Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.520
Filter
1.
J Environ Manage ; 362: 121303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824885

ABSTRACT

Spent phosphor is an important secondary resource for extracting rare earth elements. Microwave absorption properties and enhanced extraction of Eu from blue phosphor by microwave alkali roasting were studied. Dielectric properties of alkali roasting system were measured by resonator perturbation method. Dielectric constant increases linearly from 250 °C until it reaches a peak at 400 °C. The dielectric loss reaches a higher value at 400-550 °C, due to the strong microwave absorption properties of molten alkali and roasted products. Effects of roasting temperature, roasting time and alkali addition amount on Eu leaching were investigated. The phosphor was completely decomposed into Eu2O3, BaCO3 and MgO at 400 °C. The alkaline decomposition process of phosphor is more consistent with diffusion control model with Eα being 28.9 kJ/mol. Effects of the main leaching conditions on Eu leaching were investigated. The leaching kinetic of Eu was in line with diffusion control model with Eα being 5.74 kJ/mol. The leaching rules of rare earths in the mixed phosphor were studied. The results showed that the presence of red and green phosphor affected the recovery of blue phosphor. The optimum process parameters of rare earth recovery in single blue phosphor and mixed phosphor were obtained, and the recovery of Eu were 97.81% and 94.80%, respectively. Microwave alkali roasting promoted the dissociation of phosphor and leaching of rare earths. The results can provide reference for the efficient and selective recovery of rare earths in phosphors.


Subject(s)
Alkalies , Metals, Rare Earth , Microwaves , Metals, Rare Earth/chemistry , Alkalies/chemistry , Europium/chemistry , Recycling , Phosphorus/chemistry
2.
J Environ Manage ; 362: 121339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824897

ABSTRACT

To promote optimal phosphorus (P) recovery from municipal wastewater and sewage sludge with viable legal instruments, it is imperative to understand the regional and national consequences of different legal requirements for recycling. In this study we develop a scenario-based analysis to assess the environmental and economic impact of different national P recovery strategies in the context of a detailed representation of the existing Austrian wastewater infrastructure. This assessment combines material flow analysis, life cycle assessment and life cycle costing and includes the indicators P recycling rate, P utilization degree, heavy metal removal rate, share of heavy metals' content in wastewater redirected to agricultural soils, global warming potential, cumulated energy demand, terrestrial acidification potential, volume of freight transport and annual costs. The following main conclusions can be drawn. P recovery from ash shows the highest potential regarding the utilization of P from wastewater. A high P utilization from wastewater should rely on recovery technologies that decontaminate products, otherwise pollutant loads to agricultural soils might increase. P recovery to the extent of 60-85 % of P in WWTPs influent can be achieved by savings/costs of -0.8 to +4.7 EUR inhabitant-1 yr-1 in addition to current cost of the wastewater treatment/sludge disposal system. Key factors to be considered for costs are the choice of recovery process, revenues from products, and the use of existing incineration infrastructure. P recovery can lead to the reduction of greenhouse gas emissions in Austria if nitrous oxide emissions from sludge incineration are limited and efficient heat utilization strategies are implemented. There is a trade-off in terms of environmental and economic costs in choosing a more centralized or decentralized mono-incineration strategy.


Subject(s)
Phosphorus , Recycling , Sewage , Austria , Wastewater/chemistry , Waste Disposal, Fluid/methods , Metals, Heavy
3.
J Environ Manage ; 362: 121302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824896

ABSTRACT

Two industrial solid wastes, Ti-bearing blast furnace slag (TBFS) and diamond wire saw silicon waste (DWSSW), contain large amounts of Ti and Si, and their accumulation wastes resources and intensifies environmental pollution. In the present study, DWSSW was used as the silicon source to reduce titanium oxide in TBFS by electromagnetic induction smelting, and meanwhile Na3AlF6 was added as a flux to improve the recycling of the wastes. Ti and Si of the two wastes were simultaneously recovered in the form of alloy. The effects of different addition amount of Na3AlF6 flux in the mixture of DWSSW and TBFS on chemical composition, viscosity, basicity and structure of slag were investigated. The dissolution behavior of SiO2 in Na3AlF6 flux was theoretically deduced and experimentally verification. The optimized recovery rate of Ti and Si were obtained, and the research realizes the efficient recycling of DWSSW and TBFS simultaneously.


