Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1318-1326, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621979

ABSTRACT

In order to study the neuroprotective mechanism of cinnamaldehyde on reserpine-induced Parkinson's disease(PD) rat models, 72 male Wistar rats were randomly divided into blank group, model group, Madopar group, and cinnamaldehyde high-, medium-, and low-dose groups. Except for the blank group, the other groups were intraperitoneally injected with reserpine of 0.1 mg·kg~(-1) once every other morning, and cinnamaldehyde and Madopar solutions were gavaged every afternoon. Open field test, rotarod test, and oral chewing movement evaluation were carried out in the experiment. The brain was taken and fixed. The positive expression of dopamine receptor D1(DRD1) was detected by TSA, and the changes in neurotransmitters such as dopamine(DA) and 3,4-dihydroxyphenylacetic acid(DOPAC) in the brain were detected by enzyme-linked immunosorbent assay(ELISA). The protein and mRNA expression levels of tyrosine hydroxylase(TH) and α-synuclein(α-Syn) in substantia nigra(SN) were detected by RT-PCR and Western blot. The results showed that after the injection of reserpine, the hair color of the model group became yellow and dirty; the arrest behavior was weakened, and the body weight was reduced. The spontaneous movement and exploration behavior were reduced, and the coordination exercise ability was decreased. The number of oral chewing was increased, but the cognitive ability was decreased, and the proportion of DRD1 positive expression area in SN was decreased. The expression of TH protein and mRNA was down-regulated, and that of α-Syn protein and mRNA was up-regulated. After cinnamaldehyde intervention, it had an obvious curative effect on PD model animals. The spontaneous movement behavior, the time of staying in the rod, the time of movement, the distance of movement, and the number of standing times increased, and the number of oral chewing decreased. The proportion of DRD1 positive expression area in SN increased, and the protein and mRNA expression levels of α-Syn were down-regulated. The protein and mRNA expression levels of TH were up-regulated. In addition, the levels of DA, DOPAC, and homovanillic acid(HVA) neurotransmitters in the brain were up-regulated. This study can provide a new experimental basis for clinical treatment and prevention of PD.


Subject(s)
Acrolein/analogs & derivatives , Parkinson Disease , Rats , Male , Animals , Parkinson Disease/etiology , Parkinson Disease/genetics , Reserpine/adverse effects , Reserpine/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Rats, Wistar , Substantia Nigra/metabolism , RNA, Messenger/metabolism , Neurotransmitter Agents/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
2.
Nature ; 629(8010): 235-243, 2024 May.
Article in English | MEDLINE | ID: mdl-38499039

ABSTRACT

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Subject(s)
Biogenic Monoamines , Drug Interactions , Vesicular Monoamine Transport Proteins , Humans , 1-Methyl-4-phenylpyridinium/chemistry , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Amphetamine/chemistry , Amphetamine/pharmacology , Amphetamine/metabolism , Binding Sites , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Cryoelectron Microscopy , Dopamine/chemistry , Dopamine/metabolism , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Protein Binding , Protons , Reserpine/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
3.
Nature ; 626(7998): 427-434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081299

ABSTRACT

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Subject(s)
Cryoelectron Microscopy , Vesicular Monoamine Transport Proteins , Humans , Binding Sites , Cytoplasm/drug effects , Cytoplasm/metabolism , Ketanserin/chemistry , Ketanserin/metabolism , Ketanserin/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Reserpine/pharmacology , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Tetrabenazine/chemistry , Tetrabenazine/metabolism , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
4.
Brain Res ; 1825: 148723, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38101693

ABSTRACT

Neuroplasticity and inflammation represent a common final pathway for effective antidepressant treatment. SSRIs are the most commonly prescribed medications for depression and have demonstrated efficacy in reducing depressive symptoms. However, the precise impact of SSRIs on neuroplasticity and inflammation remains unclear. In this study, we aimed to investigate the influence of long-term treatment with SSRIs on hippocampal neuron, inflammation, synaptic function and morphology. Our findings revealed that fluoxetine treatment significantly alleviated behavioral despair, anhedonia, and anxiety in reserpine-treated mice. Moreover, fluoxetine mitigated hippocampal neuron impairment, inhibited inflammatory release, and increased the expression of synaptic proteins markers (SYP and PSD95) in mice. Notably, fluoxetine also suppressed reserpine-induced synapse loss in the hippocampus. Based on these results, fluoxetine has been demonstrated effectively to ameliorate depressive mood and cognitive dysfunction, possibly through the enhancement of synaptic plasticity. Overall, our study contributes to a further understanding of the mechanisms underlying the therapeutic effects of fluoxetine and its potential role in improving depressive symptoms and cognitive impairments.


