Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.849
Filter
1.
Protein Expr Purif ; 222: 106542, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38969281

ABSTRACT

Human ZC3H11A is an RNA-binding zinc finger protein involved in mRNA export and required for the efficient growth of human nuclear replicating viruses. Its biochemical properties are largely unknown so our goal has been to produce the protein in a pure and stable form suitable for its characterization. This has been challenging since the protein is large (810 amino acids) and with only the N-terminal zinc finger domain (amino acids 1-86) being well structured, the remainder is intrinsically disordered. Our production strategies have encompassed recombinant expression of full-length, truncated and mutated ZC3H11A variants with varying purification tags and fusion proteins in several expression systems, with or without co-expression of chaperones and putative interaction partners. A range of purification schemes have been explored. Initially, only truncated ZC3H11A encompassing the zinc finger domain could successfully be produced in a stable form. It required recombinant expression in insect cells since expression in E. coli gave a protein that aggregated. To reduce problematic nucleic acid contaminations, Cys8, located in one of the zinc fingers, was substituted by Ala and Ser. Interestingly, this did not affect nucleic acid binding, but the full-length protein was stabilised while the truncated version was insoluble. Ultimately, we discovered that when using alkaline buffers (pH 9) for purification, full-length ZC3H11A expressed in Sf9 insect cells was obtained in a stable and >90 % pure form, and as a mixture of monomers, dimers, tetramers and hexamers. Many of the challenges experienced are consistent with its predicted structure and unusual charge distribution.


Subject(s)
Escherichia coli , RNA-Binding Proteins , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Animals , Zinc Fingers , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Sf9 Cells , Protein Stability , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/isolation & purification , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/biosynthesis
2.
Methods Mol Biol ; 2829: 175-183, 2024.
Article in English | MEDLINE | ID: mdl-38951333

ABSTRACT

Monoclonal antibodies have widespread applications in disease treatment and antigen detection. They are traditionally produced using mammalian cell expression system, which is not able to satisfy the increasing demand of these proteins at large scale. Baculovirus expression vector system (BEVS) is an attractive alternative platform for the production of biologically active monoclonal antibodies. In this chapter, we demonstrate the production of an HIV-1 broadly neutralizing antibody b12 in BEVS. The processes including transfer vector construction, recombinant baculovirus generation, and antibody production and detection are described.


Subject(s)
Baculoviridae , Genetic Vectors , Baculoviridae/genetics , Genetic Vectors/genetics , Animals , Humans , Gene Expression , HIV-1/genetics , HIV-1/immunology , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , HIV Antibodies/immunology , HIV Antibodies/genetics , Sf9 Cells
3.
Methods Mol Biol ; 2829: 203-214, 2024.
Article in English | MEDLINE | ID: mdl-38951336

ABSTRACT

The insect cell-baculovirus expression vector (IC-BEV) platform has enabled small research-scale and large commercial-scale production of recombinant proteins and therapeutic biologics including recombinant adeno-associated virus (rAAV)-based gene delivery vectors. The wide use of this platform is comparable with other mammalian cell line-based platforms due to its simplicity, high-yield, comparable quality attributes, and robust bioprocessing features. In this chapter, we describe a rAAV production protocol employing one of the recent modifications of the One-Bac platform that consists of a stable transformed Sf9 cell line carrying AAV Rep2/Cap5 genes that are induced upon infection with a single recombinant baculovirus expression vector harboring the transgene of interest (rAAV genome). The overall protocol consists of essential steps including rBEV working stock preparation, rAAV production, and centrifugation-based clarification of cell culture lysate. The same protocol can also be applied for rAAV vector production using traditional Three-Bac, Two-Bac, and Mono-Bac platforms without requiring significant changes.