Subject(s)
Alloys , Recycling , Silicon , Titanium , Titanium/chemistry , Silicon/chemistry , Alloys/chemistry , Diamond/chemistry , Industrial Waste/analysis
4.
J Environ Manage ; 362: 121324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830284

ABSTRACT

Recycled building debris has recently emerged as a suitable wetland infill substrate due to its low density, exceptional water absorption capabilities, and high porosity. This study investigated, for the first time, the use of construction demolition wastes (CDW), and rock processing residues (RPR) as substrate materials in vertical-horizontal flow hybrid constructed wetlands for the treatment of cheese production wastewater. Results showed that the use of both CDW as well as RPR, as substrate material, provided an equal or even better quality of treated wastewater compared to the conventional use of gravel as a substrate. High removal efficiencies were recorded for turbidity (CDW: 91-92%, RPR: 97%), solids (CDW: 85-88%, RPR: 96-97%), organic matter (CDW: 79-84%, RPR: 96-98%), and total phosphorus (CDW: 72-76%, RPR: 87%) for both examined recycled materials. During the experiment, different loadings rates (HLR) were tested: 25 mm d-1 and 37.5 mm d-1. Radiological measurements indicate that, their use did not cause toxic effects on the environment, as the amounts of radioactivity found in the effluent of the systems are not significant. Increasing the hydraulic loading rate appeared to have no negative effect on pollutant removal, as the systems and plants were fully acclimated and mature. This approach offers several advantages, including the use of readily available and abundant waste material, potential cost savings, and the environmental benefits of recycling CDW and RPR instead of disposing of them in landfills.


Subject(s)
Cheese , Recycling , Wastewater , Wetlands , Wastewater/chemistry , Waste Disposal, Fluid/methods , Construction Materials , Phosphorus
5.
J Environ Manage ; 362: 121306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833918

ABSTRACT

Integrated circuits (ICs) and central processing units (CPUs), essential components of electrical and electronic equipment (EEE), are complex composite materials rich in recyclable high-value strategic and critical metals, with many in concentrations higher than in their natural ores. With gold the most valuable metal present, increase in demand for gold for EEE and its limited availability have led to a steep rise in the market price of gold, making gold recycling a high priority to meet demand. To overcome the limitations associated with conventional technologies for recycling e-waste, the use of greener technologies (ionic liquids (ILs) as leaching agents), offers greater potential for the recovery of gold from e-waste components. While previous studies have demonstrated the efficiency and feasibility of using ILs for gold recovery, these works predominantly concentrate on the extraction stage and often utilise simulated solutions, lacking the implementation of a complete process validated with real samples to effectively assess its overall effectiveness. In this work, a simulated Model Test System was used to determine the optimal leaching and extraction conditions before application to real samples. With copper being the most abundant metal in the e-waste fractions, to access the gold necessitated a two-stage pre-treatment (nitric acid leaching followed by aqua regia leaching) to ensure complete removal of copper and deliver a gold-enriched leach liquor. Gold extraction from the leach liquor was achieved by liquid-liquid extraction using Cyphos 101 (0.1 M in toluene with an O:A = 1:1, 20 °C, 150 rpm, and 15 min) and as a second process by sorption extraction with loaded resins (Amberlite XAD-7 with 300 mg of Cyphos 101/g of resins at 20 °C, 150 rpm and 3 h). In both processes, complete stripping and desorption of gold was achieved (0.5 M thiourea in 0.5 M HCl) and gold recovered, as nanoparticles of purity ≥95%, via a reduction step using a sodium borohydride solution (0.1 M NaBH4 in 0.1 M NaOH). These two hydrometallurgical processes developed can achieve overall efficiencies of ≥95% for gold recovery from real e-waste components, permit the reuse of the IL and resins up to five consecutive times, and offer a promising approach for recovery from any e-waste stream rich in gold.


Subject(s)
Gold , Ionic Liquids , Recycling , Ionic Liquids/chemistry , Gold/chemistry , Recycling/methods , Electronic Waste
6.
J Environ Manage ; 362: 121352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833930

ABSTRACT

The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.