Subject(s)
Fluoxetine , Selective Serotonin Reuptake Inhibitors , Mice , Animals , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Reserpine/metabolism , Reserpine/pharmacology , Depression/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Neuronal Plasticity , Hippocampus/metabolism
5.
Neuroscience ; 528: 37-53, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37532013

ABSTRACT

Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. In FM model, OXT-monomeric red fluorescent protein 1 (OXT-mRFP1) transgenic rats exhibited increased depressive behavior and sensitivity in a mechanical nociceptive test, suggesting reduced pain tolerance. Additionally, the development of the FM-like phenotype in OXT-mRFP1 FM model rats was accompanied by a significant reduction in OXT mRNA expression in the magnocellular neurons of the paraventricular nucleus. OXT-mRFP1 FM model rats also had significantly fewer tryptophan hydroxylase (TPH)- and tyrosine hydroxylase (TH)-immunoreactive (ir) neurons as well as reduced serotonin and norepinephrine levels in the dorsal raphe and locus coeruleus. To investigate the effects of stimulating the endogenous OXT pathway, rats expressing OXT-human muscarinic acetylcholine receptor (hM3Dq)-mCherry designer receptors exclusively activated by designer drugs (DREADDs) were also assessed in the FM model. Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.


Subject(s)
Fibromyalgia , Oxytocin , Rats , Humans , Animals , Oxytocin/pharmacology , Oxytocin/metabolism , Reserpine/pharmacology , Reserpine/metabolism , Fibromyalgia/chemically induced , Fibromyalgia/metabolism , Luminescent Proteins/genetics , Pain/metabolism , Rats, Transgenic , Neurons/metabolism , Receptors, Oxytocin/metabolism
6.
Appl Microbiol Biotechnol ; 107(13): 4153-4164, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37212883

ABSTRACT

In the quest for novel medications, researchers have kept on studying nature to unearth beneficial plant species with medicinal qualities that may cure various diseases and disorders. These medicinal plants produce different bioactive secondary metabolites with immense therapeutic importance. One such valuable secondary metabolite, reserpine (C33H40N2O9), has been used for centuries to cure various ailments like hypertension, cardiovascular diseases, neurological diseases, breast cancer, and human promyelocytic leukaemia. Rauvolfia spp. (family Apocynaceae) is an essential reservoir of this reserpine. The current review thoroughly covers different non-conventional or in vitro-mediated biotechnological methods adopted for pilot-scale as well as large-scale production of reserpine from Rauvolfia spp., including techniques like multiple shoot culture, callus culture, cell suspension culture, precursor feeding, elicitation, synthetic seed production, scale-up via bioreactor, and hairy root culture. This review further analyses the unexplored and cutting-edge biotechnological tools and techniques to alleviate reserpine production. KEY POINTS: • Reserpine, a vital indole alkaloid from Rauvolfia spp., has been used for centuries to cure several ailments. • Overview of biosynthetic pathways and biotechnological applications for enhanced production of reserpine. • Probes the research gaps and proposes novel alternative techniques to meet the pharmaceutical industry's need for reserpine while reducing the over-exploitation of natural resources.


