Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.802
Filter
1.
Biomolecules ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786001

ABSTRACT

During the first and second stages of postnatal development, neocortical neurons exhibit a wide range of spontaneous synchronous activity (SSA). Towards the end of the second postnatal week, the SSA is replaced by a more sparse and desynchronized firing pattern. The developmental desynchronization of neocortical spontaneous neuronal activity is thought to be intrinsically generated, since sensory deprivation from the periphery does not affect the time course of this transition. The extracellular protein reelin controls various aspects of neuronal development through multimodular signaling. However, so far it is unclear whether reelin contributes to the developmental desynchronization transition of neocortical neurons. The present study aims to investigate the role of reelin in postnatal cortical developmental desynchronization using a conditional reelin knockout (RelncKO) mouse model. Conditional reelin deficiency was induced during early postnatal development, and Ca2+ recordings were conducted from organotypic cultures (OTCs) of the somatosensory cortex. Our results show that both wild type (wt) and RelncKO exhibited an SSA pattern during the early postnatal week. However, at the end of the second postnatal week, wt OTCs underwent a transition to a desynchronized network activity pattern, while RelncKO activity remained synchronous. This changing activity pattern suggests that reelin is involved in regulating the developmental desynchronization of cortical neuronal network activity. Moreover, the developmental desynchronization impairment observed in RelncKO was rescued when RelncKO OTCs were co-cultured with wt OTCs. Finally, we show that the developmental transition to a desynchronized state at the end of the second postnatal week is not dependent on glutamatergic signaling. Instead, the transition is dependent on GABAAR and GABABR signaling. The results suggest that reelin controls developmental desynchronization through GABAAR and GABABR signaling.


Subject(s)
Extracellular Matrix Proteins , Mice, Knockout , Neocortex , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Mice , Neocortex/metabolism , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Neurons/metabolism , Nerve Net/metabolism , Nerve Net/growth & development , Somatosensory Cortex/metabolism , Somatosensory Cortex/growth & development
2.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791562

ABSTRACT

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Subject(s)
Astrocytes , Cyclin-Dependent Kinase 5 , Hippocampus , Neurogenesis , Reelin Protein , Animals , Astrocytes/metabolism , Rats , Reelin Protein/metabolism , Male , Hippocampus/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , GABAergic Neurons/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Rats, Wistar , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Parvalbumins/metabolism
3.
Ageing Res Rev ; 98: 102339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754634

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder that affects the cerebral cortex and hippocampus, and is characterised by progressive cognitive decline and memory loss. A recent report of a patient carrying a novel gain-of-function variant of RELN (H3447R, termed RELN-COLBOS) who developed resilience against presenilin-linked autosomal-dominant AD (ADAD) has generated enormous interest. The RELN-COLBOS variant enhances interactions with the apolipoprotein E receptor 2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR), which are associated with delayed AD onset and progression. These findings were validated in a transgenic mouse model. Reelin is involved in neurodevelopment, neurogenesis, and neuronal plasticity. The evidence accumulated thus far has demonstrated that the Reelin pathway links apolipoprotein E4 (ApoE4), amyloid-ß (Aß), and tubulin-associated unit (Tau), which are key proteins that have been implicated in AD pathogenesis. Reelin and key components of the Reelin pathway have been highlighted as potential therapeutic targets and biomarkers for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Cell Adhesion Molecules, Neuronal , Extracellular Matrix Proteins , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , tau Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Humans , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Animals , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Mice
4.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715106

ABSTRACT

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Subject(s)
Hippocampus , Memory , Mice, Inbred C57BL , Perforant Pathway , Reelin Protein , Sex Characteristics , Animals , Male , Female , Hippocampus/metabolism , Fear , Mice , Stress, Psychological
5.
Neurosci Lett ; 830: 137770, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38616004

ABSTRACT

Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.


