Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.639
Filter
1.
Int J Infect Dis ; 144: 107067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697603

ABSTRACT

OBJECTIVES: To analyze the gene variants of the renin-angiotensin-aldosterone system and determine their association with the severity and outcome of COVID-19. METHODS: A total of 104 patients were included in the study: 34 asymptomatic patients with COVID-19 as controls and 70 symptomatic patients as cases. The genetic variants ACE rs4343, ACE2 rs2074192, AGTR1 rs5182, and AGT rs4762 were identified using TaqMan genotyping tests. RESULTS: Patients with the T/T genotype of AGTR1 rs5182 have a higher probability of developing symptomatic COVID-19 (odds ratio [OR] 12.25, 95% confidence interval [CI] 1.34-111.9, P ≤0.001) and a higher risk of hospitalization because of disease (OR 14.00, 95% CI 1.53-128.49, P = 0.012). The haplotype CTG (AGTR1 rs5182, ACE2 rs2074192, ACE rs4343) decreased the odds of death related to COVID-19 in the study population (OR 0.03, 95% CI 0.0-0.06, P = 0.026). CONCLUSIONS: The T/T genotype of the AGTR1 rs5182 variant increased the probability of symptomatic COVID-19 and hospitalization, whereas the haplotype CTG (consisting of AGTR1 rs5182, ACE2 rs2074192, and ACE rs4343) decreased the odds of death related to COVID-19 by 97% in the hospitalized patients with COVID-19. These results support the participation of renin-angiotensin-aldosterone system gene variants as modifiers of the severity of symptoms associated with SARS-CoV-2 infection and the outcome of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Hospitalization , Peptidyl-Dipeptidase A , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/mortality , COVID-19/virology , Male , Female , Middle Aged , Receptor, Angiotensin, Type 1/genetics , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Polymorphism, Single Nucleotide , Aged , Angiotensinogen/genetics , Genotype , Genetic Predisposition to Disease , Haplotypes , Case-Control Studies
2.
FASEB J ; 38(11): e23714, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814727

ABSTRACT

Preeclampsia (PE) is a complex human-specific complication frequently associated with placental pathology. The local renin-angiotensin system (RAS) in the human placenta, which plays a crucial role in regulating placental function, has been extensively documented. Glucocorticoids (GCs) are a class of steroid hormones. PE cases often have abnormalities in GCs levels and placental GCs barrier. Despite extensive speculation, there is currently no robust evidence indicating that GCs regulate placental RAS. This study aims to investigate these potential relationships. Plasma and placental samples were collected from both normal and PE pregnancies. The levels of angiotensin-converting enzyme (ACE), angiotensin II (Ang II), cortisol, and 11ß-hydroxysteroid dehydrogenases (11ßHSD) were analyzed. In PE placentas, cortisol, ACE, and Ang II levels were elevated, while 11ßHSD2 expression was reduced. Interestingly, a positive correlation was observed between ACE and cortisol levels in the placenta. A significant inverse correlation was found between the methylation statuses within the 11ßHSD2 gene promoter and its expression, meanwhile, 11ßHSD2 expression was negatively correlated with cortisol and ACE levels. In vitro experiments using placental trophoblast cells confirmed that active GCs can stimulate ACE transcription and expression through the GR pathway. Furthermore, 11ßHSD2 knockdown could enhance this activating effect. An in vivo study using a rat model of intrauterine GCs overexposure during mid-to-late gestation suggested that excess GCs in utero lead to increased ACE and Ang II levels in the placenta. Collectively, this study provides the first evidence of the relationships between 11ßHSD2 expression, GCs barrier, ACE, and Ang II levels in the placenta. It not only contributes to understanding the pathological features of the placental GCs barrier and RAS under PE conditions, also provides important information for revealing the pathological mechanism of PE.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Angiotensin II , DNA Methylation , Peptidyl-Dipeptidase A , Placenta , Pre-Eclampsia , Pregnancy , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Humans , Angiotensin II/metabolism , Placenta/metabolism , Animals , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Rats , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Adult , Down-Regulation , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , Hydrocortisone/metabolism , Rats, Sprague-Dawley
4.
Cells ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607073

