Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Clin Pharmacokinet ; 53(3): 283-293, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24214317

ABSTRACT

BACKGROUND AND OBJECTIVES: The kidney is a major drug-eliminating organ. Renal impairment or concomitant use of transporter inhibitors may decrease active secretion and increase exposure to a drug that is a substrate of kidney secretory transporters. However, prediction of the effects of patient factors on kidney transporters remains challenging because of the multiplicity of transporters and the lack of understanding of their abundance and specificity. The objective of this study was to use physiologically based pharmacokinetic (PBPK) modelling to evaluate the effects of patient factors on kidney transporters. METHODS: Models for three renally cleared drugs (oseltamivir carboxylate, cidofovir and cefuroxime) were developed using a general PBPK platform, with the contributions of net basolateral uptake transport (T up,b) and apical efflux transport (T eff,a) being specifically defined. RESULTS AND CONCLUSION: We demonstrated the practical use of PBPK models to: (1) define transporter-mediated renal secretion, using plasma and urine data; (2) inform a change in the system-dependent parameter (≥10-fold reduction in the functional 'proximal tubule cells per gram kidney') in severe renal impairment that is responsible for the decreased secretory transport activities of test drugs; (3) derive an in vivo, plasma unbound inhibition constant of T up,b by probenecid (≤1 µM), based on observed drug interaction data; and (4) suggest a plausible mechanism of probenecid preferentially inhibiting T up,b in order to alleviate cidofovir-induced nephrotoxicity.


Subject(s)
Kidney Diseases/metabolism , Kidney/metabolism , Membrane Transport Proteins/metabolism , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Probenecid/antagonists & inhibitors , Renal Agents/antagonists & inhibitors , Animals , Computer Simulation , Humans , Models, Biological
2.
Hypertension ; 41(3 Pt 2): 737-43, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12623989

ABSTRACT

Angiotensin-(1-7) [Ang-(1-7)] has biological actions that can often be distinguished from those of angiotensin II (Ang II). Recent studies indicate that the effects of Ang-(1-7) are mediated by specific receptor(s). We now report the partial characterization of a new antagonist selective for Ang-(1-7), D-Pro7-Ang-(1-7). D-Pro7-Ang-(1-7) (50 pmol) inhibited the hypertensive effect induced by microinjection of Ang-(1-7) [4+/-1 vs 21+/-2 mm Hg, 25 pmol Ang-(1-7) alone] into the rostral ventrolateral medulla without changing the effect of Ang II (16+/-2.5 vs 19+/-2.5 mm Hg after 25 pmol Ang II alone). At 10(-7) mol/L concentration, it completely blocked the endothelium-dependent vasorelaxation produced by Ang-(1-7) (10(-10) to 10(-6) mol/L) in the mouse aorta. The antidiuresis produced by Ang-(1-7) (40 pmol/100 g body weight) in water-loaded rats was also blocked by its analog [1 microg/100 g body weight; 3.08+/-0.8 vs 1.27+/-0.33 mL in Ang-(1-7)-treated rats]. D-Pro7-Ang-(1-7) at a molar ratio of 40:1 did not change the hypotensive effect of bradykinin. Moreover, D-Pro7-Ang-(1-7) did not affect the dipsogenic effect produced by intracerebroventricular administration of Ang II (11.4+/-1.15 vs 8.8+/-1.2 mL/h after Ang II) and did not show any demonstrable angiotensin-converting enzyme inhibitory activity in assays with the synthetic substrate Hip-His-Leu and rat plasma as a source of enzyme. Autoradiography studies with 125I-Ang-(1-7) in mouse kidney slices showed that D-Pro7-Ang-(1-7) competed for the binding of Ang-(1-7) to the cortical supramedullary region. In Chinese hamster ovary cells stably transfected with the AT1 receptor subtype, D-Pro7-Ang-(1-7) did not compete for the specific binding of 125I-Ang-II in concentrations up to 10(-6) mol/L. There was also no significant displacement of Ang II binding to angiotensin type 2 receptors in membrane preparations of adrenal medulla. These data indicate that D-Pro7-Ang-(1-7) is a selective antagonist for Ang-(1-7), which can be useful to clarify the functional role of this heptapeptide.


