Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.963
Filter
1.
Physiol Rep ; 12(11): e16089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828713

ABSTRACT

Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.


Subject(s)
Phylogeny , Animals , Reptiles/genetics , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Amphibians/genetics , Amphibians/metabolism , Birds/genetics , Evolution, Molecular
2.
An Acad Bras Cienc ; 96(2): e20230901, 2024.
Article in English | MEDLINE | ID: mdl-38747839

ABSTRACT

Fishermen-hunter-gatherers of sambaquis (Brazilian shell mounds) had an intimate affinity with marine-coastal environments, where they exploited a great variety of fish and mollusks that comprise the best documented fauna from sambaquis. However, other groups of animals as mammals, birds, reptiles, and amphibians are also present in these sites, but are relatively less studied. This paper is the first one focused exclusively on the Tetrapoda biodiversity of sambaquis and aimed to identify tetrapods of ten sites from southern Brazil. We present a faunal inventory and data regarding animal capture and environmental exploitation. We identified the specimens anatomically and taxonomically, analyzed them concerning fragmentation, and quantified the data for the number of identified specimens (NISP) and minimum number of individuals (MNI). Despite the high degree of fragmentation of remains, we identified 46 taxa. As expected, most were from marine animals: cetaceans (total NISP = 2,568 and MNI = 27), otariids (total NISP = 248 and MNI = 32), and seabirds (total NISP = 65 and MNI = 23), indicating great relevance of marine tetrapod fauna as a resource for sambaqui builders (79.39% of NISP). We thus document the close bond between fishermen-hunter-gatherers of sambaquis and the marine tetrapods in southern Brazil.


Subject(s)
Biodiversity , Animals , Brazil , Birds/classification , Reptiles/classification , Cetacea/classification
3.
Anat Histol Embryol ; 53(3): e13052, 2024 May.
Article in English | MEDLINE | ID: mdl-38735035

ABSTRACT

One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.


Subject(s)
Ciliary Body , Iris , Animals , Ciliary Body/anatomy & histology , Iris/anatomy & histology , Rabbits/anatomy & histology , Mice/anatomy & histology , Lizards/anatomy & histology , Vertebrates/anatomy & histology , Reptiles/anatomy & histology , Fishes/anatomy & histology , Birds/anatomy & histology , Anterior Chamber/anatomy & histology , Turtles/anatomy & histology , Carps/anatomy & histology , Mice, Inbred BALB C , Amphibians/anatomy & histology , Cricetinae , Quail/anatomy & histology , Hedgehogs/anatomy & histology , Columbidae/anatomy & histology , Mesocricetus/anatomy & histology
4.
Vet Rec ; 194(11): 407, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38819883
6.
Nat Commun ; 15(1): 4063, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773066

ABSTRACT

Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.


Subject(s)
Biological Evolution , Dinosaurs , Feathers , Fossils , Melanosomes , Reptiles , Skin , Animals , Feathers/anatomy & histology , Dinosaurs/anatomy & histology , Skin/anatomy & histology , Skin/metabolism , Reptiles/anatomy & histology , Melanosomes/metabolism , Melanosomes/ultrastructure , Animal Scales/anatomy & histology , Epidermis/anatomy & histology , Epidermis/metabolism , Epidermis/ultrastructure , beta-Keratins/metabolism
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230200, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38768204

ABSTRACT

Social interactions are inevitable in the lives of most animals, since most essential behaviours require interaction with conspecifics, such as mating and competing for resources. Non-avian reptiles are typically viewed as solitary animals that predominantly use their vision and olfaction to communicate with conspecifics. Nevertheless, in recent years, evidence is mounting that some reptiles can produce sounds and have the potential for acoustic communication. Reptiles that can produce sound have an additional communicative channel (in addition to visual/olfactory channels), which could suggest they have a higher communicative complexity, the evolution of which is assumed to be driven by the need of social interactions. Thus, acoustic reptiles may provide an opportunity to unveil the true social complexity of reptiles that are usually thought of as solitary. This review aims to reveal the hidden social interactions behind the use of sounds in non-avian reptiles. Our review suggests that the potential of vocal and acoustic communication and the complexity of social interactions may be underestimated in non-avian reptiles, and that acoustic reptiles may provide a great opportunity to uncover the coevolution between sociality and communication in non-avian reptiles. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Subject(s)
Reptiles , Social Behavior , Vocalization, Animal , Animals , Reptiles/physiology , Vocalization, Animal/physiology , Animal Communication
8.
Aquat Toxicol ; 270: 106907, 2024 May.
Article in English | MEDLINE | ID: mdl-38564994