Subject(s)
Alkaloids , Plants, Medicinal , Rauwolfia , Humans , Reserpine/metabolism , Biotechnology/methods , Bioreactors , Alkaloids/metabolism , Plant Roots/metabolism
7.
Phytochemistry ; 209: 113620, 2023 May.
Article in English | MEDLINE | ID: mdl-36863602

ABSTRACT

Monoterpenoid indole alkaloids (MIAs) are a large group of biosynthetic compounds, which have pharmacological properties. One of these MIAs, reserpine, was discovered in the 1950s and has shown properties as an anti-hypertension and anti-microbial agent. Reserpine was found to be produced in various plant species within the genus of Rauvolfia. However, even though its presence is well known, it is still unknown in which tissues Rauvolfia produce reserpine and where the individual steps in the biosynthetic pathway take place. In this study, we explore how matrix assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can be used in the investigation of a proposed biosynthetic pathway by localizing reserpine and the theoretical intermediates of it. The results show that ions corresponding to intermediates of reserpine were localized in several of the major parts of Rauvolfia tetraphylla when analyzed by MALDI- and DESI-MSI. In stem tissue, reserpine and many of the intermediates were found compartmentalized in the xylem. For most samples, reserpine itself was mainly found in the outer layers of the sample, suggesting it may function as a defense compound. To further confirm the place of the different metabolites in the reserpine biosynthetic pathway, roots and leaves of R. tetraphylla were fed a stable-isotope labelled version of the precursor tryptamine. Subsequently, several of the proposed intermediates were detected in the normal version as well as in the isotope labelled versions, confirming that they were synthesized in planta from tryptamine. In this experiment, a potential novel dimeric MIA was discovered in leaf tissue of R. tetraphylla. The study constitutes to date the most comprehensive spatial mapping of metabolites in the R. tetraphylla plant. In addition, the article also contains new illustrations of the anatomy of R. tetraphylla.


Subject(s)
Rauwolfia , Secologanin Tryptamine Alkaloids , Secologanin Tryptamine Alkaloids/chemistry , Rauwolfia/metabolism , Reserpine/chemistry , Reserpine/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tryptamines/metabolism , Antihypertensive Agents , Indole Alkaloids/metabolism , Spectrometry, Mass, Electrospray Ionization/methods
8.
Elife ; 122023 03 28.
Article in English | MEDLINE | ID: mdl-36975211

ABSTRACT

Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.


Leber congenital amaurosis (LCA) is an inherited disease that affects the eyes and causes sight loss in early childhood, which generally gets worse over time. Individuals with this condition have genetic mutations that result in the death of light-sensitive cells, known as photoreceptors, in a region called the retina at the back of the eye. Patients carrying a genetic change in the gene CEP290 account for 20-25% of all LCA. At present, treatment options are only available for a limited number of patients with LCA. One option is to use small molecules as drugs that may target or bypass the faulty processes within the eye to help the photoreceptors survive in many different forms of LCA and other retinal diseases. However, over 90% of new drug candidates fail the first phase of clinical trials for human diseases. This in part due to the candidates having been developed using cell cultures or animal models that do not faithfully reflect how the human body works. Recent advances in cell and developmental biology are now enabling researchers to use stem cells derived from humans to grow retina tissues in a dish in the laboratory. These tissues, known as retinal organoids, behave in a more similar way to retinas in human eyes than those of traditional animal models. However, the methods for making and maintaining human retinal organoids are time-consuming and labor-intensive, which has so far limited their use in the search for new therapies. To address this challenge, Chen et al. developed a large-scale approach to grow retinal organoids from rd16 mutant mice stem cells (which are a good model for LCA caused by mutations to CEP290) and used the photoreceptors from these organoids to screen over 6,000 existing drugs for their ability to promote the survival of photoreceptors. The experiments found that the drug reserpine, which was previously approved to treat high blood pressure, also helped photoreceptors to survive in the diseased organoids. Reserpine also had a similar effect in retinal organoids derived from human patients with LCA and in the rd16 mice themselves. Further experiments suggest that reserpine may help patients with LCA by partially restoring a process by which the body destroys and recycles old and damaged proteins in the cells. The next steps following on from this work will be to perform further tests to demonstrate that this use of reserpine is safe to enter clinical trials as a treatment for LCA and other similar eye diseases.