Subject(s)
Filtration , Nanoparticles , Polystyrenes , Polystyrenes/chemistry , Nanoparticles/chemistry , Filtration/methods , Membranes, Artificial , Polymers/chemistry , Recycling , Permeability
7.
J Environ Manage ; 363: 121314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843731

ABSTRACT

Pretreatment, the initial step in recycling spent lithium-ion batteries (LIBs), efficiently separates cathode and anode materials to facilitate key element recovery. Despite brief introductions in existing research, a comprehensive evaluation and comparison of processing methods is lacking. This study reviews 346 references on LIBs recycling, analyzing pretreatment stages, treatment conditions, and method effects. Our analysis highlights insufficient attention to discharge voltage safety and environmental impact. Mechanical disassembly, while suitable for industrial production, overlooks electrolyte recovery and complicates LIBs separation. High temperature pyrolysis flotation offers efficient separation of mixed electrode materials, enhancing mineral recovery. We propose four primary pretreatment processes: discharge, electrolyte recovery, crushing and separation, and electrode material recovery, offering simplified, efficient, green, low-cost, and high-purity raw materials for subsequent recovery processes.


Subject(s)
Electric Power Supplies , Lithium , Recycling , Lithium/chemistry , Recycling/methods , Electrodes , Ions
8.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893350

ABSTRACT

This review addresses the critical issue of a rapidly increasing worldwide waste stream and the need for sustainable management. The paper proposes an integrated transformation toward a next-generation methanization process, which leads not only to treating waste but also to converting it into higher value compounds and greener energy. Although the current and commonly used anaerobic digestion process is useful for biogas production, it presents limitations of resource exploitation and some negative environmental impacts. Focusing on the acidogenic stage in waste stream processing, the paper discusses the recent strategies to enhance the recovery of volatile fatty acids (VFAs). These acids serve as precursors for synthesizing a variety of biochemicals and biofuels, offering higher value products than solely energy recovery and soil fertilizers. Additionally, the importance of recycling the fermentation residues back into the biorefinery process is highlighted. This recycling not only generates additional VFAs but also contributes to generating clean energy, thereby enhancing the overall sustainability and efficiency of the waste management system. Moreover, the review discusses the necessity to integrate life cycle assessment (LCA) and techno-economic analysis (TEA) to evaluate the environmental impacts, sustainability, and processing costs of the proposed biorefinery.


Subject(s)
Biofuels , Fatty Acids, Volatile , Fatty Acids, Volatile/metabolism , Methane/metabolism , Anaerobiosis , Fermentation , Waste Management/methods , Recycling
9.
PLoS One ; 19(6): e0303933, 2024.
Article in English | MEDLINE | ID: mdl-38848431

ABSTRACT

Lithium batteries, as an important energy storage device, are widely used in the fields of renewable vehicles and renewable energy. The related lithium battery recycling industry has also ushered in a golden period of development. However, the high cost of lithium battery recycling makes it difficult to accurately evaluate its recycling value, which seriously restricts the development of the industry. To address the above issues, machine learning will be applied in the field of economic benefit analysis for lithium battery recycling, and backpropagation neural networks will be combined with stepwise regression. On the basis of considering social and commercial values, a lithium battery recycling and utilization economic benefit analysis model based on stepwise regression backpropagation neural network was designed. The experimental results show that the mean square error of the model converges between 10-6 and 10-7, and the convergence speed is improved by 33%. In addition, in practical experiments, the model predicted the actual economic benefits of recycling a batch of lithium batteries. The results show that the predictions are basically in line with the true values. Therefore, the economic benefit analysis and prediction model for lithium battery recycling proposed in the study has the advantages of high accuracy and fast operation speed, providing new ideas and tools for promoting innovation in the field of economic benefit analysis. It has certain application potential in the evaluation of the benefits of lithium battery recycling.


