Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.595
Filter
1.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930955

ABSTRACT

The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Gene Editing/methods , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology , Humans , Recombinational DNA Repair/drug effects , Gene Knock-In Techniques
2.
Aging (Albany NY) ; 16(11): 9727-9752, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843383

ABSTRACT

This study explored the role of 14-3-3σ in carbon ion-irradiated pancreatic adenocarcinoma (PAAD) cells and xenografts and clarified the underlying mechanism. The clinical significance of 14-3-3σ in patients with PAAD was explored using publicly available databases. 14-3-3σ was silenced or overexpressed and combined with carbon ions to measure cell proliferation, cell cycle, and DNA damage repair. Immunoblotting and immunofluorescence (IF) assays were used to determine the underlying mechanisms of 14-3-3σ toward carbon ion radioresistance. We used the BALB/c mice to evaluate the biological behavior of 14-3-3σ in combination with carbon ions. Bioinformatic analysis revealed that PAAD expressed higher 14-3-3σ than normal pancreatic tissues; its overexpression was related to invasive clinicopathological features and a worse prognosis. Knockdown or overexpression of 14-3-3σ demonstrated that 14-3-3σ promoted the survival of PAAD cells after carbon ion irradiation. And 14-3-3σ was upregulated in PAAD cells during DNA damage (carbon ion irradiation, DNA damaging agent) and promotes cell recovery. We found that 14-3-3σ resulted in carbon ion radioresistance by promoting RPA2 and RAD51 accumulation in the nucleus in PAAD cells, thereby increasing homologous recombination repair (HRR) efficiency. Blocking the HR pathway consistently reduced 14-3-3σ overexpression-induced carbon ion radioresistance in PAAD cells. The enhanced radiosensitivity of 14-3-3σ depletion on carbon ion irradiation was also demonstrated in vivo. Altogether, 14-3-3σ functions in tumor progression and can be a potential target for developing biomarkers and treatment strategies for PAAD along with incorporating carbon ion irradiation.


Subject(s)
14-3-3 Proteins , Mice, Inbred BALB C , Pancreatic Neoplasms , Recombinational DNA Repair , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/radiotherapy , Animals , Humans , Mice , Cell Line, Tumor , Down-Regulation , Radiation Tolerance/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , Heavy Ion Radiotherapy , Carbon , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Male , DNA Damage , Female
3.
Nat Commun ; 15(1): 4696, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824133

ABSTRACT

Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.


Subject(s)
DNA Damage , Exodeoxyribonucleases , Phosphoproteins , Animals , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Mice , Recombinational DNA Repair , Phenotype , Mutation , Drosophila/genetics , Aging/genetics , Aging/metabolism , Female , Drosophila melanogaster/genetics , Male , Retinal Diseases , Vascular Diseases , Hereditary Central Nervous System Demyelinating Diseases
4.
BMC Cancer ; 24(1): 706, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851712

ABSTRACT

BACKGROUND: Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD: We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS: Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION: PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION: CRD42023454079.


Subject(s)
Bayes Theorem , Mutation , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Male , Phthalazines/therapeutic use , Phthalazines/adverse effects , Phthalazines/administration & dosage , Network Meta-Analysis , Piperazines/therapeutic use , Piperazines/adverse effects , Piperazines/administration & dosage , BRCA2 Protein/genetics , Recombinational DNA Repair/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Randomized Controlled Trials as Topic , Progression-Free Survival , Indoles/therapeutic use , Indoles/adverse effects , Indoles/administration & dosage , BRCA1 Protein/genetics , Treatment Outcome , Quinazolines
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731844

ABSTRACT

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
6.
Nucleic Acids Res ; 52(11): 6518-6531, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38783157

ABSTRACT

Precise genomic editing through the combination of CRISPR/Cas systems and recombinant adeno-associated virus (rAAV)-delivered homology directed repair (HDR) donor templates represents a powerful approach. However, the challenge of effectively suppressing leaky transcription from the rAAV vector, a phenomenon associated to cytotoxicity, persists. In this study, we demonstrated substantial promoter activities of various homology arms and inverted terminal repeats (ITR). To address this issue, we identified a novel rAAV variant, Y704T, which not only yields high-vector quantities but also effectively suppresses in cis mRNA transcription driven by a robust promoter. The Y704T variant maintains normal functionality in receptor interaction, intracellular trafficking, nuclear entry, uncoating, and second-strand synthesis, while specifically exhibiting defects in transcription. Importantly, this inhibitory effect is found to be independent of ITR, promoter types, and RNA polymerases. Mechanistic studies unveiled the involvement of Valosin Containing Protein (VCP/p97) in capsid-mediated transcription repression. Remarkably, the Y704T variant delivers HDR donor templates without compromising DNA replication ability and homologous recombination efficiency. In summary, our findings enhance the understanding of capsid-regulated transcription and introduce novel avenues for the application of the rAAV-CRISPR/Cas9 system in human gene therapy.