ABSTRACT

Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Ecosystem , Water Pollutants, Chemical/toxicity , Amphibians/physiology , Reptiles/physiology , Fluorocarbons/analysis
9.
PLoS One ; 19(4): e0300289, 2024.
Article in English | MEDLINE | ID: mdl-38630678

ABSTRACT

Giant ichthyosaurs with body length estimates exceeding 20 m were present in the latest Triassic of the UK. Here we report on the discovery of a second surangular from the lower jaw of a giant ichthyosaur from Somerset, UK. The new find is comparable in size and morphology to a specimen from Lilstock, Somerset, described in 2018, but it is more complete and better preserved. Both finds are from the uppermost Triassic Westbury Mudstone Formation (Rhaetian), but the new specimen comes from Blue Anchor, approximately 10 km west along the coast from Lilstock. The more complete surangular would have been >2 m long, from an individual with a body length estimated at ~25 m. The identification of two specimens with the same unique morphology and from the same geologic age and geographic location warrants the erection of a new genus and species, Ichthyotitan severnensis gen. et sp. nov. Thin sections of the new specimen revealed the same histological features already observed in similar giant ichthyosaurian specimens. Our data also supports the previous suggestion of an atypical osteogenesis in the lower jaws of giant ichthyosaurs. The geological age and giant size of the specimens suggest shastasaurid affinities, but the material is too incomplete for a definitive referral. Ichthyotitan severnensis gen. et sp. nov., is the first-named giant ichthyosaur from the Rhaetian and probably represents the largest marine reptile formally described.


Subject(s)
Biological Evolution , Fossils , Animals , Phylogeny , Reptiles , United Kingdom
10.
Proc Biol Sci ; 291(2020): 20232830, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38593847

ABSTRACT

The bone-eating worm Osedax is a speciose and globally distributed clade, primarily found on whale carcasses in marine environments. The earliest fossil evidence for Osedax borings was previously described in plesiosaur and sea turtle bones from the mid-Cretaceous of the United Kingdom, representing the only unequivocal pre-Oligocene occurrences. Confirming through CT scanning, we present new evidence of Osedax borings in three plesiosaur specimens and, for the first time, identify borings in two mosasaur specimens. All specimens are from the Late Cretaceous: one from the Cenomanian of the United Kingdom, two from the Campanian of the southeastern United States, and two from the Maastrichtian of Belgium. This extends the geographic range of Osedax in the Cretaceous to both sides of the northern Atlantic Ocean. The bones contain five borehole morphotypes, potentially created by different species of Osedax, with the Cenomanian specimen containing three morphotypes within a single tooth. This combined evidence of heightened species diversity by the Cenomanian and broad geographic range by the Campanian potentially indicates an earlier origin and diversification for this clade than previously hypothesized. Preservational biases indicate that Osedax was probably even more widely distributed and speciose in the Cretaceous than apparent in the fossil record.