ABSTRACT

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Subject(s)
Glioblastoma , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Up-Regulation/genetics , Glioblastoma/genetics , Tumor Microenvironment , Receptors, Cell Surface/metabolism , Prorenin Receptor
5.
Cardiovasc Res ; 120(7): 769-781, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38501595

ABSTRACT

AIMS: Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. METHODS AND RESULTS: In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme inhibitor, perindopril [with controls for non-specific effects of lowering blood pressure (BP)], on differential RNA expression, DNA methylation, and renin immunolabelling in the kidney at 20 weeks of age. RNA sequencing revealed a six-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 × 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs, and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p, and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS, and the kidneys. CONCLUSION: Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , DNA Methylation , Disease Models, Animal , Gene Regulatory Networks , Hypertension , Kidney , Losartan , Perindopril , Rats, Inbred SHR , Renin-Angiotensin System , Renin , Animals , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/genetics , Kidney/metabolism , Kidney/drug effects , Losartan/pharmacology , Hypertension/physiopathology , Hypertension/genetics , Hypertension/drug therapy , Hypertension/metabolism , DNA Methylation/drug effects , Male , Antihypertensive Agents/pharmacology , Renin/genetics , Renin/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Perindopril/pharmacology , Time Factors , Epigenesis, Genetic/drug effects , Gene Expression Regulation , Arterial Pressure/drug effects , Transcriptome , Rats , Blood Pressure/drug effects , Blood Pressure/genetics
6.
Proc Natl Acad Sci U S A ; 121(8): e2306936121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349873

ABSTRACT

Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Angiotensin II Type 1 Receptor Blockers/pharmacology , Signal Transduction , Blood Pressure , Gene Expression Profiling , Receptor, Angiotensin, Type 1/genetics , Angiotensin II/metabolism
7.
Vitam Horm ; 124: 165-220, 2024.
Article in English | MEDLINE | ID: mdl-38408799

ABSTRACT

Although renin-angiotensin-aldosterone system (RAAS) is known to maintain blood pressure and electrolyte balance, it has recently been linked to a number of biological processes such as angiogenesis, tumorigenesis, metastasis, and cellular proliferation, increasing the risk of cancer development and progression. Multiple genetic variants have been found to affect the genes encoding RAAS components, altering gene transcription and protein expression. This review provides an up-to-date insight into the role of RAAS in carcinogenesis, as well as the impact of RAAS genetic variants on the risk of cancer development, progression, and patient survival and outcomes, as well as response to treatment. This paves the way for the application of precision medicine in cancer risk assessment and management by implementing preventative programs in individuals at risk and guiding the therapeutic direction in cancer patients.


Subject(s)
Neoplasms , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Prognosis , Blood Pressure/physiology , Aldosterone , Neoplasms/drug therapy , Neoplasms/genetics
8.
Curr Hypertens Rep ; 26(5): 213-224, 2024 May.
Article in English | MEDLINE | ID: mdl-38411777

ABSTRACT

PURPOSE OF REVIEW: The primary goal of this review article was to determine whether the three RAAS-associated SNPs, Renin-rs16853055, AGT-rs3789678 and ACE-rs4305 are genetically linked to the development of hypertension in preeclampsia. The secondary goal was to establish if there was a link between these SNPs and HIV infection. RECENT FINDINGS: There is a paucity of findings related to the aforementioned SNPs and preeclampsia. There are no recent findings on the rs16853055 renin polymorphism. The rs3789678 angiotensinogen polymorphism correlated significantly with gestational hypertension. The rs4305 ACE polymorphism showed no significant association with the development of pregnancy-induced hypertension. There are conflicting findings when determining the relationship between ethnicity and the predisposition of preeclampsia and hypertension in relation to the discussed RAAS-associated SNPs. To date, the association between RAAS-associated SNPs and preeclamptic women co-morbid with HIV in South Africa has revealed that certain alleles of the AGT gene are more prominent in HIV-infected PE compared to normotensive pregnant HIV-infected women.