Subject(s)
Dependovirus , Gene Editing , Homologous Recombination , Promoter Regions, Genetic , Dependovirus/genetics , Humans , Promoter Regions, Genetic/genetics , Gene Editing/methods , Homologous Recombination/genetics , HEK293 Cells , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid/metabolism , Mutation , Genetic Vectors/genetics , Transcription, Genetic , CRISPR-Cas Systems , Recombinational DNA Repair , Terminal Repeat Sequences/genetics , DNA Replication/genetics
7.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697125

ABSTRACT

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Recombinational DNA Repair , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Tumor , Genetic Predisposition to Disease , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair/drug effects , Mice, Nude , Mice, Inbred BALB C , Adult
8.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719812

ABSTRACT

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Subject(s)
Acetylglucosamine , DNA-Binding Proteins , Proliferating Cell Nuclear Antigen , Rad51 Recombinase , Recombinational DNA Repair , Ubiquitin-Protein Ligases , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Acetylglucosamine/metabolism , Rad51 Recombinase/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Phosphorylation , DNA Replication , Ubiquitination , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Damage , DNA/metabolism , HEK293 Cells , Ultraviolet Rays , Protein Binding , Glycosylation , Translesion DNA Synthesis
9.
JCO Precis Oncol ; 8: e2300628, 2024 May.
Article in English | MEDLINE | ID: mdl-38748947

ABSTRACT

PURPOSE: The prevalence of homologous recombination repair gene mutations (HRRm) in patients with metastatic castration-resistant prostate cancer (mCRPC) in Latin America and the Caribbean (LAC) is unknown. Prevalence of homologous Recombination repair (HRR) gene mutatiOns in patientS with metastatic castration resistant ProstatE Cancer in LaTin America (PROSPECT) aimed to determine this prevalence and to describe the demographic and clinical characteristics of the participants. MATERIALS AND METHODS: This was a prospective, cross-sectional, multicenter study across 11 cancer centers in seven LAC countries. After informed consent, all eligible participants underwent genomic testing by provided blood samples for germline HRR testing; they also provided PC tissue blocks if available for somatic HRR testing. RESULTS: Between April 2021 and April 2022, 387 patients (median age, 70 years [49-89], 94.3% Eastern Cooperative Oncology Group 0-1) with mCRPC were enrolled in the study. Almost 40% of them had a family history of cancer, and the overall time from their initial PC and mCRPC diagnosis was 3 years and 1 year, respectively. The overall prevalence of germline HRRm was 4.2%. The mutations detected included the genes CHEK2 (n = 4, 1%), ATM (n = 3, 0.8%), BRCA2 (n = 3, 0.8%), BRIP1 (n = 2, 0.5%), RAD51B (n = 2, 0.5%), BRCA1 (n = 1, 0.3%), and MRE11 (n = 1, 0.3%). The prevalence of somatic HRRm could not be assessed because of high HRR testing failure rates (79%, 199/251) associated with insufficient DNA, absence of tumor cells, and poor-quality DNA. CONCLUSION: Despite the study's limitations, to our knowledge, PROSPECT was the first attempt to describe the prevalence of HRRm in patients with PC from LAC. Notably, the germline HRRm prevalence in this study was inferior to that observed in North American and European populations. The somatic HRR testing barriers identified are being addressed by several projects to improve access to HRR testing and biomarker-based therapies in LAC.


Subject(s)
Mutation , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Aged , Prospective Studies , Middle Aged , Cross-Sectional Studies , Latin America/epidemiology , Aged, 80 and over , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/epidemiology , Prostatic Neoplasms, Castration-Resistant/pathology , Recombinational DNA Repair/genetics , Prevalence
10.
Adv Ther ; 41(6): 2196-2216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767824

ABSTRACT

Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.