Subject(s)
Electric Power Supplies , Lithium , Machine Learning , Recycling , Lithium/economics , Recycling/economics , Recycling/methods , Electric Power Supplies/economics , Algorithms , Neural Networks, Computer , Cost-Benefit Analysis
10.
Environ Sci Pollut Res Int ; 31(27): 39248-39258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829500

ABSTRACT

Significant investigations were performed on the use and impact on physical properties along with mechanical strength of the recycled and reused e-glass waste powder. However, it has been modeled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. This study investigates the long-term feasibility of using recycled display e-glass waste as a partial substitute for dune sand at varying percentages (5%, 10%, 15%, and 20%). The main focus is on evaluating its effectiveness in radiation shielding, strength properties, and durability for long-term development under the heating environmental process. Statistical analyses, including analysis of variance, are used to assess the significance of factors and their interactions on these characteristics. Additionally, a regression equation derived from the model offers insights into the quantitative relationship between the factors and properties. The results of the experiments led to the conclusion that the most effective proportion of e-glass waste to include in mortar is 20%, with the weight of dune sand. Including e-glass waste, they significantly increased the five characteristics of the mortar, making it suitable for high-strength mortar applications continue up to 68 MPa. The ANOVA model used in this study was trained using the same experimental research design and was critical in predicting the properties of the mortar. The model produced an accurate result with an R2 value greater than 0.99. E-glass replacements exhibit remarkable radiation shielding, characterized by pozzolanic activity and superior internal bonding due to its compact texture, contributing to enhanced long-term strength.


Subject(s)
Construction Materials , Analysis of Variance , Glass , Recycling
11.
Environ Sci Pollut Res Int ; 31(27): 39690-39703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829502

ABSTRACT

Printed circuit boards, which make up part of waste from electrical and electronic equipment, contain elements that can be economically reused, such as copper, silver, gold, and nickel, as well as metals that are harmful to the environment and health, such as lead, mercury, and cadmium. Thus, through recycling this scrap, materials that would otherwise be discarded can be reinserted as secondary raw materials to produce new consumer goods through urban mining. In this context, the synthesis of nanoparticles shows promise as it allows the reinsertion of these materials in the manufacture of new products. Therefore, this study used obsolete computer motherboards as a secondary material to obtain copper to produce nanoparticles of this metal. From a solution based on the leach liquor of this scrap, a purification route using solvent extraction was defined and applied to the real leach liquor. Applying the hydroxyoxime extractant at a dilution of 20% (v/v) in kerosene, A/O of 1/1, 298 K, and 0.25 h of contact during extraction, and stripping in H2SO4 (2 M), 298 K, 0.25 h, W/O ratio of 3/1, and two theoretical countercurrent stages, a solution containing more than 95% of the copper in the leach liquor could be obtained with less than 1% of contaminants. From this purified liquor, nanoparticles containing copper and metallic copper oxides and hydroxides were produced, with an average size of 84 nm, at pH 11, 3 h of hot stirring, volume of 0.015 L of ascorbic acid (0.50 M) and 0.015 L of precursor solution (0.03 M Cu), and temperature (343 K).


Subject(s)
Copper , Solvents , Copper/chemistry , Solvents/chemistry , Recycling , Metal Nanoparticles/chemistry , Electronic Waste , Nanoparticles/chemistry
12.
Chemosphere ; 361: 142527, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838866

ABSTRACT

Peri-urban environments are significant reservoirs of wastewater, and releasing this untreated wastewater from these resources poses severe environmental and ecological threats. Wastewater mitigation through sustainable approaches is an emerging area of interest. Algae offers a promising strategy for carbon-neutral valorization and recycling of urban wastewater. Aiming to provide a proof-of-concept for complete valorization and recycling of urban wastewater in a peri-urban environment in a closed loop system, a newly isolated biocrust-forming cyanobacterium Desertifilum tharense BERC-3 was evaluated. Here, the highest growth and lipids productivity were achieved in urban wastewater compared to BG11 and synthetic wastewater. D. tharense BERC-3 showed 60-95% resource recovery efficiency and decreased total dissolved solids, chemical oxygen demand, biological oxygen demand, nitrate nitrogen, ammonia nitrogen and total phosphorus contents of the water by 60.37%, 81.11%, 82.75%, 87.91%, 85.13%, 85.41%, 95.87%, respectively, making it fit for agriculture as per WHO's safety limits. Soil supplementation with 2% wastewater-cultivated algae as a soil amender, along with its irrigation with post-treated wastewater, improved the nitrogen content and microbial activity of the soil by 0.3-2.0-fold and 0.5-fold, respectively. Besides, the availability of phosphorus was also improved by 1.66-fold. The complete bioprocessing pipeline offered a complete biomass utilization. This study demonstrated the first proof-of-concept of integrating resource recovery and resource recycling using cyanobacteria to develop a peri-urban algae farming system. This can lead to establishing wastewater-driven algae cultivation systems as novel enterprises for rural migrants moving to urban areas.