Subject(s)
Cell Adhesion Molecules, Neuronal , Corticosterone , DNA Methyltransferase 3A , Extracellular Matrix Proteins , Hypothalamus , Methyl-CpG-Binding Protein 2 , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Female , Male , Rats , Cell Adhesion Molecules, Neuronal/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/metabolism , Extracellular Matrix Proteins/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/metabolism , Sex Characteristics , Rats, Long-Evans
6.
Article in Russian | MEDLINE | ID: mdl-38676676

ABSTRACT

This review highlights literature data on potential genetic markers that potentially influence the development of postoperative cognitive dysfunction, such as TOMM40, APOE, TREM2, METTL3, PGC1a, HMGB1 and ERMN. The main pathogenetic mechanisms triggered by these genes and leading to the development of cognitive impairment after anesthesia are described. The paper systematizes previously published works that provide evidence of the impact of specific genetic variants on the development of postoperative cognitive dysfunction.


Subject(s)
Apolipoproteins E , Mitochondrial Precursor Protein Import Complex Proteins , Postoperative Cognitive Complications , Receptors, Immunologic , Humans , Postoperative Cognitive Complications/genetics , Apolipoproteins E/genetics , Methyltransferases/genetics , Membrane Glycoproteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Membrane Transport Proteins/genetics , Genetic Markers , Reelin Protein , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Genetic Predisposition to Disease
7.
Cells ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607022

ABSTRACT

Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.


Subject(s)
Anti-Inflammatory Agents , Encephalomyelitis, Autoimmune, Experimental , Reelin Protein , Animals , Mice , Cell Adhesion Molecules, Neuronal/metabolism , Endothelial Cells/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Reelin Protein/antagonists & inhibitors , Inflammation/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Anti-Inflammatory Agents/therapeutic use
8.
Article in English | MEDLINE | ID: mdl-38552775

ABSTRACT

There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3µg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.


Subject(s)
Corticosterone , Ketamine , Animals , Female , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Corticosterone/metabolism , Depression/drug therapy , Depression/chemically induced , Hippocampus/metabolism , Ketamine/pharmacology , Ketamine/therapeutic use , Rats, Long-Evans , Reelin Protein/pharmacology , Reelin Protein/therapeutic use
9.
Histopathology ; 84(7): 1199-1211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409885

ABSTRACT

AIMS: Intracranial germ cell tumour (IGCT) is a type of rare central nervous system tumour that mainly occurs in children and adolescents, with great variation in its incidence rate and molecular characteristics in patients from different populations. The genetic alterations of IGCT in the Chinese population are still unknown. METHODS AND RESULTS: In this study, 47 patients were enrolled and their tumour specimens were analysed by whole-exome sequencing (WES). We found that KIT was the most significantly mutated gene (15/47, 32%), which mainly occurred in the germinoma group (13/20, 65%), and less frequently in NGGCT (2/27, 7%). Copy number variations (CNVs) of FGF6 and TFE3 only appeared in NGGCT patients (P = 0.003 and 0.032, respectively), while CNVs of CXCR4, RAC2, PDGFA, and FEV only appeared in germinoma patients (P = 0.004 of CXCR4 and P = 0.027 for the last three genes). Compared with a previous Japanese cohort, the somatic mutation rates of RELN and SYNE1 were higher in the Chinese. Prognostic analysis showed that the NF1 mutation was associated with shorter overall survival and progression-free survival in IGCT patients. Clonal evolution analysis revealed an early branched evolutionary pattern in two IGCT patients who underwent changes in the histological subtype or degree of differentiation during disease surveillance. CONCLUSION: This study indicated that Chinese IGCT patients may have distinct genetic characteristics and identified several possible genetic alterations that have the potential to become prognostic biomarkers of NGGCT patients.


Subject(s)
Brain Neoplasms , Exome Sequencing , Neoplasms, Germ Cell and Embryonal , Humans , Male , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Female , Adolescent , Child , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Child, Preschool , China/epidemiology , Adult , Young Adult , DNA Copy Number Variations , Mutation , Asian People/genetics , Reelin Protein , Biomarkers, Tumor/genetics , Prognosis , East Asian People
10.
Int J Dev Neurosci ; 84(2): 154-159, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296839