Subject(s)
Ciliopathies , Reserpine , Mice , Animals , Reserpine/pharmacology , Reserpine/metabolism , Proteostasis , Antigens, Neoplasm/genetics , Cytoskeletal Proteins/metabolism , Retina/metabolism , Photoreceptor Cells/metabolism , Ciliopathies/drug therapy , Ciliopathies/genetics , Ciliopathies/metabolism
9.
Neurochem Res ; 48(8): 2390-2405, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36964823

ABSTRACT

Progressive neurodegenerative disorders such as Parkinson Disease (PD) lack curative or long-term treatments. At the same time, the increase of the worldwide elderly population and, consequently, the extension in the prevalence of age-related diseases have promoted research interest in neurodegenerative disorders. Caenorhabditis elegans is a free-living nematode widely used as an animal model in studies of human diseases. Here we evaluated cannabidiol (CBD) as a possible neuroprotective compound in PD using the C. elegans models exposed to reserpine. Our results demonstrated that CBD reversed the reserpine-induced locomotor alterations and this response was independent of the NPR-19 receptors, an orthologous receptor for central cannabinoid receptor type 1. Morphological alterations of cephalic sensilla (CEP) dopaminergic neurons indicated that CBD also protects neurons from reserpine-induced degeneration. That is, CBD attenuates the reserpine-induced increase of worms with shrunken soma and dendrites loss, increasing the number of worms with intact CEP neurons. Finally, we found that CBD also reduced ROS formation and α-syn protein accumulation in mutant worms. Our findings collectively provide new evidence that CBD acts as neuroprotector in dopaminergic neurons, reducing neurotoxicity and α-syn accumulation highlighting its potential in the treatment of PD.


Subject(s)
Caenorhabditis elegans Proteins , Cannabidiol , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Aged , Animals , Humans , Caenorhabditis elegans/metabolism , alpha-Synuclein/metabolism , Animals, Genetically Modified , Cannabidiol/pharmacology , Reserpine/toxicity , Reserpine/metabolism , Caenorhabditis elegans Proteins/metabolism , Dopaminergic Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Parkinson Disease/metabolism , Neurodegenerative Diseases/metabolism , Disease Models, Animal , Receptors, G-Protein-Coupled/metabolism
10.
Acta Pharmacol Sin ; 44(7): 1322-1336, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36765267

ABSTRACT

Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 µg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1ß in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.


Subject(s)
Botulinum Toxins, Type A , Parkinson Disease , Mice , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Microglia/metabolism , Botulinum Toxins, Type A/metabolism , Botulinum Toxins, Type A/pharmacology , Reserpine/metabolism , Reserpine/pharmacology , Neuroinflammatory Diseases , Disease Models, Animal , Hippocampus/metabolism , Mice, Inbred C57BL
11.
Drug Chem Toxicol ; 46(3): 462-471, 2023 May.
Article in English | MEDLINE | ID: mdl-35289247

ABSTRACT

BACKGROUND: Targeting the neuronal mitochondria as a possible intervention to guard against neurodegenerative disorder progression has been investigated in the current work via the administration of pelargonidin (PEL) to rats intoxicated by the mitochondrial toxin reserpine. The main criteria for choosing PEL were its reported antioxidant, anti-apoptotic and anti-inflammatory activities. METHODS: Male albino Wistar rats were randomized into five experimental groups; normal control, reserpinized to induce mitochondrial failure, standard PARP-1-inhibitor 1,5-isoquinolinediol (DIQ)-treated reserpinized, PEL-treated reserpinized, and GSK-3ß inhibitor (AR-A 014418) -treated reserpinized. RESULTS: PEL administration reversed the reserpine-induced abnormal behaviors marked by decreased catalepsy time. In addition, PEL restored brain glutathione with a reduction in nitric oxide content as compared to the reserpine-challenged group. Meanwhile, it improved neuronal mitochondrial function by the elevation of complex I activity associated with a low ADP/ATP ratio. Likely through its anti-inflammatory effect, PEL reduced the elevation of serum interleukin-1ß level and inhibited serum lactate dehydrogenase activity. These findings are aligned with the reduced expression of cleaved PARP and cleaved caspase-3 proteins, indicating PEL's suppressive effect on the intrinsic apoptotic pathway. Those biochemical findings were confirmed through comparable histopathological tissue examination among the experimental groups. CONCLUSIONS: In conclusion, PEL is a promising candidate for future use in the management of mitochondria-associated neuronal complications via controlling the ongoing inflammatory and degeneration cascades.