Subject(s)
Angiotensinogen , HIV Infections , Peptidyl-Dipeptidase A , Polymorphism, Single Nucleotide , Pre-Eclampsia , Renin-Angiotensin System , Renin , Humans , Pregnancy , Female , Pre-Eclampsia/genetics , HIV Infections/genetics , HIV Infections/complications , Polymorphism, Single Nucleotide/genetics , Angiotensinogen/genetics , Renin-Angiotensin System/genetics , Renin/genetics , Peptidyl-Dipeptidase A/genetics , Genetic Predisposition to Disease , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/virology
9.
Front Endocrinol (Lausanne) ; 15: 1354950, 2024.
Article in English | MEDLINE | ID: mdl-38332893

ABSTRACT

Background: Diabetic Nephropathy (DN) is one of the microvascular complications of diabetes. The potential targets of renin-angiotensin-aldosterone system (RAAS) inhibitors for the treatment of DN need to be explored. Methods: The GSE96804 and GSE1009 datasets, 729 RAAS inhibitors-related targets and 6,039 DN-related genes were derived from the public database and overlapped with the differentially expressed genes (DN vs. normal) in GSE96804 to obtain the candidate targets. Next, key targets were screened via the Mendelian randomization analysis and expression analysis. The diagnostic nomogram was constructed and assessed in GSE96804. Additionally, enrichment analysis was conducted and a 'core active ingredient-key target-disease pathway' network was established. Finally, molecular docking was performed. Results: In total, 60 candidate targets were derived, in which CTSC and PDE5A were screened as the key targets and had a causal association with DN as the protective factors (P < 0.05, OR < 1). Further, a nomogram exhibited pretty prediction efficiency. It is indicated that Benadryl hydrochloride might play a role in the DN by affecting the pathways of 'cytokine cytokine receptor interaction', etc. targeting the CTSC. Moreover, PDE5A might be involved in 'ECM receptor interaction', etc. for the effect of NSAID, captopril, chlordiazepoxide on DN. Molecular docking analysis showed a good binding ability of benadryl hydrochloride and CTSC, NSAID and PDE5A. PTGS2, ITGA4, and ANPEP are causally associated with acute kidney injury. Conclusion: CTSC and PDE5A were identified as key targets for RAAS inhibitors in the treatment of DN, which might provide some clinical significance in helping to diagnose and treat DN. Among the targets of RAAS inhibitors, PTGS2, ITGA4 and ANPEP have a causal relationship with acute kidney injury, which is worthy of further clinical research.


Subject(s)
Acute Kidney Injury , Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Renin-Angiotensin System/genetics , Molecular Docking Simulation , Mendelian Randomization Analysis , Network Pharmacology , Cyclooxygenase 2/metabolism , Acute Kidney Injury/complications , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diphenhydramine/pharmacology , Diphenhydramine/therapeutic use , Diabetes Mellitus/drug therapy
10.
PLoS One ; 19(1): e0295626, 2024.
Article in English | MEDLINE | ID: mdl-38166133

ABSTRACT

Due to the inconsistent findings from various studies, the role of gene polymorphisms in the renin-angiotensin system in influencing the development of cardiomyopathy remains unclear. In this study, we conducted a systematic review and meta-analysis to summarize the findings regarding the impact of angiotensin converting enzyme (ACE) I/D, angiotensinogen (AGT) M235T, and angiotensin II Type 1 receptor (AGTR1) A1166C gene polymorphisms in patients with cardiomyopathy. We performed a comprehensive search of several electronic databases, including PubMed, Embase, the Cochrane Library, and Web of Science, covering articles published from the time of database creation to April 17, 2023. Studies on the assessment of genetic polymorphisms in genes related to the renin-angiotensin system in relation to cardiomyopathy were included. The primary outcome was cardiomyopathy. Risk of bias was assessed using the Newcastle-Ottawa Scale scale. The meta-analysis includes 19 studies with 4,052 cases and 5,592 controls. The ACE I/D polymorphisms were found to be associated with cardiomyopathy (allelic model D vs I: OR = 1.29, 95CI% = 1.08-1.52; dominant model DD+ID vs II: OR = 1.43, 95CI% = 1.01-2.02; recessive model DD vs ID+II: OR = 0.79, 95CI% = 0.64-0.98). AGT M235T polymorphism and cardiomyopathy were not significantly correlated (allelic model T vs M: OR = 1.26, 95CI% = 0.96-1.66; dominant model TT+MT vs MM: OR = 1.30, 95CI% = 0.98-1.73; recessive model TT vs MT+MM: OR = 0.63, 95CI% = 0.37-1.07). AGTR1 polymorphism and cardiomyopathy were not significantly associated under allelic model A vs C (OR = 0.69, 95CI% = 0.46-1.03) and recessive model AA vs CA+CC (OR = 0.89, 95CI% = 0.34-2.30), but under the dominant model AA+CA vs CC (OR = 0.51, 95CI% = 0.38-0.68). The current meta-analysis reveals that polymorphisms in ACE I/D may be a genetic risk factor for cardiomyopathy. There is an association between AGTR1 gene polymorphisms and risk of cardiomyopathy under the specific model.


