Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 22(3): 118, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33782790

ABSTRACT

The present study was designed to develop an efficient, safe, and patient-friendly dosage form, for oral delivery of alfa-choriogonadotropin, used in the treatment of female reproductive infertility. Silica-coated, saturated fatty acid (dipalmitoylphosphatidylcholine (DPPC))-engineered, nanolipidic vesicular (NLVs) system was developed for systemic delivery of therapeutic peptide, alfa-choriogonadotropin, through oral route. DPPC-based NLVs were formulated using the technique of thin-film hydration and were coated with silica to form a homogeneous surface silica shell. The formulated silica-coated NLVs were evaluated for physicochemical and physiologic stability under simulated conditions and were optimized based on physicochemical parameters like particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, and in vitro release profile. Silica-coated, DPPC-based NLVs imparted physicochemical stability to entrapped alfa-choriogonadotropin against the biological environment prevailing in the human gastrointestinal tract (GIT). In vivo, subchronic animal toxicity studies were performed to assess the safety of the designed dosage form. Results of in vitro characterization and in vivo pharmacokinetic studies of fabricated formulation revealed that the silica-coated, DPPC-based NLV formulation was not only stable in human GIT but was also as efficacious as a marketed parenteral formulation for the systemic delivery of alfa-choriogonadotropin. In vivo toxicity studies revealed that silica-coated NLVs did not alter hematological and serum biochemical parameters. The histopathological studies also depicted no macroscopic changes in major organs; thus, the developed formulation was proven to be nontoxic and equally efficient as a marketed parenteral formulation for the delivery of alfa-choriogonadotropin with added benefits of possible self-medication, more patient acceptability, and no chances of infection.


Subject(s)
Chorionic Gonadotropin/administration & dosage , Chorionic Gonadotropin/chemistry , Fatty Acids/chemistry , Lipids/chemistry , Reproductive Control Agents/administration & dosage , Reproductive Control Agents/chemistry , Silicon Dioxide/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Administration, Oral , Animals , Chorionic Gonadotropin/toxicity , Drug Carriers , Drug Compounding , Drug Delivery Systems , Male , Particle Size , Rats , Rats, Sprague-Dawley , Reproductive Control Agents/toxicity
2.
Toxicol Appl Pharmacol ; 257(2): 250-63, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21964460

ABSTRACT

BACKGROUND AND PURPOSE: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. EXPERIMENTAL APPROACH: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression of the estrogen receptor (ERα), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. KEY RESULTS: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ERα, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. CONCLUSIONS AND IMPLICATIONS: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity.


Subject(s)
Arsenites/toxicity , Reproductive Control Agents/toxicity , Sodium Compounds/toxicity , Tretinoin/therapeutic use , Uterus/drug effects , Uterus/metabolism , Animals , Arsenic/antagonists & inhibitors , Arsenic/toxicity , Arsenites/antagonists & inhibitors , Female , Random Allocation , Rats , Rats, Sprague-Dawley , Reproductive Control Agents/antagonists & inhibitors , Sodium Compounds/antagonists & inhibitors , Tretinoin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...