Subject(s)
Polychaeta , Tooth , Animals , Bone and Bones , Reptiles , Tomography, X-Ray Computed , Cetacea , Fossils
12.
PLoS One ; 19(4): e0298216, 2024.
Article in English | MEDLINE | ID: mdl-38683802

ABSTRACT

Among the diverse basal reptile clade Parareptilia, the nycteroleters are among the most poorly understood. The interrelationships of nycteroleters are contentious, being recovered as both monophyletic and paraphyletic in different analyses, yet their anatomy has received little attention. We utilized x-ray computed tomography to investigate the skull of the nycteroleterid Emeroleter levis, revealing aspects of both the external and internal cranial anatomy that were previously unknown or undescribed, especially relating to the palate, braincase, and mandible. Our results reveal a greater diversity in nycteroleter cranial anatomy than was previously recognized, including variation in the contribution of the palatal elements to the orbitonasal ridge among nycteroleters. Of particular note are the unique dentition patterns in Emeroleter, including the presence of dentition on the ectopterygoid, an element which is typically edentulous in most parareptiles. We then incorporate the novel information gained from the computed tomography analysis into an updated phylogenetic analysis of parareptiles, producing a fully resolved Nycteroleteridae and further supporting previous suggestions that the genus 'Bashkyroleter' is paraphyletic.


Subject(s)
Phylogeny , Skull , Tomography, X-Ray Computed , Animals , Skull/anatomy & histology , Skull/diagnostic imaging , Reptiles/anatomy & histology , Reptiles/classification , Fossils/anatomy & histology , Mandible/anatomy & histology
13.
Proc Natl Acad Sci U S A ; 121(18): e2316417121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648477

ABSTRACT

Human actions are causing widespread increases in fire size, frequency, and severity in diverse ecosystems globally. This alteration of fire regimes is considered a threat to numerous animal species, but empirical evidence of how fire regimes are shifting within both threatened species' ranges and protected areas is scarce, particularly at large spatial and temporal scales. We used a big data approach to quantify multidecadal changes in fire regimes in southern Australia from 1980 to 2021, spanning 415 reserves (21.5 million ha) and 129 threatened species' ranges including birds, mammals, reptiles, invertebrates, and frogs. Most reserves and threatened species' ranges within the region have experienced declines in unburnt vegetation (≥30 y without fire), increases in recently burnt vegetation (≤5 y since fire), and increases in fire frequency. The mean percentage of unburnt vegetation within reserves declined from 61 to 36% (1980 to 2021), whereas the mean percentage of recently burnt vegetation increased from 20 to 35%, and mean fire frequency increased by 32%, with the latter two trends primarily driven by the record-breaking 2019 to 2020 fire season. The strongest changes occurred for high-elevation threatened species, and reserves of high elevation, high productivity, and strong rainfall decline, particularly in the southeast of the continent. Our results provide evidence for the widely held but poorly tested assumption that threatened species are experiencing widespread declines in unburnt habitat and increases in fire frequency. This underscores the imperative for developing management strategies that conserve fire-threatened species in an increasingly fiery future.


Subject(s)
Conservation of Natural Resources , Ecosystem , Endangered Species , Fires , Endangered Species/trends , Animals , Australia , Reptiles , Mammals , Humans , Birds/physiology , Biodiversity
15.
Bioinspir Biomim ; 19(4)2024 May 08.
Article in English | MEDLINE | ID: mdl-38626775

ABSTRACT

Animals have evolved highly effective locomotion capabilities in terrestrial, aerial, and aquatic environments. Over life's history, mass extinctions have wiped out unique animal species with specialized adaptations, leaving paleontologists to reconstruct their locomotion through fossil analysis. Despite advancements, little is known about how extinct megafauna, such as the Ichthyosauria one of the most successful lineages of marine reptiles, utilized their varied morphologies for swimming. Traditional robotics struggle to mimic extinct locomotion effectively, but the emerging soft robotics field offers a promising alternative to overcome this challenge. This paper aims to bridge this gap by studyingMixosauruslocomotion with soft robotics, combining material modeling and biomechanics in physical experimental validation. Combining a soft body with soft pneumatic actuators, the soft robotic platform described in this study investigates the correlation between asymmetrical fins and buoyancy by recreating the pitch torque generated by extinct swimming animals. We performed a comparative analysis of thrust and torque generated byCarthorhyncus,Utatsusaurus,Mixosaurus,Guizhouichthyosaurus, andOphthalmosaurustail fins in a flow tank. Experimental results suggest that the pitch torque on the torso generated by hypocercal fin shapes such as found in model systems ofGuizhouichthyosaurus,MixosaurusandUtatsusaurusproduce distinct ventral body pitch effects able to mitigate the animal's non-neutral buoyancy. This body pitch control effect is particularly pronounced inGuizhouichthyosaurus, which results suggest would have been able to generate high ventral pitch torque on the torso to compensate for its positive buoyancy. By contrast, homocercal fin shapes may not have been conducive for such buoyancy compensation, leaving torso pitch control to pectoral fins, for example. Across the range of the actuation frequencies of the caudal fins tested, resulted in oscillatory modes arising, which in turn can affect the for-aft thrust generated.