Subject(s)
Cardiomyopathies , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Risk Factors , Polymorphism, Genetic , Peptidyl-Dipeptidase A/genetics , Angiotensinogen/genetics , Cardiomyopathies/genetics , Receptor, Angiotensin, Type 1/genetics
11.
Pharmacol Biochem Behav ; 236: 173706, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176544

ABSTRACT

Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.


Subject(s)
Mental Disorders , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Peptidyl-Dipeptidase A/metabolism , Signal Transduction/genetics , Mental Disorders/genetics , Peptide Fragments/metabolism , Brain/metabolism , Angiotensin II/metabolism , Receptors, G-Protein-Coupled/metabolism
12.
Virol J ; 21(1): 15, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200555

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to an enormous burden on patient morbidity and mortality. The renin-angiotensin-aldosterone system (RAAS) plays a significant role in various pulmonary diseases. Since SARS-CoV-2 utilizes the angiotensin-converting enzyme (ACE)2 receptor to exert its virulence and pathogenicity, the RAAS is of particular importance in COVID 19. METHODS: Our preliminary study investigates retrospectively the influence of selected ACE-polymorphisms (I/D location at intron 16 in the B-coding sequence (rs4646994) and A-240T (rs 4291) at the A-promoter) as well as ACE1 and ACE2 serum levels on disease severity and the inflammatory response in inpatients and outpatients with COVID-19. RESULTS: Our study included 96 outpatients and 88 inpatients (65.9% male, mean age 60 years) with COVID-19 from April to December 2020 in four locations in Germany. Of the hospitalized patients, 88.6% participants were moderately ill (n = 78, 64% male, median age 60 years), and 11.4% participants were severely ill or deceased (n = 10, 90% male, median age 71 years). We found no polymorphism-related difference in disease, in age distribution, time to hospitalization and time of hospitalization for the inpatient group. ACE1 serum levels were significantly increased in the DD compared to the II polymorphism and in the TT compared to the AA polymorphism. There was no significant difference in ACE 1 serum levels l between moderately ill and severely ill patients. However, participants requiring oxygen supplementation had significantly elevated ACE1 levels compared to participants not requiring oxygen, with no difference in ACE2 levels whereas females had significantly higher ACE2 levels. CONCLUSIONS: Although there were no differences in the distribution of ACE polymorphisms in disease severity, we found increased proinflammatory regulation of the RAAS in patients with oxygen demand and increased serum ACE2 levels in women, indicating a possible enhanced anti-inflammatory immune response. CLINICAL TRIAL REGISTRATION: PreBiSeCov: German Clinical Trials Register, DRKS-ID: DRKS00021591, Registered on 27th April 2020.


Subject(s)
COVID-19 , Renin-Angiotensin System , Aged , Female , Humans , Male , Middle Aged , Angiotensin-Converting Enzyme 2/genetics , Mutagenesis, Insertional , Oxygen , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/genetics , Retrospective Studies , SARS-CoV-2/genetics
13.
Physiol Rep ; 12(1): e15895, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163662