Subject(s)
Cyanobacteria , Phosphorus , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Phosphorus/analysis , Waste Disposal, Fluid/methods , Cyanobacteria/growth & development , Nitrogen/analysis , Recycling , Agriculture/methods , Biological Oxygen Demand Analysis , Soil/chemistry
13.
J Environ Manage ; 363: 121360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850902

ABSTRACT

Large-volume production of poly(ethylene terephthalate) (PET), especially in the form of bottles and food packaging containers, causes problems with polymer waste management. Waste PET could be recycled thermally, mechanically or chemically and the last method allows to obtain individual monomers, but most often it is carried out in the presence of homogeneous catalysts, that are difficult to separate and reuse. In view of this, this work reports for the first time, application of bimetallic MOF-74 - as heterogeneous catalyst - for depolymerization of PET with high monomer (bishydroxyethyl terephthalate, BHET) recovery. The effect of type and amount of second metal in the MOF-74 (Mg/M) was systematically investigated. The results showed increased activity of MOF-74 (Mg/M) containing Co2+, Zn2+ and Mn2+ as a second metal, while the opposite correlation was observed for Cu2+ and Ni2+. It was found that the highest catalytic activity was demonstrated by the introduction of Mg-Mn into MOF-74 with ratio molar 1:1, which resulted in complete depolymerization of PET and 91.8% BHET yield within 4 h. Furthermore, the obtained catalyst showed good stability in 5 reaction cycles and allowed to achieve high-purity BHET, which was confirmed by HPLC analysis. The as-prepared MOF-74 (Mg/Mn) was easy to separate from the post-reaction mixture, clean and reuse in the next depolymerization reaction.


Subject(s)
Polyethylene Terephthalates , Catalysis , Polyethylene Terephthalates/chemistry , Polymerization , Waste Management/methods , Recycling , Metal-Organic Frameworks/chemistry
14.
J Environ Manage ; 363: 121363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850911

ABSTRACT

The footwear industry significantly impacts the environment, from raw material extraction to waste disposal. Transforming waste into new products is a viable option to mitigate the environmental consequences, reducing the reliance on virgin raw materials. This work aims to develop thermal and acoustic insulation materials using polyester waste from footwear industry. Two nonwoven and two compressed nonwoven structures, comprising 80% polyester waste and 20% commercial recycled polyester (matrix), were produced. The materials were created through needle-punching and compression molding techniques. The study included the production of sandwich and monolayer nonwoven structures, which were evaluated considering area weight, thickness, air permeability, mechanical properties, morphology using field emission scanning electron microscopy, and thermal and acoustic properties. The nonwoven samples presented high tensile strength (893 kPa and 629 kPa) and the highest strain (79.7% and 73.3%) and compressed nonwoven structures showed higher tensile strength (2700 kPa and 1291 kPa) but reduced strain (25.8% and 40.8%). Nonwoven samples showed thermal conductivity of 0.041 W/K.m and 0.037 W/K.m. Compressed nonwoven samples had higher values at 0.060 W/K.m and 0.070 W/K.m. While the sample with the highest conductivity exceeds typical insulation levels, other samples are suitable for thermal insulation. Nonwoven structures exhibited good absorption coefficients (0.640-0.644), suitable for acoustic insulation. Compressed nonwoven structures had lower values (0.291-0.536), unsuitable for this purpose. In summary, this study underscores the potential of 100% recycled polyester structures derived from footwear and textile industry waste, showcasing remarkable acoustic and thermal insulation properties ideal for the construction sector.


