Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53.869
Filter
1.
Mol Biol Rep ; 51(1): 713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824247

ABSTRACT

BACKGROUND: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS: Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS: The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.


Subject(s)
Moths , Peptide Hydrolases , Photorhabdus , Animals , Moths/microbiology , Peptide Hydrolases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolymph/metabolism , Proteomics/methods , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Microb Biotechnol ; 17(6): e14466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829370

ABSTRACT

Microbial communities from extreme environments are largely understudied, but are essential as producers of metabolites, including enzymes, for industrial processes. As cultivation of most microorganisms remains a challenge, culture-independent approaches for enzyme discovery in the form of metagenomics to analyse the genetic potential of a community are rapidly becoming the way forward. This study focused on analysing a metagenome from the cold and alkaline ikaite columns in Greenland, identifying 282 open reading frames (ORFs) that encoded putative carbohydrate-modifying enzymes with potential applications in, for example detergents and other processes where activity at low temperature and high pH is desired. Seventeen selected ORFs, representing eight enzyme families were synthesized and expressed in two host organisms, Escherichia coli and Aliivibrio wodanis. Aliivibrio wodanis demonstrated expression of a more diverse range of enzyme classes compared to E. coli, emphasizing the importance of alternative expression systems for enzymes from extremophilic microorganisms. To demonstrate the validity of the screening strategy, we chose a recombinantly expressed cellulolytic enzyme from the metagenome for further characterization. The enzyme, Cel240, exhibited close to 40% of its relative activity at low temperatures (4°C) and demonstrated endoglucanase characteristics, with a preference for cellulose substrates. Despite low sequence similarity with known enzymes, computational analysis and structural modelling confirmed its cellulase-family affiliation. Cel240 displayed activity at low temperatures and good stability at 25°C, activity at alkaline pH and increased activity in the presence of CaCl2, making it a promising candidate for detergent and washing industry applications.


Subject(s)
Cellulase , Cold Temperature , Detergents , Enzyme Stability , Escherichia coli , Metagenomics , Greenland , Detergents/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Cellulase/genetics , Cellulase/metabolism , Cellulase/chemistry , Metagenome , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Gene Expression , Open Reading Frames
3.
Sci Rep ; 14(1): 12682, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
4.
Front Immunol ; 15: 1341389, 2024.
Article in English | MEDLINE | ID: mdl-38698845

ABSTRACT

Monoclonal antibodies (mAbs) are one of the most important classes of biologics with high therapeutic and diagnostic value, but traditional methods for mAbs generation, such as hybridoma screening and phage display, have limitations, including low efficiency and loss of natural chain pairing. To overcome these challenges, novel single B cell antibody technologies have emerged, but they also have limitations such as in vitro differentiation of memory B cells and expensive cell sorters. In this study, we present a rapid and efficient workflow for obtaining human recombinant monoclonal antibodies directly from single antigen-specific antibody secreting cells (ASCs) in the peripheral blood of convalescent COVID-19 patients using ferrofluid technology. This process allows the identification and expression of recombinant antigen-specific mAbs in less than 10 days, using RT-PCR to generate linear Ig heavy and light chain gene expression cassettes, called "minigenes", for rapid expression of recombinant antibodies without cloning procedures. This approach has several advantages. First, it saves time and resources by eliminating the need for in vitro differentiation. It also allows individual antigen-specific ASCs to be screened for effector function prior to recombinant antibody cloning, enabling the selection of mAbs with desired characteristics and functional activity. In addition, the method allows comprehensive analysis of variable region repertoires in combination with functional assays to evaluate the specificity and function of the generated antigen-specific antibodies. Our approach, which rapidly generates recombinant monoclonal antibodies from single antigen-specific ASCs, could help to identify functional antibodies and deepen our understanding of antibody dynamics in the immune response through combined antibody repertoire sequence analysis and functional reactivity testing.


Subject(s)
Antibodies, Monoclonal , Antibody-Producing Cells , COVID-19 , Recombinant Proteins , SARS-CoV-2 , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibody-Producing Cells/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Antibodies, Viral/immunology , Female
5.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727988

ABSTRACT

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Subject(s)
Akkermansia , Glucagon-Like Peptide 1 , Lactococcus lactis , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/genetics , Akkermansia/genetics , Akkermansia/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Humans , L Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Prep Biochem Biotechnol ; 54(5): 709-719, 2024 May.
Article in English | MEDLINE | ID: mdl-38692288

ABSTRACT

Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.


Subject(s)
Asparaginase , Escherichia coli , Recombinant Proteins , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Glycerol/metabolism , Gene Expression Regulation, Bacterial
7.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709366

ABSTRACT

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Gene Dosage , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Gene Expression , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry
8.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711081

ABSTRACT

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Subject(s)
Fermentation , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Biomass , Batch Cell Culture Techniques , Polysaccharides/metabolism , Polysaccharides/biosynthesis
9.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717487

ABSTRACT

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Subject(s)
Escherichia coli , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Substrate Specificity , Dipeptidases/metabolism , Dipeptidases/genetics , Dipeptidases/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molecular Docking Simulation , Multigene Family , Hydrogen-Ion Concentration , Dipeptides/metabolism , Temperature , Kinetics
10.
Mol Biol Rep ; 51(1): 628, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717629

ABSTRACT

Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.