ABSTRACT

Mechanisms underlying hyperoxia-induced airflow restriction in the pediatric lung disease Bronchopulmonary dysplasia (BPD) are unclear. We hypothesized a role for Renin-Angiotensin System (RAS) activity in BPD. RAS is comprised of a pro-developmental pathway consisting of angiotensin converting enzyme-2 (ACE2) and angiotensin II receptor type 2 (AT2), and a pro-fibrotic pathway mediated by angiotensin II receptor type 1 (AT1). We investigated associations between neonatal hyperoxia, airflow restriction, and RAS activity in a BPD mouse model. C57 mouse pups were randomized to normoxic (FiO2 = 0.21) or hyperoxic (FiO2 = 0.75) conditions for 15 days (P1-P15). At P15, P20, and P30, we measured airflow restriction using plethysmography and ACE2, AT1, and AT2 mRNA and protein expression via polymerase chain reaction and Western Blot. Hyperoxia increased airflow restriction P15 and P20, decreased ACE2 and AT2 mRNA, decreased AT2 protein, and increased AT1 protein expression. ACE2 mRNA and protein remained suppressed at P20. By P30, airflow restriction and RAS expression did not differ between groups. Hyperoxia caused high airflow restriction, increased pulmonary expression of the pro-fibrotic RAS pathway, and decreased expression of the pro-developmental in our BPD mouse model. These associated findings may point to a causal role for RAS in hyperoxia-induced airflow restriction.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Animals , Mice , Angiotensin-Converting Enzyme 2/metabolism , Animals, Newborn , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/metabolism , Disease Models, Animal , Fibrosis , Hyperoxia/metabolism , Lung/metabolism , Renin-Angiotensin System/genetics , RNA, Messenger/genetics
14.
Mol Biol Rep ; 51(1): 137, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236310

ABSTRACT

Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-ß1 (TGF-ß1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-ß/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-ß signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17ß-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.


Subject(s)
MicroRNAs , Renal Insufficiency, Chronic , Humans , Female , Renin-Angiotensin System/genetics , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , MicroRNAs/genetics , Angiotensin II , Renal Insufficiency, Chronic/genetics , Estradiol
15.
Asian Pac J Cancer Prev ; 25(1): 79-85, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285770

ABSTRACT

The polymorphisms of the Renin-Angiotensin System are related to many disorders like diabetes, cardiovascular disease, and different types of cancer. Among all the polymorphisms related to AGTR1, A1166C has been associated with several disorders, including cardiovascular diseases and breast cancer. This study was conducted to discover the association of AGTR1 polymorphism (A1166C) Renin-Angiotensin and its effect on the development and progression of breast cancer in the Pakistani population. One hundred forty participants, including seventy diagnosed breast cancer patients and seventy healthy individuals, were included in this study and genotyped with an allele-specific polymerase chain reaction. The most frequent genotype in healthy participants and breast cancer patients was CC. An insignificant (p value>0.05) risk of breast cancer was found with A1166C polymorphism in codominant (CC vs. AA OR=1.200 [0.256-5.631] and AC vs. AA 0.941 [OR=0.223-3.976]), dominant (OR=1.00 [0.240-4.167]), recessive (OR=1.230 [0.593-2.552]) and additive models (OR=1.028 [0.533-1.983]) of general population genotypes. Nonetheless, when the AA genotype was considered a reference group, a significant association was found between AC and CC genotypes and invasive ductal and ductal carcinoma development in breast cancer patients. In conclusion, this study demonstrated no significant association between AGTR1 (A1166C) polymorphism and breast cancer risk.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Angiotensin II/genetics , Pakistan/epidemiology , Polymorphism, Genetic , Renin-Angiotensin System/genetics , Genotype , Genetic Predisposition to Disease
16.
Pediatr Nephrol ; 39(3): 645-653, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37572115

ABSTRACT

During the early stages of the development of the living multiorgan systems, genome modifications other than sequence variation occur that guide cell differentiation and organogenesis. These modifications are known to operate as a fetal programming code during this period, and recent research indicates that there are some tissue-specific codes in organogenesis whose effects may persist after birth until adulthood. Consequently, the events that disrupt the pre-established epigenetic pattern could induce shifts in organ physiology, with implications on health from birth or later in adult life. Chronic kidney disease (CKD) is one of the main causes of mortality worldwide; its etiology is multifactorial, but diabetes, obesity, and hypertension are the main causes of CKD in adults, although there are other risk factors that are mainly associated with an individual's lifestyle. Recent studies suggest that fetal reprogramming in the developing kidney could be implicated in the susceptibility to kidney disease in both childhood and adulthood. Some epigenetic modifications, such as genome methylation status, dysregulation of miRNA, and histone coding alterations in genes related to the regulation of the renin-angiotensin axis, a common denominator in CKD, may have originated during fetal development. This review focuses on epigenetic changes during nephrogenesis and their repercussions on kidney health and disease. In addition, the focus is on the influence of environmental factors during pregnancy, such as maternal metabolic diseases and dietary and metabolic conditions, as well as some sex differences in fetal kidney reprogramming during which dysregulation of the renin-angiotensin system is involved.