Subject(s)
Apoptosis , Reserpine , Rats , Male , Animals , Reserpine/toxicity , Reserpine/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Rats, Wistar , Mitochondria , Anti-Inflammatory Agents/pharmacology
12.
Eur J Pharmacol ; 906: 174276, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34174267

ABSTRACT

Treatment of Parkinson's disease (PD) includes the use of monoamine oxidase-B (MAO-B) inhibitor drugs. In this work we have evaluated the possible gamma-decanolactone (GD) effect in vitro to inhibit the A and B isoforms of human monoamine oxidase (hMAO) enzyme and their citotoxicity in human hepatoma cell line (HepG2). Also, binding studies to A1, A2A A2B and A3 adenosine receptors were performed. A docking study of gamma-decanolactone has been carried out with the molecular targets of MAO-A and MAO-B isoforms. The physicochemical properties and ability to cross physiological barriers, as the blood brain barrier (BBB), was elucidated by computational studies. The in vivo assays, the rota-rod test, body temperature assessment and open field test were performed in reserpinized mice (1.5 mg/kg, i.p.; 18:00 before) to evaluate the effect of gamma-decanolactone (300 mg/kg), alone or associated with Levodopa plus Benserazide (LD + BZ, 100:25 mg/kg, i.p.). Gamma-decanolactone inhibited preferentially the MAO-B in a reversible manner, with an inhibitory concentration of 50% (IC50) 55.95 ± 9.06 µM. It was shown to be a safe drug since only at the highest concentration decreased the viability of HepG2 cells. It also does not bind to adenosine receptors investigated in this study. The molecular docking study show that the gamma-decanolactone ligand adopts a relatively compact conformation in the active site of hMAO-B, while we note an extended conformation of gamma-decanolactone ligand in the hMAO-A isoform. The physicochemical properties obtained, and the theoretical models utilized for the evaluation of ability to cross the BBB, predict a good gamma-decanolactone bioavailability and access to the central nervous system (CNS). In the in vivo studies, gamma-decanolactone partially reversed the ataxia of the reserpinized mice at 01:00 h and 01:30 h post-administration. Concomitant treatment of gamma-decanolactone with LD + BZ, at 01:30 h showed a potentiation of the reversibility of ataxia and facilitated the reversal of hypothermia caused by reserpine for all measured times (P <0.01 vs vehicle), except at 24:00 h, but not reversed the hypokinesia in the open field test. In summary, the results herein obtained and in conjunction with previous studies, suggest that gamma-decanolactone could be a drug with potential utility as antiparkinsonian drug.


Subject(s)
Antiparkinson Agents/pharmacology , Lactones/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Parkinson Disease, Secondary/drug therapy , Parkinson Disease/drug therapy , Animals , Antiparkinson Agents/chemistry , Antiparkinson Agents/therapeutic use , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Enzyme Assays , Hep G2 Cells , Humans , Lactones/therapeutic use , Male , Mice , Molecular Docking Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/therapeutic use , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Permeability , Receptors, Purinergic P1/metabolism , Recombinant Proteins/metabolism , Reserpine/administration & dosage , Reserpine/metabolism , Reserpine/toxicity , Structure-Activity Relationship
13.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805725

ABSTRACT

Monocarboxylate transporters (MCTs) are of great research interest for their role in cancer cell metabolism and their potential ability to transport pharmacologically relevant compounds across the membrane. Each member of the MCT family could potentially provide novel therapeutic approaches to various diseases. The major differences among MCTs are related to each of their specific metabolic roles, their relative substrate and inhibitor affinities, the regulation of their expression, their intracellular localization, and their tissue distribution. MCT4 is the main mediator for the efflux of L-lactate produced in the cell. Thus, MCT4 maintains the glycolytic phenotype of the cancer cell by supplying the molecular resources for tumor cell proliferation and promotes the acidification of the extracellular microenvironment from the co-transport of protons. A promising therapeutic strategy in anti-cancer drug design is the selective inhibition of MCT4 for the glycolytic suppression of solid tumors. A small number of studies indicate molecules for dual inhibition of MCT1 and MCT4; however, no selective inhibitor with high-affinity for MCT4 has been identified. In this study, we attempt to approach the structural characteristics of MCT4 through an in silico pipeline for molecular modelling and pharmacophore elucidation towards the identification of specific inhibitors as a novel anti-cancer strategy.