Subject(s)
Baculoviridae , Dependovirus , Genetic Vectors , Dependovirus/genetics , Genetic Vectors/genetics , Animals , Sf9 Cells , Baculoviridae/genetics , Humans , Transgenes , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis
4.
Methods Mol Biol ; 2829: 195-202, 2024.
Article in English | MEDLINE | ID: mdl-38951335

ABSTRACT

The Baculovirus Expression Vector System (BEVS) has revolutionized the field of recombinant protein expression by enabling efficient and high yield production. The platform offers many advantages including manufacturing speed, flexible design, and scalability. In this chapter, we describe the methods including strategies and considerations to successfully optimize and scale-up using BEVS as a tool for production (Fig. 1). As an illustrative case study, we present an example focused on the production of a viral glycoprotein.


Subject(s)
Baculoviridae , Genetic Vectors , Recombinant Proteins , Baculoviridae/genetics , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Genetic Vectors/genetics , Animals , Humans , Sf9 Cells
5.
ACS Synth Biol ; 13(7): 2199-2214, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38981062

ABSTRACT

The Gram-positive bacterium Bacillus subtilis is extensively used in the industry for the secretory production of proteins with commercial value. To further improve its performance, this microbe has been the subject of extensive genome engineering efforts, especially the removal of large genomic regions that are dispensable or even counterproductive. Here, we present the genome-reduced B. subtilis strain IIG-Bs-27-39, which was obtained through systematic deletion of mobile genetic elements, as well as genes for extracellular proteases, sporulation, flagella formation, and antibiotic production. Different from previously characterized genome-reduced B. subtilis strains, the IIG-Bs-27-39 strain was still able to grow on minimal media. We used this feature to benchmark strain IIG-Bs-27-39 against its parental strain 168 with respect to heterologous protein production and metabolic parameters during bioreactor cultivation. The IIG-Bs-27-39 strain presented superior secretion of difficult-to-produce staphylococcal antigens, as well as higher specific growth rates and biomass yields. At the metabolic level, changes in byproduct formation and internal amino acid pools were observed, whereas energetic parameters such as the ATP yield, ATP/ADP levels, and adenylate energy charge were comparable between the two strains. Intriguingly, we observed a significant increase in the total cellular NADPH level during all tested conditions and increases in the NAD+ and NADP(H) pools during protein production. This indicates that the IIG-Bs-27-39 strain has more energy available for anabolic processes and protein production, thereby providing a link between strain physiology and production performance. On this basis, we conclude that the genome-reduced strain IIG-Bs-27-39 represents an attractive chassis for future biotechnological applications.


Subject(s)
Bacillus subtilis , Genome, Bacterial , Recombinant Proteins , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Genome, Bacterial/genetics , Metabolic Engineering/methods , Bioreactors , Metabolome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Microb Cell Fact ; 23(1): 190, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956607

ABSTRACT

BACKGROUND: Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS: In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS: Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.


Subject(s)
Carbonic Anhydrases , Computational Biology , Escherichia coli , Solubility , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Computational Biology/methods , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Carbon Dioxide/metabolism
7.
Methods Mol Biol ; 2829: 329-339, 2024.
Article in English | MEDLINE | ID: mdl-38951347

ABSTRACT

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Subject(s)
Baculoviridae , Recombinant Proteins , Baculoviridae/genetics , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , HEK293 Cells , Animals , Transfection/methods , Genetic Vectors/genetics , Cell Culture Techniques/methods , Gene Expression , Glycosylation
8.
J Vis Exp ; (209)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39037257

ABSTRACT

Plants are a newly developing eukaryotic expression system being explored to produce therapeutic proteins. Purification of recombinant proteins from plants is one of the most critical steps in the production process. Typically, proteins were purified from total soluble proteins (TSP), and the presence of miscellaneous intracellular proteins and cytochromes poses challenges for subsequent protein purification steps. Moreover, most therapeutic proteins like antigens and antibodies are secreted to obtain proper glycosylation, and the presence of incompletely modified proteins leads to inconsistent antigen or antibody structures. This work introduces a more effective method to obtain highly purified recombinant proteins from the plant apoplastic space. The recombinant Green fluorescent protein (GFP) is engineered to be secreted into the apoplast of Nicotiana benthamiana and is then extracted using an infiltration-centrifugation method. The GFP-His from the extracted apoplast is then purified by nickel affinity chromatography. In contrast to the traditional methods from TSP, purification from the apoplast produces highly purified recombinant proteins. This represents an important technological improvement for plant production systems.