Subject(s)
Renal Insufficiency, Chronic , Renin-Angiotensin System , Pregnancy , Female , Humans , Male , Child , Renin-Angiotensin System/genetics , Sex Characteristics , Kidney , Renin
17.
Article in English | MEDLINE | ID: mdl-37813091

ABSTRACT

The renin-angiotensin system (RAS) is dysregulated in Alzheimer's disease (AD). In this study, we have explored the hypothesis that an -age--related imbalance in brain RAS is a trigger for RAS dysregulation in AD. We characterized RAS gene expression in the frontal cortex from (i) a cohort of normal aging (n = 99, age range = 19-96 years) and (ii) a case-control cohort (n = 209) including AD (n = 66), mixed dementia (VaD + AD; n = 50), pure vascular dementia (VaD; n = 42), and age-matched controls (n = 51). The AD, mixed dementia, and age-matched controls were further stratified by Braak tangle stage (BS): BS0-II (n = 48), BSIII-IV (n = 44), and BSV-VI (n = 85). Gene expression was calculated by quantitative PCR (qPCR) for ACE1, AGTR1, AGTR2, ACE2, LNPEP, and MAS1 using the 2-∆∆Cq method, after adjustment for reference genes (RPL13 and UBE2D2) and cell-specific calibrator genes (NEUN, GFAP, PECAM). ACE1 and AGTR1, markers of classical RAS signaling, and AGTR2 gene expression were elevated in normal aging and gene expression in markers of protective downstream regulatory RAS signaling, including ACE2, MAS1, and LNPEP, were unchanged. In AD and mixed dementia, AGTR1 and AGTR2 gene expression were elevated in BSIII-IV and BSV-VI, respectively. MAS1 gene expression was reduced at BSV-VI and was inversely related to parenchymal Aß and tau load. LNPEP gene expression was specifically elevated in VaD. These data provide novel insights into RAS signaling in normal aging and dementia.


Subject(s)
Alzheimer Disease , Mixed Dementias , Humans , Aged , Aged, 80 and over , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2 , Alzheimer Disease/genetics , Aging/genetics , Gene Expression , Peptidyl-Dipeptidase A/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Ribosomal Proteins/genetics
18.
Nat Commun ; 14(1): 8159, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071212

ABSTRACT

Autosomal Recessive Renal Tubular Dysgenesis (AR-RTD) is a fatal genetic disorder characterized by complete absence or severe depletion of proximal tubules (PT) in patients harboring pathogenic variants in genes involved in the Renin-Angiotensin-Aldosterone System. To uncover the pathomechanism of AR-RTD, differentiation of ACE-/- and AGTR1-/- induced pluripotent stem cells (iPSCs) and AR-RTD patient-derived iPSCs into kidney organoids is leveraged. Comprehensive marker analyses show that both mutant and control organoids generate indistinguishable PT in vitro under normoxic (21% O2) or hypoxic (2% O2) conditions. Fully differentiated (d24) AGTR1-/- and control organoids transplanted under the kidney capsule of immunodeficient mice engraft and mature well, as do renal vesicle stage (d14) control organoids. By contrast, d14 AGTR1-/- organoids fail to engraft due to insufficient pro-angiogenic VEGF-A expression. Notably, growth under hypoxic conditions induces VEGF-A expression and rescues engraftment of AGTR1-/- organoids at d14, as does ectopic expression of VEGF-A. We propose that PT dysgenesis in AR-RTD is primarily a non-autonomous consequence of delayed angiogenesis, starving PT at a critical time in their development.