ABSTRACT

OBJECTIVE: Schizophrenia belongs to a severe mental illness with complicated clinical presentations, an ill-defined pathogenesis, and no known cause. Many genetic studies imply that polygenic interaction is important in the development of schizophrenia. The main mechanism of the RELN-BDNF-CREB-DNMT signaling pathway in neurodevelopment involves RELN, brain-derived neurotrophic factor (BDNF), transcription factor cyclic adenosine monophosphate response element binding protein (CREB), DNA methyltransferase 1 (DNMT1), as well as DNA methyltransferase 3B (DNMT3B). An early case-control research on 15 polymorphisms in the RELN, CREB, BDNF, DNMT1, and DNMT3B genes was done. A single gene variation has little effect on the pathogenesis of schizophrenia, but the combination of intergenic variation loci has a bigger impact because schizophrenia is a complex polygenic disorder. The objective of the current study sought to explore the impact of genetic interactions between RELN, BDNF, CREB, DNMT1, and DNMT3B on schizophrenia in order to further highlight the genetic factors influencing the risk of schizophrenia. METHODS: Taking the case-control study design, with the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to be the evaluation norm, 134 individuals suffering from schizophrenia hospitalized in the Third People's Hospital of Zhongshan City within January 2018 to April 2020 (case group) were selected, and 64 healthy individuals (control group) from the same geographical area had been chosen as well. MassArray identified DNMT1 gene single nucleotide polymorphisms (rs2114724 and rs2228611) and DNMT3B gene SNPs (rs2424932, rs1569686, rs6119954, and rs2424908). Using the generalized multifactor dimensionality reduction (GMDR), the RELN-BDNF-CREB-DNMT pathway's gene interactions were examined for their impact on schizophrenia. RESULTS: GMDR analysis showed that the three-order interaction model RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) was the optimal model (p = 0.001), with the consistency of cross-validation of 10/10 and the test accuracy of 0.8711. CONCLUSION: The interaction between the RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) may be related to schizophrenia, and large sample sizes should be verified in different population.


Subject(s)
DNA Methyltransferase 3B , Genetic Predisposition to Disease , Reelin Protein , Schizophrenia , Humans , Brain-Derived Neurotrophic Factor/genetics , Case-Control Studies , DNA (Cytosine-5-)-Methyltransferases/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Signal Transduction , Reelin Protein/genetics , DNA Methyltransferase 3B/genetics
11.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255890

ABSTRACT

Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.


Subject(s)
Antidepressive Agents , Brain-Gut Axis , Depression , Enteric Nervous System , Reelin Protein , Animals , Humans , Affect , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Enteric Nervous System/metabolism , Reelin Protein/metabolism
12.
Anim Genet ; 54(5): 632-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37334487

ABSTRACT

Cerebellar hypoplasia is a heterogeneous neurological condition in which the cerebellum is smaller than usual or not completely developed. The condition can have genetic origins, with Mendelian-effect mutations described in several mammalian species. Here, we describe a genetic investigation of cerebellar hypoplasia in White Swiss Shepherd dogs, where two affected puppies were identified from a litter with a recent common ancestor on both sides of their pedigree. Whole genome sequencing was conducted for 10 dogs in this family, and filtering of these data based on a recessive transmission hypothesis highlighted five protein-altering candidate variants - including a frameshift-deletion of the Reelin (RELN) gene (p.Val947*). Given the status of RELN as a gene responsible for cerebellar hypoplasia in humans, sheep and mice, these data strongly suggest the loss-of-function variant as underlying these effects. This variant has not been found in other dog breeds nor in a cohort of European White Swiss Shepherds, suggesting a recent mutation event. This finding will support the genotyping of a more diverse sample of dogs, and should aid future management of the harmful allele through optimised mating schemes.


Subject(s)
Dog Diseases , Reelin Protein , Animals , Dogs , Humans , Cerebellum/abnormalities , Dog Diseases/genetics , Frameshift Mutation , Mammals , Mutation , Sequence Deletion , Switzerland , Reelin Protein/genetics
13.
Cell Rep ; 42(6): 112669, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339050

ABSTRACT

Reelin was originally identified as a regulator of neuronal migration and synaptic function, but its non-neuronal functions have received far less attention. Reelin participates in organ development and physiological functions in various tissues, but it is also dysregulated in some diseases. In the cardiovascular system, Reelin is abundant in the blood, where it contributes to platelet adhesion and coagulation, as well as vascular adhesion and permeability of leukocytes. It is a pro-inflammatory and pro-thrombotic factor with important implications for autoinflammatory and autoimmune diseases such as multiple sclerosis, Alzheimer's disease, arthritis, atherosclerosis, or cancer. Mechanistically, Reelin is a large secreted glycoprotein that binds to several membrane receptors, including ApoER2, VLDLR, integrins, and ephrins. Reelin signaling depends on the cell type but mostly involves phosphorylation of NF-κB, PI3K, AKT, or JAK/STAT. This review focuses on non-neuronal functions and the therapeutic potential of Reelin, while highlighting secretion, signaling, and functional similarities between cell types.


