Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.430
Filter
1.
Antimicrob Agents Chemother ; 68(5): e0134823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572960

ABSTRACT

Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Microbial Sensitivity Tests , Mycobacterium abscessus , Reserpine , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Reserpine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Verapamil/pharmacology
2.
Article in English | MEDLINE | ID: mdl-38636702

ABSTRACT

BACKGROUND: Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS: Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS: Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS: The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.


Subject(s)
Depression , Disease Models, Animal , Positron-Emission Tomography , Rats, Sprague-Dawley , Reserpine , Animals , Reserpine/pharmacology , Male , Rats , Depression/chemically induced , Depression/metabolism , Behavior, Animal/drug effects , Receptors, Dopamine/metabolism , Dose-Response Relationship, Drug , Brain/metabolism , Brain/drug effects , Brain/diagnostic imaging , Vesicular Monoamine Transport Proteins/metabolism , Motor Activity/drug effects
3.
Nature ; 629(8010): 235-243, 2024 May.
Article in English | MEDLINE | ID: mdl-38499039

ABSTRACT

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Subject(s)
Biogenic Monoamines , Drug Interactions , Vesicular Monoamine Transport Proteins , Humans , 1-Methyl-4-phenylpyridinium/chemistry , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Amphetamine/chemistry , Amphetamine/pharmacology , Amphetamine/metabolism , Binding Sites , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Cryoelectron Microscopy , Dopamine/chemistry , Dopamine/metabolism , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Protein Binding , Protons , Reserpine/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
4.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Article in English | MEDLINE | ID: mdl-38499659

ABSTRACT

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Subject(s)
Disease Models, Animal , Parkinsonian Disorders , Reserpine , Sleep Deprivation , Animals , Male , Reserpine/pharmacology , Sleep Deprivation/complications , Mice , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Catalepsy/chemically induced , Oxidative Stress/physiology , Oxidative Stress/drug effects , Tyrosine 3-Monooxygenase/metabolism , Motor Activity/physiology , Motor Activity/drug effects , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Anhedonia/physiology , Anhedonia/drug effects
5.
Planta Med ; 90(6): 426-439, 2024 May.
Article in English | MEDLINE | ID: mdl-38452806

ABSTRACT

Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.


Subject(s)
Alkaloids , Eye Diseases , Humans , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Eye Diseases/drug therapy , Atropine/pharmacology , Pilocarpine , Plants, Medicinal/chemistry , Caffeine/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Reserpine/pharmacology
6.
Viruses ; 16(1)2024 01 04.
Article in English | MEDLINE | ID: mdl-38257782

ABSTRACT

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.


Subject(s)
Megakaryocytes , Phenols , Reserpine , SARS-CoV-2 , Humans , COVID-19 , Megakaryocytes/virology , Phenols/pharmacology , Post-Acute COVID-19 Syndrome , Reserpine/analogs & derivatives , Reserpine/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects
7.
Nature ; 626(7998): 427-434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081299

ABSTRACT

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Subject(s)
Cryoelectron Microscopy , Vesicular Monoamine Transport Proteins , Humans , Binding Sites , Cytoplasm/drug effects , Cytoplasm/metabolism , Ketanserin/chemistry , Ketanserin/metabolism , Ketanserin/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Reserpine/pharmacology , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Tetrabenazine/chemistry , Tetrabenazine/metabolism , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
8.
Article in English | MEDLINE | ID: mdl-37839537

ABSTRACT

Reserpine is a drug that is commonly used as an antihypertensive and antipsychotic drug in clinical practice. During our previous research, we found that reserpine treatment in zebrafish larvae can cause depression-like behaviors, but the corresponding mechanisms are still unclear. In this study, we aimed to investigate the molecular mechanism by which reserpine exposure affects locomotor behaviors in larval zebrafish through transcriptome analysis. The gene enrichment results showed that the differentially highly expressed genes of zebrafish are mainly enriched in voltage-gated ion channels, dopaminergic synapses and wnt signaling pathways. Selected genes (apc2, cacna1aa, drd2b, dvl1a, fzd1, wnt1, wnt3a, wnt9a and wnt10a) by transcriptomic results was validated by real-time PCR. Consistently, Wnt signaling pathway inhibitor XAV939 may induce reduced behavioral changes in zebrafish larvae, while the Wnt signaling pathway agonist SB415286 reversed the reserpine-induced depressive effects. Our study provides gene transcriptional profile data for future research on reserpine-induced locomotor behavioral changes.