Subject(s)
Escherichia coli , Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/enzymology , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/genetics , Isopropyl Thiogalactoside/pharmacology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Culture Media
11.
Protein Expr Purif ; 220: 106499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703798

ABSTRACT

Monoclonal antibodies (mAbs) are a driving force in the biopharmaceutical industry. Therapeutic mAbs are usually produced in mammalian cells, but there has been a push towards the use of alternative production hosts, such as Escherichia coli. When the genes encoding for a mAb heavy and light chains are codon-optimized for E. coli expression, a truncated form of the heavy chain can form along with the full-length product. In this work, the role of codon optimization in the formation of a truncated product was investigated. This study used the amino acid sequences of several therapeutic mAbs and multiple optimization algorithms. It was found that several algorithms incorporate sequences that lead to a truncated product. Approaches to avoid this truncated form are discussed.


Subject(s)
Antibodies, Monoclonal , Escherichia coli , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Codon/genetics , Algorithms , Amino Acid Sequence , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Humans , Gene Expression , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/chemistry
12.
Article in English | MEDLINE | ID: mdl-38730558

ABSTRACT

Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB. ONE-SENTENCE SUMMARY: The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.


Subject(s)
Cyclophilins , Escherichia coli , Recombinant Proteins , Sporothrix , Sporothrix/genetics , Sporothrix/enzymology , Sporothrix/drug effects , Sporothrix/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression , Computational Biology , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism
13.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704385

ABSTRACT

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Subject(s)
Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
14.
Arch Microbiol ; 206(6): 261, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753095

ABSTRACT

The search for affordable enzymes with exceptional characteristics is fundamental to overcoming industrial and environmental constraints. In this study, a recombinant GH10 xylanase (Xyn10-HB) from the extremely alkaliphilic bacterium Halalkalibacterium halodurans C-125 cultivated at pH 10 was cloned and expressed in E. coli BL21(DE3). Removal of the signal peptide improved the expression, and an overall activity of 8 U/mL was obtained in the cell-free supernatant. The molecular weight of purified Xyn10-HB was estimated to be 42.6 kDa by SDS-PAGE. The enzyme was active across a wide pH range (5-10) with optimal activity recorded at pH 8.5 and 60 °C. It also presented good stability with a half-life of 3 h under these conditions. Substrate specificity studies showed that Xyn10-HB is a cellulase-free enzyme that conventionally hydrolyse birchwood and oat spelts xylans (Apparent Km of 0.46 mg/mL and 0.54 mg/mL, respectively). HPLC analysis showed that both xylans hydrolysis produced xylooligosaccharides (XOS) with a degree of polymerization (DP) ranging from 2 to 9. The conversion yield was 77% after 24 h with xylobiose and xylotriose as the main end-reaction products. When assayed on alkali-extracted wheat straw heteroxylan, the Xyn10-HB produced active XOS with antioxidant activity determined by the DPPH radical scavenging method (IC50 of 0.54 mg/mL after 4 h). Owing to its various characteristics, Xyn10-HB xylanase is a promising candidate for multiple biotechnological applications.


Subject(s)
Endo-1,4-beta Xylanases , Recombinant Proteins , Xylans , Substrate Specificity , Hydrolysis , Xylans/metabolism , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Glucuronates/metabolism , Enzyme Stability , Kinetics , Molecular Weight , Oligosaccharides/metabolism , Disaccharides
15.
Curr Microbiol ; 81(6): 167, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727744

ABSTRACT

Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.


Subject(s)
Cloning, Molecular , Corynebacterium glutamicum , Escherichia coli , Malate Dehydrogenase , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Escherichia coli/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/enzymology , Diabetes Mellitus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression , Temperature , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Front Immunol ; 15: 1372904, 2024.
Article in English | MEDLINE | ID: mdl-38742116

ABSTRACT

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Subject(s)
Phagocytes , Phagocytosis , Recombinant Proteins , Animals , Phagocytosis/immunology , Phagocytes/immunology , Phagocytes/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Binding , Strongylocentrotus purpuratus/immunology , Strongylocentrotus purpuratus/genetics , Immunity, Innate , Protein Isoforms/genetics , Protein Isoforms/immunology , Sea Urchins/immunology , Vibrio/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology
17.
Protein Sci ; 33(6): e5021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747394

ABSTRACT

While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.