Subject(s)
Acoustics , Shoes , Tensile Strength , Polyesters/chemistry , Recycling
15.
J Environ Manage ; 363: 121254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850909

ABSTRACT

Despite being composed of recyclable materials, the main technological challenge of multilayer carton packs involves the efficient decompatibilization of the cellulosic, polymeric, and metallic phases. Here, a simple two-step mechanochemical process is described that uses only aqueous media and mechanical force to promote phase separation in order to fully recycle multi-layer carton packaging. The first step produces value-added micro- and nanocellulose, while in the second step, aluminum is extracted, forming precipitated aluminum and aluminum oxyhydroxides. Solid polyethylene (PE) remains with a degree of purity defined by the process efficiency. The results show that cellulose is efficiently extracted and converted into micro- and nanocellulose after 15 min of milling. In the second stage, approximately 90% of the aluminum is extracted from the PE after 15 min of milling. Due to the separation and drying medium conditions, the finely divided particles of extracted aluminum also have oxyhydroxides in their composition. It is believed that a passivation layer forms on the metallic aluminum particle. The techno-economic analysis revealed a positive net present value (NPV) of $17.5 million, with a minimum selling price of 1.62 USD/kg of cellulose. The environmental analysis concluded that most of the environmental impact of the process is associated with the entry of carton packages into the system, incorporating a small environmental load related to the industrial process. The results indicate a promising option toward a circular economy and carbon neutrality.


Subject(s)
Cellulose , Recycling , Cellulose/chemistry , Aluminum/chemistry , Polyethylene/chemistry
16.
J Environ Manage ; 363: 121364, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850917

ABSTRACT

Recycling silicon cutting waste (SCW) plays a pivotal role in reducing environmental impact and enhancing resource efficiency within the semiconductor industry. Herein SCW was utilized to prepare SiC and ultrasound-assisted leaching was investigated to purify the obtained SiC and the leaching factors were optimized. The mixed acids of HF/H2SO4 works efficiently on the removal of Fe and SiO2 due to that HF can react with SiO2 and Si and then expose the Fe to H+. The assistance of ultrasound can greatly improve the leaching of Fe, accelerate the leaching rate, and lower the leaching temperature. The optimal leaching conditions are HF-H2SO4 ratio of 1:3, acid concentration of 3 mol/L, temperature of 50 °C, ultrasonic frequency of 45 kHz and power of 210 W, and stirring speed of 300 rpm. The optimal leaching ratio of Fe is 99.38%. Kinetic analysis shows that the leaching process fits the chemical reaction-controlled model.


Subject(s)
Recycling , Silicon , Silicon/chemistry , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Silicon Dioxide/chemistry , Kinetics , Temperature
17.
Water Sci Technol ; 89(10): 2646-2660, 2024 May.
Article in English | MEDLINE | ID: mdl-38822605

ABSTRACT

The objective of this study was to assess, through simulation, conductivity variations in pulp and paper circuits when recycling waste water treatment plant (WWTP) effluent with a view to reducing fresh water use in a tissue mill. WWTP effluent was recycled in the process for different uses. A PS2000 digital model coupled with the PHREEQC chemical simulation engine was used to identify and quantify the main sources of conductivity: caustic soda, sodium bisulphite and acetate production through anaerobic microbial activity. Recycling WWTP effluent enables fresh water uptake to be reduced by 50% when used for pulp dilution or white water, by 81% when used in paper machine showers, and up to 96% for all uses combined. As fresh water use decreases, circuit closure increases along with, consequently, COD and conductivity. COD build-up can be controlled by best available techniques application. Recycling WWTP effluent has a strong impact on conductivity. However, the impact of high conductivity levels on additives performance is limited in the case of the mill studied. Acetate concentration could be controlled by better agitation of tanks or the introduction of air by pumps. Furthermore, limiting acetate production can reduce the need for caustic soda to control the pH.