Subject(s)
Chromatography, Affinity , Green Fluorescent Proteins , Nicotiana , Nicotiana/genetics , Nicotiana/chemistry , Nicotiana/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/biosynthesis , Chromatography, Affinity/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Centrifugation/methods , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis
9.
Protein Expr Purif ; 222: 106538, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38950762

ABSTRACT

Nucleotide sugars (UDP-Sugars) are essential for the production of polysaccharides and glycoconjugates utilized in medicines, cosmetics, and food industries. The enzyme Galactose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.12) is responsible for the synthesis of UDP-galactose from α-d-galactose-1-phosphate (Gal-1P) and UTP. A novel bacterial GalU (TiGalU) encoded from a thermophilic bacterium, Thermodesulfatator indicus, was successfully purified using the Ni-NTA column after being expressed in Escherichia coli. The optimal pH for recombinant TiGalU was determined to be 5.5. The optimum temperature of the enzyme was 45 °C. The activity of TiGalU was not dependent on Mg2+ and was strongly inhibited by SDS. When coupled with galactose kinase (GALK1) and ß-1,4-galactosyltransferase 1 (B4GALT1), the enzyme enabled the one-pot synthesis of Gal-ß-1,4-GlcNAc-X by utilizing galactose and UTP as substrates. This study reported the in vitro biosynthesis of Gal-ß-1,4-GlcNAc-X for the first time, providing an environmentally friendly way to biosynthesis glycosides and other polysaccharides.


Subject(s)
Escherichia coli , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/chemistry , Gene Expression , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/chemistry , Cloning, Molecular , Galactosephosphates/metabolism , Galactosephosphates/genetics , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Galactosyltransferases/chemistry
10.
Methods Mol Biol ; 2819: 573-582, 2024.
Article in English | MEDLINE | ID: mdl-39028524

ABSTRACT

Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.


Subject(s)
Histones , Protein Processing, Post-Translational , Histones/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis
11.
Metab Eng ; 84: 109-116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880390

ABSTRACT

The production of recombinant proteins in a host using synthetic constructs such as plasmids comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and other stress responses, collectively known as metabolic burden. Increasing the number of copies of the foreign gene increases the metabolic load but increases the expression of the foreign protein. Thus, there is a trade-off between biomass and product yield in response to changes in heterologous gene copy number. This work proposes a computational method, rETFL (recombinant Expression and Thermodynamic Flux), for analyzing and predicting the responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an extension to the ETFL formulations designed to reconstruct models of metabolism and expression (ME-models). We have illustrated the capabilities of the method in four studies to (i) capture the growth reduction in plasmid-containing E. coli and recombinant protein production; (ii) explore the trade-off between biomass and product yield as plasmid copy number is varied; (iii) predict the emergence of overflow metabolism in recombinant E. coli in agreement with experimental data; and (iv) investigate the individual pathways and enzymes affected by the presence of the plasmid. We anticipate that rETFL will serve as a comprehensive platform for integrating available omics data for recombinant organisms and making context-specific predictions that can help optimize recombinant expression systems for biopharmaceutical production and gene therapy.