Subject(s)
Angiogenesis , Renin-Angiotensin System , Humans , Animals , Mice , Renin-Angiotensin System/genetics , Vascular Endothelial Growth Factor A , Kidney Tubules, Proximal/pathology , Organoids
19.
PLoS One ; 18(11): e0288178, 2023.
Article in English | MEDLINE | ID: mdl-38032879

ABSTRACT

Since angiotensin-converting enzyme 2, ACE2, was identified as the receptor for SARS-CoV-2 and considering the intense physiological interplay between the two angitensinases isoforms, ACE and ACE2, as counter-regulatory axis of the renin-angiotensin system, we proposed the evaluation of polymorphisms in these two key regulators in relation to COVID-19 severity. A genetic association study involving 621 COVID-19 hospitalized patients from Brazil was performed. All subjects had a confirmed diagnosis of COVID-19 via RT-PCR. Patients were categorized into two groups: the "mild" group (N = 296), composed of individuals hospitalized in ward beds who progressed to cure, and the "severe" group (N = 325), composed of individuals who required hospitalization in an intensive care unit (ICU), or who died. Blood samples were genotyped for ACE I/D polymorphism and ACE2 G8790A polymorphism by real-time PCR via TaqMan assay. The analysis of combined polymorphisms revealed a protective role for genotypic profile II/A_ (ORA = 0,26; p = 0,037) against the worsening of COVID-19 in women. The results indicate a protection profile to COVID-19 progression, in which the II/A_ carriers have almost four times less chance of a severe outcome. It is proposed that a decreased activity of ACE (deleterious effects) in conjunction with an increased ACE2 activity (protective effects), should be the underlying mechanism. The findings are unprecedented once other studies have not explored the genotypic combination analysis for ACE and ACE2 polymorphisms and bring perspectives and expectations for dealing with the COVID-19 pandemic based on definitions of genetically-based risk groups within the context of personalized medicine.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Peptidyl-Dipeptidase A , Female , Humans , Angiotensin-Converting Enzyme 2/genetics , Brazil/epidemiology , COVID-19/genetics , Genetic Association Studies , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System/genetics
20.
Probl Endokrinol (Mosk) ; 69(4): 21-31, 2023 08 30.
Article in Russian | MEDLINE | ID: mdl-37694864

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is a key component of the renin-angiotensin system (RAS), providing counter-regulation of its effects and, simultaneously, a receptor for the SARS-CoV-2 entering. It is suggested that factors regulating the balance of the major components of RAS, including ACE2 gene polymorphism, therapy with RAS blockers (ACE inhibitors and angiotensin receptor blockers) - may affect the severity of COVID-19. AIM: The aim of the study was to investigate the effect of RAS components, the relationship of ACE2 gene polymorphism rs2106809 and ACEi/ARBs therapy with the COVID-19 severity. MATERIALS AND METHODS: The study included patients with COVID-19 hospitalized in Endocrinology research centre (n = 173), who were divided into groups of moderate and severe course. Determination of RAS components was performed by ELISA, identification of polymorphism by PCR. Statistical analysis was performed using nonparametric statistical methods; differences in the distribution of genotype frequencies were assessed using Fisher's exact test χ2. RESULTS: The groups differed significantly in age, blood glucose levels, and inflammatory markers: leukocytes, neutrophils, IL-6, D-dimer, C-reactive protein, ferritin and liver enzymes, which correlated with the severity of the disease. When comparing patients in terms of ACE, ACE2, angiotensin II, ADAM17 there were no statistically significant differences between the groups (p=0.544, p=0.054, p=0.836, p=1.0, respectively), including the distribution by gender (in men: p=0.695, p=0.726, p=0.824, p=0.512; in women: p=0.873, p=0.196, p=0.150, p=0.937). Analysis of the distribution of AA, AG, and GG genotypes of the rs2106809 polymorphism of the ACE2 gene also revealed no differences between patients: χ2 1.35, p=0.071 in men, χ2 5.28, p=0.244 in women. There were no significant differences in the use of RAS blockers between groups with different course severity: χ2 0.208, p=0.648 for ACEi, χ2 1.15, p=0.283 for ARBs. CONCLUSION: In our study, the influence of activation of RAS components (ACE, ACE2, AT II, ADAM17) and ACE2 gene polymorphism on the severity of COVID-19 course was not confirmed. The severity of COVID-19 course correlated with the level of standard inflammatory markers, indicating the general principles of the infection as a systemic inflammation, regardless of the genetic and functional status of the RAS.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Renin-Angiotensin System , Female , Humans , Male , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Cetirizine , COVID-19/genetics , Renin-Angiotensin System/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...