Subject(s)
Transcriptome , Zebrafish , Animals , Zebrafish/metabolism , Reserpine/pharmacology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Profiling
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 4381-4401, 2024 06.
Article in English | MEDLINE | ID: mdl-38103060

ABSTRACT

For several decades, reserpine was used to treat hypertension and, to a limited extent, psychoses. Over time, however, the indication became more and more restricted to the point of obsolescence. This study examines the extent to which textbooks are up to date in their content and oriented towards therapeutic guidelines, using the obsolete drug reserpine as a paradigm. Three German pharmacology textbook series were examined for the coverage of reserpine from 1964-2023: Allgemeine und Spezielle Pharmakologie und Toxikologie (Aktories), Allgemeine und Spezielle Pharmakologie und Toxikologie (Karow) and Pharmakologie und Toxikologie (Lüllmann). We compared the textbook content with data on reserpine prescriptions and hypertension guidelines and analysed the relevance of reserpine in examinations using German federal exam questions by the Institute for medical and pharmaceutical exam questions (IMPP). The textbooks differ conceptually from each other. The indication of reserpine for hypertension has become more restricted over time in all three textbooks, yet they partially show discrepancies with hypertension guidelines. The reserpine prescription figures show a strong decline , and reserpine has not been queried by the IMPP, which underlines the obsolescence of the drug. Overall, our study shows that the presentation of a representative obsolete drug in pharmacology textbooks lags current medical practice. We also unmasked more differences in the presentation of an obsolete drug in standard textbooks than anticipated. In conclusion, the analysis of obsolete drugs in pharmacology textbooks is an informative way of assessing how up-to-date they are.


Subject(s)
Reserpine , Textbooks as Topic , Reserpine/pharmacology , Humans , Germany , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Pharmacology/education , Language
10.
Brain Res ; 1825: 148723, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38101693

ABSTRACT

Neuroplasticity and inflammation represent a common final pathway for effective antidepressant treatment. SSRIs are the most commonly prescribed medications for depression and have demonstrated efficacy in reducing depressive symptoms. However, the precise impact of SSRIs on neuroplasticity and inflammation remains unclear. In this study, we aimed to investigate the influence of long-term treatment with SSRIs on hippocampal neuron, inflammation, synaptic function and morphology. Our findings revealed that fluoxetine treatment significantly alleviated behavioral despair, anhedonia, and anxiety in reserpine-treated mice. Moreover, fluoxetine mitigated hippocampal neuron impairment, inhibited inflammatory release, and increased the expression of synaptic proteins markers (SYP and PSD95) in mice. Notably, fluoxetine also suppressed reserpine-induced synapse loss in the hippocampus. Based on these results, fluoxetine has been demonstrated effectively to ameliorate depressive mood and cognitive dysfunction, possibly through the enhancement of synaptic plasticity. Overall, our study contributes to a further understanding of the mechanisms underlying the therapeutic effects of fluoxetine and its potential role in improving depressive symptoms and cognitive impairments.


Subject(s)
Fluoxetine , Selective Serotonin Reuptake Inhibitors , Mice , Animals , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Reserpine/metabolism , Reserpine/pharmacology , Depression/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Neuronal Plasticity , Hippocampus/metabolism
11.
Cells ; 12(21)2023 10 27.
Article in English | MEDLINE | ID: mdl-37947607

ABSTRACT

The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um2, p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.


Subject(s)
Parkinson Disease , Tremor , Humans , Male , Animals , Rats , Rats, Sprague-Dawley , Tremor/chemically induced , Reserpine/pharmacology , Brain , Norepinephrine
12.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914936

ABSTRACT

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Subject(s)
Neurotransmitter Agents , Reserpine , Serotonin , Tetrabenazine , Vesicular Monoamine Transport Proteins , Humans , Adrenergic Uptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/pharmacology , Biological Transport/drug effects , Cryoelectron Microscopy , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Reserpine/chemistry , Reserpine/pharmacology , Serotonin/metabolism , Synaptic Transmission , Tetrabenazine/chemistry , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure , Substrate Specificity/drug effects
13.
Photochem Photobiol Sci ; 22(12): 2891-2904, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917308

ABSTRACT

Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.