Subject(s)
Antineoplastic Agents/chemistry , Monocarboxylic Acid Transporters/chemistry , Muscle Proteins/chemistry , Phloretin/chemistry , Pyrimidinones/chemistry , Quercetin/chemistry , Reserpine/analogs & derivatives , Thiophenes/chemistry , Uracil/analogs & derivatives , Animals , Antineoplastic Agents/metabolism , Binding Sites , Biological Transport , Drug Design , Glycolysis/physiology , Humans , Lactic Acid/chemistry , Lactic Acid/metabolism , Molecular Docking Simulation , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Muscle Proteins/metabolism , Phloretin/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyrimidinones/metabolism , Quercetin/metabolism , Reserpine/chemistry , Reserpine/metabolism , Structural Homology, Protein , Substrate Specificity , Thiophenes/metabolism , Uracil/chemistry , Uracil/metabolism
14.
PLoS One ; 16(1): e0239353, 2021.
Article in English | MEDLINE | ID: mdl-33481781

ABSTRACT

The phenoxyalkylimidazoles (PAI) are an attractive chemical series with potent anti-tubercular activity targeting Mycobacterium tuberculosis respiration. Our aim was to determine if the PAI compounds are subject to efflux. Two analogs containing an oxadiazole had improved potency in the presence of the efflux inhibitors reserpine and carbonyl cyanide m-chlorophenylhydrazine, whereas the potency of analogs with a diazole was not affected.


Subject(s)
Mycobacterium tuberculosis/drug effects , Oxadiazoles/pharmacology , Phenols/pharmacology , Antitubercular Agents/pharmacology , Bacterial Proteins/drug effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Humans , Isoniazid/chemistry , Isoniazid/pharmacology , Membrane Transport Proteins/drug effects , Microbial Sensitivity Tests/methods , Oxadiazoles/chemistry , Phenols/chemistry , Reserpine/metabolism , Reserpine/pharmacology
15.
Int J Antimicrob Agents ; 56(3): 106082, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32659467

ABSTRACT

BACKGROUND: To evaluate the activity of ozenoxacin (OZN) in Staphylococcus aureus strains overexpressing the efflux pump-encoding genes mepA and norA. METHODS: S. aureus NCTC-8325-1, S. aureus NCTC 8225-2 (overexpressing mepA), S. aureus SA 1199 and S. aureus SA 1199B (overexpressing norA) were used. The minimum inhibitory concentrations (MICs) of OZN, moxifloxacin (MOX), levofloxacin (LVX), ciprofloxacin (CIP) and norfloxacin (NOR) in the presence and absence of reserpine (20 mg/L) were determined using the microdilution method. RESULTS: The MIC of OZN was lower in all evaluated strains compared with the other studied quinolones and was independent of the pump being overexpressed. MIC values of OZN ranged from 0.005 to 0.007 mg/L. Similar results were observed with MOX, with MIC values between 0.021 and 0.031 mg/L, without variations in the presence of reserpine. MIC values for LVX were between 0.167 and 1 mg/L with a slight increase in MIC observed in strains overexpressing the mepA or norA genes (from 0.250 to 0.833 mg/L and 0.167 to 1 mg/L, respectively). Overproduction of the efflux pump MepA did not affect CIP whereas it increased 8-fold the MIC of NOR. Overproduction of NorA increased ~5-fold and ~40-fold the MICs of CIP and NOR, respectively, resulting in a high-level of resistance to these antibiotics compared with OZN (0.007 mg/L). CONCLUSION: OZN does not seem to be a substrate for the efflux pumps MepA and NorA, which are commonly found in Gram-positive bacteria and that affect other quinolones.