Subject(s)
Angiotensin I/antagonists & inhibitors , Angiotensin I/pharmacology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/pharmacology , Renal Agents/antagonists & inhibitors , Angiotensin I/metabolism , Angiotensin II/metabolism , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/physiology , Culture Techniques , Male , Peptide Fragments/metabolism , Rats , Rats, Wistar , Renal Agents/metabolism , Vasodilation/drug effects
3.
Braz. j. med. biol. res ; 31(9): 1221-7, sept. 1998. tab, graf
Article in English | LILACS | ID: lil-222969

ABSTRACT

In the present study we evaluated the nature of angiotensin receptors involved in the antidiuretic effect of angiotensin-(1-7) (Ang-(1-7)) in water-loaded rats. Water diuresis was induced in male Wistar rats weighing 280 to 320 g by water load (5 ml/100 g body weight by gavage). Immediately after water load the rats were treated subcutaneously with (doses are per 100 g body weight): 1) vehicle (0.05 ml 0.9 percenr NaCl); 2) graded doses of 20, 40 or 80 pmol Ang-(1-7); 3) 200 nmol Losartan; 4) 200 nmol Losartan combined with 40 pmol Ang-(1-7); 5) 1.1 or 4.4 nmol A-779; 6) 1.1 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 7) 4.4 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 8) 95 nmol CGP 42112A, or 9) 95 nmol CGP 42112A combined with 40 pmol Ang-(1-7). The antidiuretic effect of Ang-(1-7) was associated with an increase in urinary Na+ concentration, an increase in urinary osmolality and a reduction in creatinine clearance (CCr: 0.65 ñ 0.04 ml/min vs 1.45 ñ 0.18 ml/min in vehicle-treated rats, P<0.05). A-779 and Losartan completely blocked the effect of Ang-(1-7) on water diuresis (2.93 ñ 0.34 ml/60 min and 3.39 ñ 0.58 ml/60 min, respectively). CGP 42112A, at the dose used, did not modify the antidiuretic effect of Ang-(1-7). The blockade produced by Losartan was associated with an increase in CCr and with an increase in sodium and water excretion as compared with Ang-(1-7)-treated rats. When Ang-(1-7) was combined with A-779 there was an increase in CCr and natriuresis and a reduction in urine osmolality compared with rats treated with Ang-(1-7) alone. The observation that both A-779, which does not bind to AT1 receptors, and Losartan blocked the effect of Ang-(1-7) suggests that the kidney effects of Ang-(1-7) are mediated by a non-AT1 angiotensin receptor that is recognized by Losartan.


Subject(s)
Animals , Male , Rats , Angiotensin II/antagonists & inhibitors , Diuresis/drug effects , Drinking , Losartan/pharmacology , Peptide Fragments/pharmacology , Receptors, Angiotensin/physiology , Renal Agents/antagonists & inhibitors , Analysis of Variance , Angiotensin II/pharmacology , Kidney/drug effects , Rats, Wistar , Renal Agents/pharmacology
4.
Braz J Med Biol Res ; 31(9): 1221-7, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9876290

ABSTRACT

In the present study we evaluated the nature of angiotensin receptors involved in the antidiuretic effect of angiotensin-(1-7) (Ang-(1-7)) in water-loaded rats. Water diuresis was induced in male Wistar rats weighing 280 to 320 g by water load (5 ml/100 g body weight by gavage). Immediately after water load the rats were treated subcutaneously with (doses are per 100 g body weight): 1) vehicle (0.05 ml 0.9% NaCl); 2) graded doses of 20, 40 or 80 pmol Ang-(1-7); 3) 200 nmol Losartan; 4) 200 nmol Losartan combined with 40 pmol Ang-(1-7); 5) 1.1 or 4.4 nmol A-779; 6) 1.1 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 7) 4.4 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 8) 95 nmol CGP 42112A, or 9) 95 nmol CGP 42112A combined with 40 pmol Ang-(1-7). The antidiuretic effect of Ang-(1-7) was associated with an increase in urinary Na+ concentration, an increase in urinary osmolality and a reduction in creatinine clearance (CCr: 0.65 +/- 0.04 ml/min vs 1.45 +/- 0.18 ml/min in vehicle-treated rats, P < 0.05). A-779 and Losartan completely blocked the effect of Ang-(1-7) on water diuresis (2.93 +/- 0.34 ml/60 min and 3.39 +/- 0.58 ml/60 min, respectively). CGP 42112A, at the dose used, did not modify the antidiuretic effect of Ang-(1-7). The blockade produced by Losartan was associated with an increase in CCr and with an increase in sodium and water excretion as compared with Ang-(1-7)-treated rats. When Ang-(1-7) was combined with A-779 there was an increase in CCr and natriuresis and a reduction in urine osmolality compared with rats treated with Ang-(1-7) alone. The observation that both A-779, which does not bind to AT1 receptors, and Losartan blocked the effect of Ang-(1-7) suggests that the kidney effects of Ang-(1-7) are mediated by a non-AT1 angiotensin receptor that is recognized by Losartan.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/antagonists & inhibitors , Angiotensin II/physiology , Diuresis/drug effects , Drinking , Losartan/pharmacology , Peptide Fragments/pharmacology , Peptide Fragments/physiology , Receptors, Angiotensin/physiology , Renal Agents/antagonists & inhibitors , Analysis of Variance , Angiotensin I , Angiotensin II/pharmacology , Angiotensin Receptor Antagonists , Animals , Kidney/drug effects , Male , Rats , Rats, Wistar , Renal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...