Subject(s)
Low-Level Light Therapy , Parkinsonian Disorders , Rats , Male , Animals , Reserpine/pharmacology , Rats, Wistar , Serotonin , Acetylcholinesterase , Mesencephalon , Dopamine , Adenosine Triphosphatases , Disease Models, Animal
14.
Neuroscience ; 528: 37-53, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37532013

ABSTRACT

Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. In FM model, OXT-monomeric red fluorescent protein 1 (OXT-mRFP1) transgenic rats exhibited increased depressive behavior and sensitivity in a mechanical nociceptive test, suggesting reduced pain tolerance. Additionally, the development of the FM-like phenotype in OXT-mRFP1 FM model rats was accompanied by a significant reduction in OXT mRNA expression in the magnocellular neurons of the paraventricular nucleus. OXT-mRFP1 FM model rats also had significantly fewer tryptophan hydroxylase (TPH)- and tyrosine hydroxylase (TH)-immunoreactive (ir) neurons as well as reduced serotonin and norepinephrine levels in the dorsal raphe and locus coeruleus. To investigate the effects of stimulating the endogenous OXT pathway, rats expressing OXT-human muscarinic acetylcholine receptor (hM3Dq)-mCherry designer receptors exclusively activated by designer drugs (DREADDs) were also assessed in the FM model. Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.


Subject(s)
Fibromyalgia , Oxytocin , Rats , Humans , Animals , Oxytocin/pharmacology , Oxytocin/metabolism , Reserpine/pharmacology , Reserpine/metabolism , Fibromyalgia/chemically induced , Fibromyalgia/metabolism , Luminescent Proteins/genetics , Pain/metabolism , Rats, Transgenic , Neurons/metabolism , Receptors, Oxytocin/metabolism
15.
J Psychopharmacol ; 37(11): 1132-1148, 2023 11.
Article in English | MEDLINE | ID: mdl-37593958

ABSTRACT

BACKGROUND: Nicotine cessation leads to anxiety and depression. AIMS: The suitability of the zebrafish model of anhedonia using reserpine and fluoxetine was evaluated. Fluoxetine was also used to reduce nicotine withdrawal-induced anhedonic state. METHODS: Zebrafish were exposed to reserpine (40 mg/l) and then to fluoxetine (0.1 mg/l) for 1 week. Anhedonia was evaluated in the Novel Tank Diving and Compartment Preference tests. Another group was exposed to nicotine (1 mg/l/2 weeks) and then exposed to fluoxetine. Anxiety and anhedonia were evaluated 2-60 days after. Tyrosine hydroxylase (TH) immunoreactivity and microglial morphology (labelled by 4C4 monoclonal antibody) in the parvocellular pretectal nucleus (PPN), dorsal part, and of calcitonin gene-related peptide (CGRP) in the hypothalamus were also analysed. RESULTS: Less time in the top and increased latency to the top in reserpine compared to a drug-free group was found. Fluoxetine rescued reserpine-induced the reduced time in the top. Seven and 30 days after nicotine withdrawal more time in the bottom and similar time in the Compartment Preference test, rescued by fluoxetine, were shown. In the PPN, 30-day withdrawal induced an increase in TH immunoreactivity, but fluoxetine induced a further significant increase. No changes in PPN microglia morphology and hypothalamic CGRP were detected. CONCLUSIONS: Our findings validate the suitability of the zebrafish model of anhedonia using the reserpine-induced depression-like behaviour and the predictivity using fluoxetine. Fluoxetine rescued nicotine withdrawal-induced anhedonic state, opening the possibility to screen new drugs to alleviate anxiety and depression in smokers during abstinence.