Subject(s)
Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Recombinational DNA Repair/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prevalence , Prognosis
11.
Clin Genitourin Cancer ; 22(3): 102080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653037

ABSTRACT

BACKGROUND: There is currently limited literature assessing the real-world treatment patterns and clinical outcomes of patients with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) mutations. METHODS: Medical charts were abstracted for mCRPC patients with ≥ 1 of 12 HRR somatic gene alterations treated at US oncology centers participating in the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange. Treatment patterns and clinical outcomes were assessed from the initiation of first-line or later (1L+) mCRPC therapy received on or after July 1, 2014. RESULTS: Among 138 patients included in the study, the most common somatic HRR mutations were CDK12 (47.8%), BRCA2 (22.5%), and ATM (21.0%). Novel hormonal therapy and taxane chemotherapy were most commonly used in 1L; taxane use increased in later lines. Median overall survival (95% confidence interval [CI]) was 36.3 (30.7-47.8) months from initiation of 1L therapy and decreased for subsequent lines. Similarly, there was a trend of decreasing progression-free survival and prostate-specific antigen response from 1L to 4L+ therapy. CONCLUSIONS: Treatment patterns identified in this study were similar to those among patients with mCRPC regardless of tumor HRR mutation status in the literature.


Subject(s)
BRCA2 Protein , Mutation , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Aged , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , BRCA2 Protein/genetics , Middle Aged , Ataxia Telangiectasia Mutated Proteins/genetics , Taxoids/therapeutic use , Taxoids/administration & dosage , Cyclin-Dependent Kinases/genetics , Treatment Outcome , Aged, 80 and over , Prostate-Specific Antigen/blood , Bridged-Ring Compounds/therapeutic use , Bridged-Ring Compounds/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Neoplasm Metastasis
12.
BMC Biol ; 22(1): 101, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685010

ABSTRACT

BACKGROUND: CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS: Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS: Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.


Subject(s)
CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing , Humans , Gene Editing/methods , DNA Breaks , Recombinational DNA Repair , Sequence Deletion , DNA Polymerase theta , Replication Protein A/metabolism , Replication Protein A/genetics
13.
PLoS Genet ; 20(4): e1011250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683763

ABSTRACT

Accurate repair of DNA double-strand breaks (DSBs) is essential for the maintenance of genome integrity, as failure to repair DSBs can result in cell death. The cell has evolved two main mechanisms for DSB repair: non-homologous end-joining (NHEJ) and homology-directed repair (HDR), which includes single-strand annealing (SSA) and homologous recombination (HR). While certain factors like age and state of the chromatin are known to influence DSB repair pathway choice, the roles of developmental stage, tissue type, and sex have yet to be elucidated in multicellular organisms. To examine the influence of these factors, DSB repair in various embryonic developmental stages, larva, and adult tissues in Drosophila melanogaster was analyzed through molecular analysis of the DR-white assay using Tracking across Indels by DEcomposition (TIDE). The proportion of HR repair was highest in tissues that maintain the canonical (G1/S/G2/M) cell cycle and suppressed in both terminally differentiated and polyploid tissues. To determine the impact of sex on repair pathway choice, repair in different tissues in both males and females was analyzed. When molecularly examining tissues containing mostly somatic cells, males and females demonstrated similar proportions of HR and NHEJ. However, when DSB repair was analyzed in male and female premeiotic germline cells utilizing phenotypic analysis of the DR-white assay, there was a significant decrease in HR in females compared to males. This study describes the impact of development, tissue-specific cycling profile, and, in some cases, sex on DSB repair outcomes, underscoring the complexity of repair in multicellular organisms.


Subject(s)
DNA Breaks, Double-Stranded , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Male , DNA Repair/genetics , DNA End-Joining Repair/genetics , Recombinational DNA Repair , Homologous Recombination/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Cycle/genetics
14.
CRISPR J ; 7(2): 111-119, 2024 04.
Article in English | MEDLINE | ID: mdl-38635329

ABSTRACT

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates. Using a traffic light reporter in mouse embryonic stem cells and a fluorescence conversion reporter in human-induced pluripotent stem cells, we confirm that a transient cold shock leads to an increase in the rate of HDR, with a corresponding decrease in the rate of NHEJ repair. We then investigated whether a similar cold shock could lead to an increase in the rate of HDR in the mouse embryo. By analyzing the efficiency of gene editing using single nucleotide polymorphism changes and loxP insertion at three different genetic loci, we found that a transient reduction in temperature after zygote electroporation of CRISPR-Cas9 ribonucleoprotein with a single-stranded oligodeoxynucleotide repair template did indeed increase knockin efficiency, without affecting embryonic development. The efficiency of gene editing with and without the cold shock was first assessed by genotyping blastocysts. As a proof of concept, we then confirmed that the modified embryo culture conditions were compatible with live births by targeting the coat color gene tyrosinase and observing the repair of the albino mutation. Taken together, our data suggest that a transient cold shock could offer a simple and robust way to improve knockin outcomes in both stem cells and zygotes.