Subject(s)
Escherichia coli , Recombinant Proteins , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Biological , Plasmids/genetics , Computer Simulation , Genome, Bacterial
12.
Microb Cell Fact ; 23(1): 179, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890717

ABSTRACT

BACKGROUND: Human lysozyme (hLYZ) is a natural antibacterial protein with broad applications in food and pharmaceutical industries. Recombinant production of hLYZ in Komagataella phaffii (K. phaffii) has attracted considerable attention, but there are very limited strategies for its hyper-production in yeast. RESULTS: Here through Atmospheric and Room Temperature Plasma (ARTP)-based mutagenesis and transcriptomic analysis, the expression of two genes MYO1 and IQG1 encoding the cytokinesis core proteins was identified downregulated along with higher hLYZ production. Deletion of either gene caused severe cytokinesis defects, but significantly enhanced hLYZ production. The highest hLYZ yield of 1,052,444 ± 23,667 U/mL bioactivity and 4.12 ± 0.11 g/L total protein concentration were obtained after high-density fed-batch fermentation in the Δmyo1 mutant, representing the best production of hLYZ in yeast. Furthermore, O-linked mannose glycans were characterized on this recombinant hLYZ. CONCLUSIONS: Our work suggests that cytokinesis-based morphology engineering is an effective way to enhance the production of hLYZ in K. phaffii.


Subject(s)
Muramidase , Recombinant Proteins , Saccharomycetales , Muramidase/metabolism , Muramidase/genetics , Muramidase/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Humans , Fermentation , Cytokinesis , Metabolic Engineering/methods , Batch Cell Culture Techniques
13.
Protein Expr Purif ; 222: 106523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880192

ABSTRACT

We previously identified surfactant protein D (SP-D) in the bottlenose dolphin Tursiops truncatus as a unique evolutionary factor of the cetacean pulmonary immune system. In this short report, recombinant SP-D of bottlenose dolphin (dSP-D) was synthesized in mammalian cells, and its properties were analyzed in vitro. The recombinant proteins were purified using Ni-carrier or Co-carrier. Sodium dodecyl sulfate poly-acrylamide gel electrophoresis and western blotting revealed a 50 kDa major band with minor secondary bands. Enzyme-linked immunosorbent assay-like methods revealed that recombinant dSP-D bonded to gram-positive and gram-negative bacterial walls. Our findings suggest the clinical usefulness of dSP-D for cetacean pneumonia.


Subject(s)
Bottle-Nosed Dolphin , Pulmonary Surfactant-Associated Protein D , Recombinant Proteins , Animals , Bottle-Nosed Dolphin/genetics , Bottle-Nosed Dolphin/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Pulmonary Surfactant-Associated Protein D/genetics , Pulmonary Surfactant-Associated Protein D/chemistry , Pulmonary Surfactant-Associated Protein D/metabolism , Gene Expression , Cloning, Molecular
14.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1895-1908, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914499

ABSTRACT

Human lactoferrin (HLF), an essential nutrient found in breast milk, possesses antibacterial, anti-inflammatory, and immune-enhancing properties. In this study, the effects of three constitutive promoters (P21, P43, and Pveg) and three inducible promoters (Pgrac100, PxylA, and Ptet*) on the expression of HLF were compared using Bacillus subtilis G601 as the host strain. The results showed that the highest expression of HLF, reaching 651.57 µg/L, was achieved when regulated by the Ptet* promoter. Furthermore, the combinational optimization of ribosome binding site (RBS) and signal peptides was investigated, and the optimal combination of RBS6 and SPyycP resulted in increased HLF expression to 1 099.87 µg/L, with 498.68 µg/L being secreted extracellularly. To further enhance HLF secretion, the metal cations-related gene dltD was knocked out, leading to an extracellular HLF level of 637.28 µg/L. This study successfully demonstrated the secretory expression of HLF in B. subtilis through the selection and optimization of expression elements, laying the foundation for the development of efficient B. subtilis cell factories for lactoprotein synthesis.


Subject(s)
Bacillus subtilis , Lactoferrin , Promoter Regions, Genetic , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoferrin/biosynthesis , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Microb Cell Fact ; 23(1): 177, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879507

ABSTRACT

BACKGROUND: Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS: In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS: In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.


Subject(s)
Bioreactors , Mixed Function Oxygenases , Promoter Regions, Genetic , Recombinant Proteins , Saccharomycetales , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Methanol/metabolism
16.
Microb Cell Fact ; 23(1): 166, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840157

ABSTRACT

BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.