Subject(s)
Cell Adhesion Molecules, Neuronal , Extracellular Matrix Proteins , Reelin Protein , Humans , Brain/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Inflammation , LDL-Receptor Related Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism
14.
Neurosci Res ; 194: 7-14, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37011786

ABSTRACT

Reelin is a large secreted protein important for brain development and functions. In both humans and mice, the lack of Reelin gene causes cerebellar hypoplasia and ataxia. Treatment against Reelin deficiency is currently unavailable. Here, we show that the injection of recombinant Reelin protein into the cerebellum of Reelin-deficient reeler mice at postnatal day 3 ameliorates the forelimb coordination and mice are noted to stand up along cage wall more frequently. A mutant Reelin protein resistant to proteases has no better effect than the wild-type Reelin. Such ameliorations were not observed when a mutant Reelin protein that does not bind to Reelin receptors was injected and the injection of Reelin protein did not ameliorate the behavior of Dab1-mutant yotari mice, indicating that its effect is dependent on the canonical Reelin receptor-Dab1 pathway. Additionally, a Purkinje cell layer in reeler mice was locally induced by Reelin protein injection. Our results indicate that the reeler mouse cerebellum retains the ability to react to Reelin protein in the postnatal stage and that Reelin protein has the potential to benefit Reelin-deficient patients.


Subject(s)
Extracellular Matrix Proteins , Reelin Protein , Humans , Mice , Animals , Mice, Neurologic Mutants , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Cerebellum , Nerve Tissue Proteins/metabolism
15.
Amino Acids ; 55(6): 757-767, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37067567

ABSTRACT

Disabled 1 (Dab1) is an adaptor protein with essential functions regulated by reelin signaling and affects many biological processes in the nervous system, including cell motility, adhesion, cortical development, maturation, and synaptic plasticity. Posttranslational modifications directly guide the fates of cytoplasmic proteins to complete their functions correctly. Reciprocal crosstalk between O-GlcNAcylation and phosphorylation is a dynamic modification in cytoplasmic proteins. It modulates the functions of the proteins by regulating their interactions with other molecules in response to the continuously changeable cell microenvironment. Although Dab1 contains conserved recognition sites for phosphorylation in their N-terminal protein interaction domain, the O-ß-GlcNAcylation and phosphorylation sites of human Dab1 sequence, their reciprocal crosstalk, and potential kinases catalyzing the phosphorylation remain unknown. In this study, we determined potential thirty-seven O-ß-GlcNAcylation and sixty-seven phosphorylation sites. Conserved twenty-one residues of these glycosylated sites were also phosphorylated with various kinases, including ATM, CKI, DNAPK, GSK3, PKC, PKG, RSK, cdc2, cdk5, and p38MAPK. In addition, we analyzed these conserved sites at our constructed two- and three-dimensional structures of human Dab1 protein. Dab1 protein models were frequently composed of coil structures as well as α-helix and ß-strands. Many of these conserved crosstalk sites between O-ß-GlcNAcylation and phosphorylation were localized at the coil region of the protein model. These findings may guide biochemical, genetic, and glyco-biology based on further experiments about the Dab1 signaling process. Understanding these modifications might change the point of view of the Dab1 signaling process and treatment for pathological conditions in neurodegenerative diseases such as Alzheimer's disease.


Subject(s)
Extracellular Matrix Proteins , Reelin Protein , Animals , Humans , Phosphorylation , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Serine Endopeptidases/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Glycogen Synthase Kinase 3/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Vertebrates
16.
Mol Cell Neurosci ; 124: 103794, 2023 03.
Article in English | MEDLINE | ID: mdl-36435394

ABSTRACT

Reelin, a large secreted glycoprotein, plays an important role in neuronal migration during brain development. The C-terminal region (CTR) of Reelin is involved in the efficient activation of downstream signaling and its loss leads to abnormal hippocampal layer formation. However, the molecular mechanism by which Reelin CTR regulates hippocampal development remains unknown. Here, we showed that the migration of late-born, but not early-born, neurons is impaired in the knock-in mice in which Reelin CTR is deleted (ΔC-KI mice). The phosphorylation of cofilin, an actin-depolymerizing protein, was remarkably decreased in the hippocampus of the ΔC-KI mice. Exogenous expression of pseudo-phosphorylated cofilin rescued the ectopic positioning of neurons in the hippocampus of ΔC-KI mice. These results suggest that Reelin CTR is required for the migration of late-born neurons in the hippocampus and that this event involves appropriate phosphorylation of cofilin.