Subject(s)
Nicotine , Substance Withdrawal Syndrome , Animals , Nicotine/pharmacology , Fluoxetine/pharmacology , Zebrafish , Reserpine/pharmacology , Tyrosine 3-Monooxygenase , Anhedonia , Calcitonin Gene-Related Peptide , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology
16.
Biochim Biophys Acta Biomembr ; 1865(7): 184197, 2023 10.
Article in English | MEDLINE | ID: mdl-37394027

ABSTRACT

Neurotransmitter release from sympathetic terminals is a key avenue for heart regulation. Herein, presynaptic exocytotic activity was monitored in mice atrial tissue using a false fluorescent neurotransmitter FFN511, a substrate for monoamine transporters. FFN511 labeling had similarity with tyrosine hydroxylase immunostaining. High [K+]o depolarization caused FFN511 release, which was augmented by reserpine, an inhibitor of neurotransmitter uptake. However, reserpine lost the ability to increase depolarization-induced FFN511 unloading after depletion of ready releasable pool with hyperosmotic sucrose. Cholesterol oxidase and sphingomyelinase modified atrial membranes, changing in opposite manner fluorescence of lipid ordering-sensitive probe. Plasmalemmal cholesterol oxidation increased FFN511 release upon K+-depolarization and more markedly potentiated FFN511 unloading in the presence of reserpine. Hydrolysis of plasmalemmal sphingomyelin profoundly enhanced the rate of FFN511 loss due to K+-depolarization, but completely prevented potentiating action of reserpine on FFN511 unloading. If cholesterol oxidase or sphingomyelinase got access to membranes of recycling synaptic vesicles, then the enzyme effects were suppressed. Hence, a fast neurotransmitter reuptake dependent on exocytosis of vesicles from ready releasable pool occurs during presynaptic activity. This reuptake can be enhanced or inhibited by plasmalemmal cholesterol oxidation or sphingomyelin hydrolysis, respectively. These modifications of plasmalemmal (but not vesicular) lipids increase the evoked neurotransmitter release.


Subject(s)
Atrial Fibrillation , Reserpine , Mice , Animals , Reserpine/pharmacology , Sphingomyelin Phosphodiesterase , Cholesterol Oxidase/pharmacology , Sphingomyelins/pharmacology , Nerve Endings , Neurotransmitter Agents/pharmacology , Cholesterol/pharmacology
17.
Psychiatry Res Neuroimaging ; 334: 111682, 2023 09.
Article in English | MEDLINE | ID: mdl-37506423

ABSTRACT

The aim of this study was to construct an animal model of depression that reproduces the human clinical manifestation, to evaluate the possible benefits of curcumin (CUR) in the treatment of depression and to compare its effect with the effect of a classic antidepressant, escitalopram (ESC). The behavior of depressive-like animals induced by administration of 1.5 mg/kg i. p. reserpine (R), during 10 days (n = 24) was evaluated via the open field test (OFT) and elevated plus maze (EPM) compared to control animals (n = 24) treated with carboxymethylcellulose (CMC) used as a vehicle. On the 11th day, each group was divided into 3 subgroups (n = 8): control (CMC), CMC+CUR, CMC+ESC for group without depression and CMC+R, CMC+R+CUR, CMC+R+ESC for group with depression. CUR (150 mg/kg i.p.) and ESC (20 mg/kg i.p.) were intraperitoneally administrated for 21 days. The improvement in depressive behaviour was assessed by OFT, EPM and biochemical analysis on the 32nd day. The results demonstrated that R induced hypomotility and increased oxidative stress in the brain, but also in the serum of rats. CUR had an antioxidant effect in the brain without significant effect on depressive-like behaviour while ESC improved the hypomotility of the depressive rats.


Subject(s)
Curcumin , Rats , Humans , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Depression/chemically induced , Depression/drug therapy , Reserpine/pharmacology , Brain , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
18.
Curr HIV Res ; 21(4): 240-247, 2023.
Article in English | MEDLINE | ID: mdl-37291776

ABSTRACT

BACKGROUND: Alkaloids are nitrogen-containing compounds that are naturally occurring and have a variety of biological activities, including antimicrobial properties. In this study, the authors used a molecular docking approach to evaluate the anti-HIV potential of 64 alkaloids. METHODS: The authors used the Molegro Virtual Docker software to dock the alkaloids into the active sites of three HIV enzymes: protease, integrase, and non-nucleoside reverse transcriptase (NNRT). The docking scores were used to assess the potential of the alkaloids to inhibit the enzymes. RESULTS: The results showed the alkaloids to have good potential to inhibit the enzymes. Tubocurarine and reserpine were found to be the most potent alkaloids, with docking scores of -123.776 and - 114.956, respectively. CONCLUSION: The authors concluded that tubocurarine and reserpine could be further promoted as potential lead molecules for the development of new anti-HIV drugs.