Subject(s)
Aminopyridines/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Endopeptidases/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Quinolones/pharmacology , Staphylococcus aureus/genetics , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Reserpine/metabolism , Staphylococcus aureus/metabolism
16.
Behav Brain Res ; 366: 77-87, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30898681

ABSTRACT

We investigated the effects of maternal hypothyroidism on forebrain dopaminergic, GABAergic, and serotonergic systems and related behavior in adult rat offspring. Experimental gestational hypothyroidism (EGH) was induced by administering 0.02% methimazole (MMI) to pregnant rats from gestational day 9 to delivery. Neurotransmitter-related protein and gene expression were evaluated in offspring forebrain at postnatal day (P) 120. Exploratory behavior, contextual fear conditioning, locomotion, and 30-day reserpine Parkinson induction were assessed from P75-P120. Protein and gene expression assessments of medial prefrontal cortex showed group differences in dopaminergic, GABAergic, and serotonergic receptors, catabolic enzymes, and transporters. Striatum of MMI offspring showed an isolated decrease in the dopaminergic enzyme, tyrosine hydroxylase. MMI exposure increased GABA and dopamine receptor expression in amygdala. MMI offspring also had decreased state anxiety and poor contextual fear conditioning. We found that baseline locomotion was not changed, but reserpine treatment significantly reduced locomotion only in MMI offspring. Our results indicated that restriction of maternal thyroid hormones reduced dopaminergic, GABAergic, and serotoninergic forebrain components in offspring. Tyrosine hydroxylase deficiency in the striatum may underlie enhanced reserpine induction of Parkinson-like movement in these same offspring. Deficits across different neurotransmitter systems in medial prefrontal cortex and amygdala may underlie decreased state anxiety-like behavior and reduced fear conditioning in offspring, but no changes in trait anxiety-like behavior occurred with maternal MMI exposure. These findings strongly support the hypothesis that adequate delivery of maternal thyroid hormones to the fetus is crucial to the development of the central nervous system critical for emotion and motor regulation.


Subject(s)
Hypothyroidism/metabolism , Amygdala/metabolism , Animals , Anxiety , Anxiety Disorders , Disease Models, Animal , Dopamine , Dopaminergic Neurons/metabolism , Exploratory Behavior/drug effects , Fear/drug effects , Female , GABAergic Neurons/metabolism , Hypothyroidism/chemically induced , Hypothyroidism/physiopathology , Locomotion/drug effects , Male , Maternal Exposure , Methimazole/adverse effects , Methimazole/pharmacology , Neurotransmitter Agents , Parkinsonian Disorders , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prosencephalon/drug effects , Rats , Rats, Wistar , Reserpine/metabolism , Serotonergic Neurons/metabolism , Thyroid Hormones/metabolism , Tyrosine 3-Monooxygenase/metabolism
17.
Int J Antimicrob Agents ; 50(3): 491-495, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28668684

ABSTRACT

This study explored the prevalence of urinary tract tuberculosis (UTB) and whether efflux pump activation accounts for resistance to moxifloxacin in Taiwan. Of 3034 patients with culture-confirmed TB from 2005-2012, 47 patients (1.5%) with UTB were included in this study. Minimum inhibitory concentrations (MICs) of moxifloxacin were determined in the presence and absence of efflux pump inhibitors (EPIs), including verapamil, reserpine and carbonyl cyanide 3-chlorophenylhydrazone (CCCP). EPI responders were defined as isolates with at least a four-fold reduction in MICs in the presence of EPIs. Among the 47 isolates, 24 (51.1%) were resistant to ofloxacin and 22 (46.8%) were resistant to moxifloxacin by the agar proportion method. Among the 22 moxifloxacin-resistant isolates, 19 (86.4%) had low-level resistance (MIC = 1.0-2.0 mg/L). Patients with prior exposure to fluoroquinolones were more likely than non-exposed patients to have moxifloxacin-resistant isolates [14/22 (63.6%) vs. 8/25 (32.0%); P = 0.030]. All 3 isolates with high-level moxifloxacin resistance (MIC ≥ 4.0 mg/L) had mutations in the gyrA or gyrB genes; however, among the 19 isolates with low-level resistance, only 1 (5.3%) had a mutation in the gyrA gene. Among the 19 isolates with low-level moxifloxacin resistance, 16 isolates (84.2%) were EPIs responders, but none of the high-level resistant isolates were EPIs responders. Approximately one-half (46.8%) of the isolates from patients with UTB were resistant to moxifloxacin, and activation of efflux pumps accounted for most low-level moxifloxacin-resistant isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Fluoroquinolones/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis, Urogenital/microbiology , Anti-Bacterial Agents/metabolism , Biological Transport, Active , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , DNA Gyrase/genetics , Enzyme Inhibitors/metabolism , Fluoroquinolones/metabolism , Humans , Incidence , Microbial Sensitivity Tests/methods , Moxifloxacin , Mycobacterium tuberculosis/isolation & purification , Prevalence , Reserpine/metabolism , Taiwan/epidemiology , Tuberculosis, Urogenital/epidemiology , Verapamil/metabolism
18.
Behav Pharmacol ; 28(6): 441-449, 2017 09.
Article in English | MEDLINE | ID: mdl-28562459