Subject(s)
Actin Depolymerizing Factors , Extracellular Matrix Proteins , Reelin Protein , Animals , Mice , Actin Depolymerizing Factors/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phosphorylation , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Reelin Protein/metabolism
17.
Cereb Cortex ; 33(7): 3866-3881, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35989311

ABSTRACT

Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.


Subject(s)
Reelin Protein , Ubiquitin , Animals , Female , Pregnancy , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Ligases , Mammals/metabolism , Serine Endopeptidases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism
18.
Cells ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36497098

ABSTRACT

Remarkable clinical benefits in several advanced cancers are observed under the treatment of immune checkpoint inhibitor (ICI) agents. However, only a smaller proportion of patients respond to the treatments. Reelin (RELN) is frequently mutated in the cancer genome. In this study, the RELN mutation association with ICI treatment efficacy in melanoma and non-small cell lung cancer (NSCLC) was elucidated. Data from 631 melanoma and 109 NSCLC patients with both ICI treatment data and pre-treatment mutational profiles were collected. In addition, from the Cancer Genome Atlas (TCGA) project, we also obtained both tumors to explore the immunologic features behind RELN mutations. Melanoma patients with RELN mutations exhibited a favorable ICI survival benefit when compared with wild-type patients (HR: 0.66, 95% CI: 0.51-0.87, p = 0.003). A higher response rate was also noticed in RELN-mutated patients (38.9% vs. 28.3%, p = 0.017). The association of RELN mutations with a preferable immunotherapy outcome and response was further confirmed in NSCLC. Further exploration demonstrated that favorable immunocyte infiltration and immune response signaling pathways were found in patients with RELN mutations. In this study, RELN mutations were identified to connect with a better immune microenvironment and an improved ICI efficacy in melanoma and NSCLC, which provides a potential biomarker for immunological feature evaluation and immunotherapeutic outcome prediction at the molecular level.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Reelin Protein , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Melanoma/drug therapy , Melanoma/genetics , Mutation/genetics , Tumor Microenvironment , Reelin Protein/genetics
19.
Psychiatry Res ; 317: 114838, 2022 11.
Article in English | MEDLINE | ID: mdl-36103758

ABSTRACT

Major depressive disorder (MDD) is a devastating mental illness and the leading cause of disability worldwide. Previous studies have suggested that synaptic plasticity in the hippocampus plays an important role in depression pathogenesis. Reelin is expressed mainly in the frontal lobe and hippocampus, and is closely associated with neurodevelopment and synaptic plasticity. However, few studies have investigated its role in MDD combining clinical trials and animal experiments. We show that in a clinical trial, plasma reelin levels decreased in patients with first-episode drug-naïve MDD and increased after treatment; further, plasma reelin levels allowed to distinguish drug-naïve patients with first-episode MDD from healthy individuals. In rats, chronic mild and unpredictable stress led to a decrease in both reelin mRNA and protein levels in the hippocampus, which could be reversed by vortioxetine. Subsequent experiments confirmed that the reelin-ApoER2-NR2A /NR2B pathway regulates hippocampal synaptic plasticity and may be involved in depression or antidepressant responses. Our work contributes to a deeper understanding of MDD pathogenesis and provides new evidence that reelin should be considered a potential therapeutic target for MDD.


Subject(s)
Cell Adhesion Molecules, Neuronal , Depressive Disorder, Major , Animals , Rats , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Depression , Depressive Disorder, Major/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Reelin Protein , Rodentia/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Clinical Trials as Topic
20.
BMC Biol ; 20(1): 198, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071487

ABSTRACT

BACKGROUND: Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS: We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS: These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Mushroom Bodies , Receptors, Cytoplasmic and Nuclear , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/pharmacology , Mushroom Bodies/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Reelin Protein , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...