Subject(s)
Industrial Waste , Paper , Recycling , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Recycling/methods , Electric Conductivity , Models, Theoretical , Wastewater/chemistry
18.
PLoS One ; 19(6): e0304797, 2024.
Article in English | MEDLINE | ID: mdl-38829883

ABSTRACT

Partially encased concrete (PEC) has better mechanical properties as a structure where steel and concrete work together. Due to the increasing amount of construction waste, recycled aggregate concrete (RAC) is being considered by more people. However, although RAC has more points, the performance is inferior to natural aggregate concrete (NAC). To narrow or address this gap, lightweight, high-strength and corrosion-resistant CFRP can be used, also protecting the steel flange of the PEC structure. Therefore, carbon fiber reinforced polymer (CFRP) confined partially encased recycled coarse aggregate concrete columns were studied in this paper. With respect to different slenderness ratios, recycled coarse aggregate(RCA) replacement ratios, and number of CFRP layers, the performance of the proposed CFRP restrained columns are reported. The RCA replacement ratio is analyzed to be limited negative impact on the bearing capacity, generally within 6%. As for the slenderness ratio, the bearing capacity increased with it. However, wrapping CFRP significantly increased the bearing capacity. Considering the arch factor, a simple formula for calculating the ultimate strength of CFRP-confined partially encased RAC columns is developed based on EC4 and GB50017-2017. By comparison with the experimental values, the error is within 10%.


Subject(s)
Carbon Fiber , Compressive Strength , Construction Materials , Polymers , Recycling , Carbon Fiber/chemistry , Construction Materials/analysis , Polymers/chemistry , Materials Testing , Steel/chemistry
19.
Nat Commun ; 15(1): 4715, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830860

ABSTRACT

Plastic waste is an environmental challenge, but also presents a biotechnological opportunity as a unique carbon substrate. With modern biotechnological tools, it is possible to enable both recycling and upcycling. To realize a plastics bioeconomy, significant intrinsic barriers must be overcome using a combination of enzyme, strain, and process engineering. This article highlights advances, challenges, and opportunities for a variety of common plastics.


Subject(s)
Biodegradation, Environmental , Plastics , Recycling , Plastics/chemistry , Biotechnology/methods , Biotechnology/trends
20.
Syst Rev ; 13(1): 148, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831309

ABSTRACT

BACKGROUND: Due to their adverse environmental and health impacts, brominated flame retardants (BFRs) are listed in Annex A of the Stockholm Convention for global elimination of production and use. Their health impacts include endocrine disruption, cancer, reproductive effects, and neurobehavioral and developmental disorders in children. Emerging literature suggests that legacy POP-BFRs are increasingly found in consumer products, including those used for and by children. The presence of legacy POP-BFRs in children's products is a big concern. Children are more vulnerable to chemical exposure risks than adults because their bodies are still developing and fragile. The rising problem is contributed to by the global push towards a circular economy that encourages responsible production and consumption by practising the recycling of waste materials. Waste materials such as electronic and electrical equipment plastics often contain POP-BFRs. POP-BFRs in waste materials are transferred into new products through recycling. The recycled products have become a potential source of exposure to legacy POP-BFRs for vulnerable populations, particularly children. Our scoping review aims to map and summarise the emerging literature. This information is needed to inform evidence-based policies to protect children from toxic exposures. METHODS: Our scoping review will follow a methodological framework proposed by Arksey and O'Malley. Peer-reviewed and grey literature on the topic will be retrieved from electronic databases and other relevant sites. Two reviewers will screen titles and abstracts, followed by a full-text review of studies for eligibility based on the established inclusion and exclusion criteria. Data will be extracted, and findings will be mapped in a table according to study settings, types of children's products tested, and concentration of legacy POP-BFRs in contaminated products. A map chart will be created to display how contaminated products are spread globally. DISCUSSION: Because of their unique vulnerabilities, children continue to suffer disproportionate exposures to toxic chemicals compared to adults. Information on potential exposures, particularly for children, is crucial to make evidence-based policies. We intend to map and summarise the emerging literature on legacy POP-BFRs in children's products. Findings will be disseminated to relevant stakeholders through publishing in a peer-reviewed scientific journal and policy briefs. SYSTEMATIC REVIEW REGISTRATION: The protocol is registered with the Open Science Framework ( https://doi.org/10.17605/OSF.IO/7KDE5 ).


Subject(s)
Flame Retardants , Plastics , Flame Retardants/analysis , Flame Retardants/adverse effects , Humans , Child , Plastics/adverse effects , Plastics/toxicity , Recycling , Play and Playthings , Environmental Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...