Subject(s)
Alkaloids , Anti-HIV Agents , HIV Infections , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/chemistry , Molecular Docking Simulation , Tubocurarine , Reserpine/pharmacology , HIV Infections/drug therapy , Alkaloids/pharmacology , Alkaloids/therapeutic use , HIV Reverse Transcriptase/chemistry , Reverse Transcriptase Inhibitors/pharmacology
19.
Eur J Pharmacol ; 952: 175810, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37245858

ABSTRACT

Fibromyalgia (FM) is a pain disorder marked by generalized musculoskeletal pain accompanied by depression, fatigue, and sleep disturbances. Galantamine (Gal) is a positive allosteric modulator of neuronal nicotinic acetylcholine receptors (nAChRs) and a reversible inhibitor of cholinesterase. The current study aimed to explore the therapeutic potential of Gal against reserpine (Res)-induced FM-like condition along with investigating the α7-nAChR's role in Gal-mediated effects. Rats were injected with Res (1 mg/kg/day; sc) for 3 successive days then Gal (5 mg/kg/day; ip) was given alone and with the α7-nAChR blocker methyllycaconitine (3 mg/kg/day; ip), for the subsequent 5 days. Galantamine alleviated Res-induced histopathological changes and monoamines depletion in rats' spinal cord. It also exerted analgesic effect along with ameliorating Res-induced depression and motor-incoordination as confirmed by behavioral tests. Moreover, Gal produced anti-inflammatory effect through modulating AKT1/AKT2 and shifting M1/M2 macrophage polarization. The neuroprotective effects of Gal were mediated through activating cAMP/PKA and PI3K/AKT pathways in α7-nAChR-dependent manner. Thus, Gal can ameliorate Res-induced FM-like symptoms and mitigate the associated monoamines depletion, neuroinflammation, oxidative stress, apoptosis, and neurodegeneration through α7-nAChR stimulation, with the involvement of cAMP/PKA, PI3K/AKT, and M1/M2 macrophage polarization.


Subject(s)
Fibromyalgia , Galantamine , Rats , Animals , Galantamine/pharmacology , Galantamine/therapeutic use , Reserpine/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Microglia , Fibromyalgia/chemically induced , Fibromyalgia/drug therapy
20.
Pestic Biochem Physiol ; 193: 105433, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248010

ABSTRACT

The main objective of this study was to evaluate the effects and possible mechanisms of action of glyphosate and a glyphosate-based herbicide (GBH) on dopaminergic neurotransmission in the rat striatum. Acute exposure to glyphosate or GBH, administered by systemic (75 or 150 mg/kg, i.p.) or intrastriatal (1, 5, or 10 mM for 1 h) routes, produced significant concentration-dependent increases in dopamine release measured in vivo by cerebral microdialysis coupled to HPLC with electrochemical detection. Systemic administration of glyphosate also significantly impaired motor control and decreased striatal acetylcholinesterase activity and antioxidant capacity. At least two mechanisms can be proposed to explain the glyphosate-induced increases in extracellular dopamine levels: increased exocytotic dopamine release from synaptic vesicles or inhibition of dopamine transporter (DAT). Thus, we investigated the effects of intrastriatal administration of glyphosate (5 mM) in animals pretreated with tetrodotoxin (TTX) or reserpine. It was observed that TTX (10 or 20 µM) had no significant effect on glyphosate-induced dopamine release, while reserpine (10 mg/kg i.p) partially but significantly reduced the dopamine release. When glyphosate was coinfused with nomifensine (50 µM), the increase in dopamine levels was significantly higher than that observed with glyphosate or nomifensine alone. So, two possible hypotheses could explain this additive effect: both glyphosate and nomifensine act through different mechanisms at the dopaminergic terminals to increase dopamine levels; or both nomifensine and glyphosate act on DAT, with glyphosate simultaneously inhibiting reuptake and stimulating dopamine release by reversing the DAT function. Future research is needed to determine the effects of this pesticide at environmentally relevant doses.


Subject(s)
Dopamine , Herbicides , Nomifensine , Synaptic Transmission , Animals , Rats , Acetylcholinesterase , Nomifensine/pharmacology , Rats, Sprague-Dawley , Reserpine/pharmacology , Tetrodotoxin/pharmacology , Herbicides/toxicity , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...