Subject(s)
Animal Fins , Models, Biological , Robotics , Swimming , Animals , Swimming/physiology , Animal Fins/physiology , Animal Fins/anatomy & histology , Robotics/instrumentation , Biomechanical Phenomena , Reptiles/physiology , Reptiles/anatomy & histology , Fossils , Computer Simulation , Biomimetics/methods
16.
Curr Biol ; 34(10): 2231-2237.e2, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38657609

ABSTRACT

Reptiles are an important, yet often understudied, taxon in nature conservation. They play a significant role in ecosystems1 and can serve as indicators of environmental health, often responding more rapidly to human pressures than other vertebrate groups.2 At least 21% of reptiles are currently assessed as threatened with extinction by the IUCN.3 However, due to the lack of comprehensive global assessments until recently, they have been omitted from spatial studies addressing conservation or spatial prioritization (e.g., Rosauer et al.,4,5,6,7,8 Fritz and Rahbek,4,5,6,7,8 Farooq et al.,4,5,6,7,8 Meyer et al., 4,5,6,7,8 and Farooq et al.4,5,6,7,8). One important knowledge gap in conservation is the lack of spatially explicit information on the main threats to biodiversity,9 which significantly hampers our ability to respond effectively to the current biodiversity crisis.10,11 In this study, we calculate the probability of a reptile species in a specific location being affected by one of seven biodiversity threats-agriculture, climate change, hunting, invasive species, logging, pollution, and urbanization. We conducted the analysis at a global scale, using a 50 km × 50 km grid, and evaluated the impact of these threats by studying their relationship with the risk of extinction. We find that climate change, logging, pollution, and invasive species are most linked to extinction risk. However, we also show that there is considerable geographical variation in these results. Our study highlights the importance of going beyond measuring the intensity of threats to measuring the impact of these separately for various biogeographical regions of the world, with different historical contingencies, as opposed to a single global analysis treating all regions the same.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Reptiles , Animals , Reptiles/classification , Reptiles/physiology , Conservation of Natural Resources/methods , Introduced Species , Hunting , Agriculture/methods , Endangered Species , Ecosystem , Extinction, Biological
17.
Zoolog Sci ; 41(1): 87-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38587521

ABSTRACT

Among amniotes, reptiles are ectothermic and are clearly distinguished from mammals and birds. Reptiles show great diversity not only in species numbers, but also in ecological and physiological features. Although their physiological diversity is an interesting research topic, less effort has been made compared to that for mammals and birds, in part due to lack of established experimental models and techniques. However, progress, especially in the field of neuroendocrinology, has been steadily made. With this process, basic data on selected reptilian species have been collected. This review article presents the progress made in the last decade, which includes 1) behavioral regulation by sex steroid hormones, 2) regulation of seasonal reproduction by melatonin and GnRH, and 3) regulation of social interaction by arginine vasotocin. Through these research topics, we provide insights into the physiology of reptiles and the latest findings in the field of amniote neuroendocrinology.