ABSTRACT

Emotional memory deficit is a well-known complication in early Parkinson's disease. However, its molecular mechanism is still not well known. To address this issue, we examined the cue-related fear-conditioning task and long-term potentiation (LTP) of the thalamus to the lateral amygdala in rats treated with low doses of reserpine (Res). We found that low-dose Res treatment impaired emotional memory and LTP. We also found that exogenous upregulation of norepinephrine (NE) ameliorated the impairment of LTP by facilitating ß-adrenergic receptors. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory induced by a low-dose of Res. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in rats treated with low doses of Res and suggest that desipramine is a potential candidate for treating Parkinson's disease-related emotional memory deficit.


Subject(s)
Desipramine/pharmacology , Memory Disorders/drug therapy , Amygdala/drug effects , Amygdala/physiology , Animals , Cues , Desipramine/metabolism , Emotions , Fear , Long-Term Potentiation , Male , Memory/physiology , Memory Disorders/metabolism , Neuronal Plasticity/physiology , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta/drug effects , Receptors, Adrenergic, beta/metabolism , Reserpine/metabolism , Reserpine/pharmacology , Thalamus/drug effects , Thalamus/physiology
19.
Proc Natl Acad Sci U S A ; 113(47): E7390-E7398, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27821772

ABSTRACT

Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H+ per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H+-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.


Subject(s)
Mutation , Reserpine/metabolism , Tetrabenazine/metabolism , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/genetics , Animals , Binding Sites , Cytoplasm/genetics , Cytoplasm/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Conformation , Protons , Rats , Vesicular Monoamine Transport Proteins/metabolism
20.
Drug Des Devel Ther ; 10: 3237-3252, 2016.
Article in English | MEDLINE | ID: mdl-27757014

ABSTRACT

Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer. Structural design of NorA unveils amino (N)- and carboxyl (C)-terminal domains which are connected by long cytoplasmic loop. N and C domains are composed of six transmembrane α-helices (TM) which exhibits pseudo-twofold symmetry and possess voluminous substrate binding cavity between TM helices. Molecular docking of reserpine, totarol, ferruginol, salvin, thioxanthene, phenothiazine, omeprazole, verapamil, nalidixic acid, ciprofloxacin, levofloxacin, and acridine to NorA found that all the molecules were bound at the large hydrophobic cleft and indicated significant interactions with the key residues. In addition, structure-based virtual screening was employed which indicates that 14 potent novel lead molecules such as CID58685302, CID58685367, CID5799283, CID5578487, CID60028372, ZINC12196383, ZINC72140751, ZINC72137843, ZINC39227983, ZINC43742707, ZINC12196375, ZINC66166948, ZINC39228014, and ZINC14616160 have highest binding affinity for NorA. These lead molecules displayed considerable pharmacological properties as evidenced by Lipinski rule of five and prophecy of toxicity risk assessment. Thus, the present study will be helpful in designing and synthesis of a novel class of NorA efflux pump inhibitors that restore the susceptibilities of drug compounds.


Subject(s)
Bacterial Proteins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/chemistry , Bacterial Proteins/metabolism , Binding, Competitive , Drug Design , Multidrug Resistance-Associated Proteins/metabolism , Reserpine/analogs & derivatives , Reserpine/chemistry , Reserpine/metabolism , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...