Subject(s)
Histidine , Polyphosphates , Histidine/chemistry , Polyphosphates/chemistry , Polyphosphates/metabolism , Nitrilotriacetic Acid/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Humans , Proteins/chemistry , Proteins/isolation & purification
18.
PLoS One ; 19(5): e0298716, 2024.
Article in English | MEDLINE | ID: mdl-38748703

ABSTRACT

The purpose of current research work was to investigate the effect of mutagenesis on endoglucanase B activity of indigenous strain of Aspergillus niger and its heterologous expression studies in the pET28a+ vector. The physical and chemical mutagens were employed to incorporate mutations in A. niger. For determination of mutations, mRNA was isolated followed by cDNA synthesis and cellulase gene was amplified, purified and sequenced both from native and mutant A. niger. On comparison of gene sequences, it was observed that 5 nucleotide base pairs have been replaced in the mutant cellulase. The mutant recombinant enzyme showed 4.5 times higher activity (428.5 µmol/mL/min) as compared to activity of native enzyme (94 µmol/mL/min). The mutant gene was further investigated using Phyre2 and I-Tesser tools which exhibited 71% structural homology with Endoglucanase B of Thermoascus aurantiacus. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg) and hydrogen bonds analysis were carried at 35°C and 50°C to explore the integrity of structure of recombinant mutant endoglucanase B which corresponded to its optimal temperature. Hydrogen bonds analysis showed more stability of recombinant mutant endoglucanase B as compared to native enzyme. Both native and mutant endoglucanase B genes were expressed in pET 28a+ and purified with nickel affinity chromatography. Theoretical masses determined through ExPaSy Protparam were found 38.7 and 38.5 kDa for native and mutant enzymes, respectively. The optimal pH and temperature values for the mutant were 5.0 and 50°C while for native these were found 4.0 and 35°C, respectively. On reacting with carboxy methyl cellulose (CMC) as substrate, the mutant enzyme exhibited less Km (0.452 mg/mL) and more Vmax (50.25 µmol/ml/min) as compared to native having 0.534 mg/mL as Km and 38.76 µmol/ml/min as Vmax. Among metal ions, Mg2+ showed maximum inducing effect (200%) on cellulase activity at 50 mM concentration followed by Ca2+ (140%) at 100 mM concentration. Hence, expression of a recombinant mutant cellulase from A. niger significantly enhanced its cellulytic potential which could be employed for further industrial applications at pilot scale.


Subject(s)
Aspergillus niger , Cellulase , Aspergillus niger/enzymology , Aspergillus niger/genetics , Cellulase/genetics , Cellulase/metabolism , Cellulase/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Mutation , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Temperature , Hydrogen-Ion Concentration
19.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1548-1558, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783815

ABSTRACT

In order to generate monoclonal antibodies against the akabane virus (AKAV) N protein, this study employed a prokaryotic expression system to express the AKAV N protein. Following purification, BALB/c mice were immunized, and their splenocytes were fused with mouse myeloma cells (SP2/0) to produce hybridoma cells. The indirect ELISA method was used to screen for positive hybridoma cells. Two specific hybridoma cell lines targeting AKAV N protein, designated as 2C9 and 5E9, were isolated after three rounds of subcloning. Further characterization was conducted through ELISA, Western blotting, and indirect immunofluorescence assay (IFA). The results confirmed that the monoclonal antibodies specifically target AKAV N protein, exhibiting strong reactivity in IFA. Subtype analysis identified the heavy chain of the 2C9 mAb's as IgG2b and its light chain as κ-type; the 5E9 mAb's heavy chain was determined to be IgG1, with a κ-type light chain. Their ELISA titers reached 1:4 096 000. This study successfully developed two monoclonal antibodies targeting AKAV N protein, which lays a crucial foundation for advancing diagnostic methods for akabane disease prevention and control, as well as for studying the function of the AKAV N protein.


Subject(s)
Antibodies, Monoclonal , Mice, Inbred BALB C , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Mice , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/genetics , Hybridomas/immunology , Hybridomas/metabolism , Orthobunyavirus/immunology , Orthobunyavirus/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Antibodies, Viral/immunology , Female
20.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1498-1508, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783811

ABSTRACT

To investigate the role of recombinant mussel mucin in wound healing, we aimed to prepare this mucin using Pichia pastoris as the host microbe. Our method involved constructing a genetically engineered strain of P. pastoris that expressed a fusion protein consisting of Mfp-3 and preCol-P peptide segments of mussel. After fermentation and purification, we obtained a pure recombinant mussel mucin product. We then conducted experiments to evaluate its effect at both the cellular and animal levels. At the cellular level, we examined its impact on the proliferation and migration of mouse fibroblast L929. At the animal level, we assessed its ability to promote wound healing after full-layer skin resection in rats. Our results showed that the recombinant mussel mucin protein has a content of 90.28% and a purity of 96.49%. The content of 3,4-dihydroxyphenylalanine (DOPA) was 0.73 wt%, and the endotoxin content was less than 0.5 EU/mg. Importantly, the recombinant mussel mucin protein significantly promoted both the migration and proliferation of mouse fibroblast, as well as the wound healing in rat skin. In conclusion, our findings demonstrate that recombinant mussel mucin has the potential to promote wound healing and can be considered a promising medical biomaterial.


Subject(s)
Wound Healing , Animals , Wound Healing/drug effects , Rats , Mice , Mucins/metabolism , Mucins/genetics , Bivalvia , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Male , Rats, Sprague-Dawley , Saccharomycetales
SELECTION OF CITATIONS
SEARCH DETAIL
...