Subject(s)
Neuroendocrinology , Social Behavior , Animals , Reptiles , Reproduction , Mammals
18.
Genes (Basel) ; 15(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38540430

ABSTRACT

Karyotype diversification represents an important, yet poorly understood, driver of evolution. Squamate reptiles are characterized by a high taxonomic diversity which is reflected at the karyotype level in terms of general structure, chromosome number and morphology, and insurgence of differentiated simple or multiple-sex-chromosome systems with either male or female heterogamety. The potential of squamate reptiles as unique model organisms in evolutionary cytogenetics has been recognised in recent years in several studies, which have provided novel insights into the chromosome evolutionary dynamics of different taxonomic groups. Here, we review and summarize the resulting complex, but promising, general picture from a systematic perspective, mapping some of the main squamate karyological characteristics onto their phylogenetic relationships. We highlight how all the major categories of balanced chromosome rearrangements contributed to the karyotype evolution in different taxonomic groups. We show that distinct karyotype evolutionary trends may occur, and coexist, with different frequencies in different clades. Finally, in light of the known squamate chromosome diversity and recent research advances, we discuss traditional and novel hypotheses on karyotype evolution and propose a scenario of circular karyotype evolution.


Subject(s)
Reptiles , Sex Chromosomes , Animals , Female , Male , Phylogeny , Reptiles/genetics , Karyotype , Karyotyping , Sex Chromosomes/genetics
19.
Sci Rep ; 14(1): 5971, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472297

ABSTRACT

Recent biological surveys of ancient inselbergs in southern Malawi and northern Mozambique have led to the discovery and description of many species new to science, and overlapping centres of endemism across multiple taxa. Combining these endemic taxa with data on geology and climate, we propose the 'South East Africa Montane Archipelago' (SEAMA) as a distinct ecoregion of global biological importance. The ecoregion encompasses 30 granitic inselbergs reaching > 1000 m above sea level, hosting the largest (Mt Mabu) and smallest (Mt Lico) mid-elevation rainforests in southern Africa, as well as biologically unique montane grasslands. Endemic taxa include 127 plants, 45 vertebrates (amphibians, reptiles, birds, mammals) and 45 invertebrate species (butterflies, freshwater crabs), and two endemic genera of plants and reptiles. Existing dated phylogenies of endemic animal lineages suggests this endemism arose from divergence events coinciding with repeated isolation of these mountains from the pan-African forests, together with the mountains' great age and relative climatic stability. Since 2000, the SEAMA has lost 18% of its primary humid forest cover (up to 43% in some sites)-one of the highest deforestation rates in Africa. Urgently rectifying this situation, while addressing the resource needs of local communities, is a global priority for biodiversity conservation.


Subject(s)
Butterflies , Animals , Biodiversity , Africa, Eastern , Reptiles , Forests , South Africa , Phylogeny , Mammals
20.
Eur J Protistol ; 93: 126066, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442435

ABSTRACT

The zoonotic potential of the protist parasites Cryptosporidium spp. and Giardia duodenalis in amphibians and reptiles raises public health concerns due to their growing popularity as pets. This review examines the prevalence and diversity of these parasites in wild and captive amphibians and reptiles to better understand the zoonotic risk. Research on Giardia in both groups is limited, and zoonotic forms of Cryptosporidium or Giardia have not been reported in amphibians. Host-adapted Cryptosporidium species dominate in reptiles, albeit some reptiles have been found to carry zoonotic (C. hominis and C. parvum) and rodent-associated (C. tyzzeri, C. muris and C. andersoni) species, primarily through mechanical carriage. Similarly, the limited reports of Giardia duodenalis (assemblages A, B and E) in reptiles may also be due to mechanical carriage. Thus, the available evidence indicates minimal zoonotic risk associated with these organisms in wild and captive frogs and reptiles. The exact transmission routes for these infections within reptile populations remain poorly understood, particularly regarding the importance of mechanical carriage. Although the risk appears minimal, continued research and surveillance efforts are necessary to gain a more comprehensive understanding of the transmission dynamics and ultimately improve our ability to safeguard human and animal health.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Giardia lamblia , Giardiasis , Animals , Humans , Giardiasis/epidemiology , Giardiasis/veterinary , Giardiasis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Zoonoses/epidemiology , Zoonoses/parasitology , Anura , Reptiles , Prevalence , Feces/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...