Subject(s)
Gene Editing , Hypothermia , Animals , Humans , Mice , CRISPR-Cas Systems/genetics , Zygote/metabolism , Hypothermia/metabolism , Recombinational DNA Repair/genetics
15.
Cancer Treat Rev ; 126: 102726, 2024 May.
Article in English | MEDLINE | ID: mdl-38613872

ABSTRACT

INTRODUCTION: Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY: Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Combined Chemotherapy Protocols , Nitriles , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Piperazines/therapeutic use , Piperazines/administration & dosage , Phthalazines/therapeutic use , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/analogs & derivatives , United States , Receptors, Androgen/genetics , Benzamides/therapeutic use , Piperidines/therapeutic use , Indazoles/therapeutic use , Signal Transduction/drug effects , Recombinational DNA Repair/drug effects
16.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654320

ABSTRACT

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Subject(s)
Nasopharyngeal Carcinoma , Rad51 Recombinase , Radiation Tolerance , Recombinational DNA Repair , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mice , Animals , Radiation Tolerance/genetics , RNA, Circular/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Female , Male , Prognosis , Mice, Nude
17.
Cell Signal ; 118: 111151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522807

ABSTRACT

Chemoresistance poses a significant obstacle to the treatment of breast cancer patients. The increased capacity of DNA damage repair is one of the mechanisms underlying chemoresistance. Bioinformatic analyses showed that E2F8 was associated with cell cycle progression and homologous recombination (HR) repair of DNA double-strand breaks (DSBs) in breast cancer. E2F8 knockdown suppressed cell growth and attenuated HR repair. Accordingly, E2F8 knockdown sensitized cancer cells to Adriamycin and Cisplatin. Centromere protein L (CENPL) is a transcriptional target by E2F8. CENPL overexpression in E2F8-knockdowned cells recovered at least in part the effect of E2F8 on DNA damage repair and chemotherapy sensitivity. Consistently, CENPL knockdown impaired DNA damage repair and sensitized cancer cells to DNA-damaging drugs. These findings demonstrate that targeting E2F8-CENPL pathway is a potential approach to overcoming chemoresistance.


Subject(s)
Breast Neoplasms , Recombinational DNA Repair , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , DNA Repair , DNA , Repressor Proteins/genetics , Chromosomal Proteins, Non-Histone , Cell Cycle Proteins/genetics
18.
Nature ; 628(8007): 433-441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509368

ABSTRACT

An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.


Subject(s)
DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases , Transcription, Genetic , Humans , DNA Breaks, Double-Stranded , DNA Replication/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombinational DNA Repair , S Phase , Transcription, Genetic/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism
19.
Cell Rep ; 43(4): 114006, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554279

ABSTRACT

Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.


Subject(s)
BRCA1 Protein , Cellular Reprogramming , DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1 , Animals , Humans , Mice , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA Replication , Recombinational DNA Repair , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics
20.
J Mol Diagn ; 26(6): 479-486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522840

ABSTRACT

Targeted tumor only sequencing has become a standard practice in cancer diagnostics. This study aims to develop an approach for robust copy number variant calling in tumor samples using only off-target region (OTR) reads. We also established a clinical use case for homologous recombination deficiency (HRD) score estimation (HRDest) using the sum of telomeric-allelic imbalance and large-scale state transition scores without the need for loss of heterozygosity information. A strong correlation was found between HRD score and the sum of telomeric-allelic imbalance + large-scale state transition in The Cancer Genome Atlas cohort (ρ = 0.99, P < 2.2 × 10-16) and in a clinical in-house cohort of 34 tumors (ρ = 0.9, P = 5.1 × 10-13) comparing whole-exome sequencing and targeted sequencing data. HRDest scores from 1086 clinical cases were compared with The Cancer Genome Atlas data set. There were no significant differences in HRD score distribution within the analyzed tumor types. As a control, commercially available HRD standards were also sequenced, and the HRDest scores obtained from the OTR reads were well within the HRD reference range provided by the manufacturer. In conclusion, OTR reads of tumor-only panel sequencing can be used to determine genome-wide copy number variant profiles and to approximate HRD scores.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , High-Throughput Nucleotide Sequencing , Neoplasms , Humans , Neoplasms/genetics , Exome Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Recombinational DNA Repair/genetics , Allelic Imbalance
SELECTION OF CITATIONS
SEARCH DETAIL
...