Subject(s)
Disulfides , Escherichia coli , Peptides , Periplasm , Escherichia coli/metabolism , Escherichia coli/genetics , Periplasm/metabolism , Disulfides/metabolism , Peptides/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Aprotinin/metabolism , Aprotinin/genetics
17.
Curr Protoc ; 4(6): e1059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896106

ABSTRACT

U1-70K (snRNP70) serves as an indispensable protein component within the U1 complex, assuming a pivotal role in both constitutive and alternative RNA splicing processes. Notably, U1-70K engages in interactions with SR proteins, instigating the assembly of the spliceosome. This protein undergoes regulation through phosphorylation at multiple sites. Of significant interest, U1-70K has been implicated in Alzheimer's disease, in which it tends to form detergent-insoluble aggregates. Even though it was identified more than three decades ago, our understanding of U1-70K remains notably constrained, primarily due to challenges such as low levels of recombinant expression, susceptibility to protein degradation, and insolubility. In endeavoring to address these limitations, we devised a multifaceted approach encompassing codon optimization, strategic purification, and a solubilization protocol. This methodology has enabled us to achieve a high yield of full-length, soluble U1-70K, paving the way for its comprehensive biophysical and biochemical characterization. Furthermore, we provide a detailed protocol for the preparation of phosphorylated U1-70K. This set of protocols promises to be a valuable resource for scientists exploring the intricate web of U1-70K-related mechanisms in the context of RNA splicing and its implications in neurodegenerative disorders and other disorders and biological processes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression and purification of full-length U1-70K from E. coli Support Protocol 1: Making chemically competent BL21 Star pRARE/pBB535 cells Basic Protocol 2: Phosphorylation of full-length U1-70K using SRPK1 Support Protocol 2: Purification of SRPK1 Basic Protocol 3: Expression and purification of U1-70K BAD1 from E. coli Basic Protocol 4: Phosphorylation of U1-70K BAD1 using SRPK1 Basic Protocol 5: Expression and purification of U1-70K BAD2 from E. coli.


Subject(s)
Escherichia coli , Ribonucleoprotein, U1 Small Nuclear , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/isolation & purification , Phosphorylation , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Gene Expression , Protein Domains
18.
Microb Cell Fact ; 23(1): 171, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867280

ABSTRACT

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS: Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION: By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.


Subject(s)
Fibroblast Growth Factors , Genetic Vectors , Promoter Regions, Genetic , Recombinant Proteins , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Genetic Vectors/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Gene Expression
19.
Protein Expr Purif ; 221: 106520, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38833752

ABSTRACT

Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.


Subject(s)
Bacterial Proteins , Carbon-Nitrogen Ligases , Staphylococcus aureus , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/isolation & purification , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Gene Expression , Molecular Docking Simulation , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis
20.
Acta Chim Slov ; 71(2): 256-263, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38919102

ABSTRACT

Breast cancer cell growth is often dependent on the presence of steroidal hormones. The 17ß-hydroxysteroid dehydrogenase type 1 isoform (17ßHSD1) catalyzes NADPH-dependent conversion of estrone to estradiol, a more potent estrogen, and represents potential drug target for breast cancer treatment.  To provide active enzyme for inhibitor screening, 17ßHSD1 is usually expressed in insect or mammalian cells, or isolated from human placenta. In the present study we describe a simple protocol for expression and purification of active human 17ßHSD1 from BL21(DE3) Escherichia coli cells. Soluble human 17ßHSD1 was expressed using a pET28a(+)-based plasmid, which encodes a hexahistidine tag fused to the N-terminus of the protein, and purified by nickel affinity chromatography. The enzyme activity of purified 17ßHSD1 was verified by three methods: thin-layer chromatography, an alkali assay and a spectroscopic assay. These non-radioactive enzyme assays require only standard laboratory equipment, and can be used for screening compounds that modulate 17ßHSD1 activity.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , 17-Hydroxysteroid Dehydrogenases/isolation & purification , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/chemistry , Chromatography, Affinity , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...