthermore, patients in the HRR group had a better 3-year PFS and LRFFS rate than those in the LRR group.


Subject(s)
Chemoradiotherapy , Lymphatic Metastasis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Recombinant Proteins , Humans , Male , Chemoradiotherapy/adverse effects , Chemoradiotherapy/methods , Female , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Middle Aged , Retrospective Studies , Prognosis , Adult , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/drug therapy , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Endostatins/administration & dosage , Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...