Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72.657
Filter
1.
Multimedia | Multimedia Resources | ID: multimedia-13175

ABSTRACT

Este ejercicio es muy práctico y efectivo ya que consiste en enfocar la atención plenamente en la respiración. Al prestar atención a la inhalación y exhalación de forma consciente, se busca cultivar la conciencia del momento presente y calmar la mente.


Subject(s)
Qi , Respiration , Mindfulness
2.
Codas ; 36(3): e20220330, 2024.
Article in English | MEDLINE | ID: mdl-38695436

ABSTRACT

PURPOSE: The Awake Breathing Pattern Assessment (ABPA) is a prototypical clinical grid recently designed through an international consensus of Speech and Language Pathologists (SLPs) to categorize the awake and habitual breathing pattern during the orofacial myofunctional assessment. This cross-sectional study aims to explore the psychometric properties of the ABPA in a preschool population. METHODS: 133 children from 2;11 to 6 years old were assessed with the ABPA. The percentage of time spent breathing through the mouth was objectively measured by a CO2 sensor and used as a baseline measurement. We first performed a multivariate Latent Profile Analysis based on the CO2 measurement and a parental questionnaire to define the number of categories that best characterize the breathing pattern. Subsequently, we assessed the intra- and inter-rater reliability, internal consistency criterion validity, construct validity and sensitivity and specificity. RESULTS: The awake breathing pattern can best be described by two groups: nasal and mouth breathing. The ABPA, initially designed in three groups, was adjusted accordingly. This final version showed excellent intra-rater and inter-rater reliability. There was a significant correlation between the ABPA and the CO2 measurement. The ABPA showed a fair sensitivity and a good specificity. CONCLUSION: The reference tool based on CO2 data was used in children for the first time and was found to be reliable. The ABPA is a suitable tool for SLPs to confirm the diagnosis of mouth breathing in preschool children if more sensitive screening tools, like parental questionnaires, are used beforehand.


Subject(s)
Mouth Breathing , Humans , Mouth Breathing/diagnosis , Mouth Breathing/physiopathology , Child, Preschool , Cross-Sectional Studies , Reproducibility of Results , Female , Male , Child , Psychometrics , Sensitivity and Specificity , Surveys and Questionnaires , Wakefulness/physiology , Respiration , Carbon Dioxide/analysis
3.
PLoS One ; 19(5): e0276568, 2024.
Article in English | MEDLINE | ID: mdl-38713736

ABSTRACT

BACKGROUND: Choral activities are correlated with various health and wellbeing parameters. However, an intervention combining a music program using wind instruments and choral activities has not yet been investigated. Thus, this study aimed to assess the effects of a 12-week intervention combining a wind instrument performance program and a choral program on stress factors, quality of life, and respiratory function in adolescents located in a metropolitan city with exposure to air pollution. METHOD: This randomized controlled trial consisted of 50 adolescents, and the subjects were randomly assigned to a combination wind instrument and choral training group, a choral training group, and a control group. Following a 12-week intervention program, respiratory function, stress factors, and quality of life were compared between the three groups. RESULTS: Regarding respiratory function, with the exception of maximal inspiratory pressure, all measured variables exhibited an interaction to indicate a variation in the pattern of change(p<0.05). Furthermore, regarding stress factors and quality of life, all measured variables exhibited an interaction to indicate a variation in the pattern of change(p<0.05). As a result of the post-hoc analysis, significant differences were found in all variables in experimental group 1 compared to other groups (p<0.05). CONCLUSION: The results showed that the 12-week intervention combining a wind instrument performance program and a choral program had positive effects in improving the respiratory function, stress factors, and quality of life in adolescents. This study findings are expected to support future studies aimed at promoting overall health including respiratory function and psychological factors through various music-based programs.


Subject(s)
Breathing Exercises , Quality of Life , Stress, Psychological , Humans , Adolescent , Male , Female , Breathing Exercises/methods , Music , Respiration , Respiratory Function Tests , Music Therapy/methods
4.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717411

ABSTRACT

We tested the validity of the state space correspondence (SSC) strategy based on k-nearest neighbor cross-predictability (KNNCP) to assess the directionality of coupling in stochastic nonlinear bivariate autoregressive (NBAR) processes. The approach was applied to assess closed-loop cardiorespiratory interactions between heart period (HP) variability and respiration (R) during a controlled respiration (CR) protocol in 19 healthy humans (aged from 27 to 35 yrs, 11 females) and during active standing (STAND) in 25 athletes (aged from 20 to 40 yrs, all men) and 25 non-athletes (aged from 20 to 40 yrs, all men). Over simulated NBAR processes, we found that (i) the SSC approach can detect the correct causal relationship as the direction leads to better KNNCP from the past of the driver to the future state of the target and (ii) simulations suggest that the ability of the method is preserved in any condition of complexity of the interacting series. Over CR and STAND protocols, we found that (a) slowing the breathing rate increases the strength of the causal relationship in both temporal directions in a balanced modality; (b) STAND is more powerful in modulating the coupling strength on the pathway from HP to R; (c) regardless of protocol and experimental condition, the strength of the link from HP to R is stronger than that from R to HP; (d) significant causal relationships in both temporal directions are found regardless of the level of complexity of HP variability and R. The SSC strategy is useful to disentangle closed-loop cardiorespiratory interactions.


Subject(s)
Heart Rate , Stochastic Processes , Humans , Adult , Male , Female , Heart Rate/physiology , Respiration , Young Adult , Nonlinear Dynamics , Algorithms
5.
Biomed Eng Online ; 23(1): 45, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705982

ABSTRACT

BACKGROUND: Sleep-disordered breathing (SDB) affects a significant portion of the population. As such, there is a need for accessible and affordable assessment methods for diagnosis but also case-finding and long-term follow-up. Research has focused on exploiting cardiac and respiratory signals to extract proxy measures for sleep combined with SDB event detection. We introduce a novel multi-task model combining cardiac activity and respiratory effort to perform sleep-wake classification and SDB event detection in order to automatically estimate the apnea-hypopnea index (AHI) as severity indicator. METHODS: The proposed multi-task model utilized both convolutional and recurrent neural networks and was formed by a shared part for common feature extraction, a task-specific part for sleep-wake classification, and a task-specific part for SDB event detection. The model was trained with RR intervals derived from electrocardiogram and respiratory effort signals. To assess performance, overnight polysomnography (PSG) recordings from 198 patients with varying degree of SDB were included, with manually annotated sleep stages and SDB events. RESULTS: We achieved a Cohen's kappa of 0.70 in the sleep-wake classification task, corresponding to a Spearman's correlation coefficient (R) of 0.830 between the estimated total sleep time (TST) and the TST obtained from PSG-based sleep scoring. Combining the sleep-wake classification and SDB detection results of the multi-task model, we obtained an R of 0.891 between the estimated and the reference AHI. For severity classification of SBD groups based on AHI, a Cohen's kappa of 0.58 was achieved. The multi-task model performed better than a single-task model proposed in a previous study for AHI estimation, in particular for patients with a lower sleep efficiency (R of 0.861 with the multi-task model and R of 0.746 with single-task model with subjects having sleep efficiency < 60%). CONCLUSION: Assisted with automatic sleep-wake classification, our multi-task model demonstrated proficiency in estimating AHI and assessing SDB severity based on AHI in a fully automatic manner using RR intervals and respiratory effort. This shows the potential for improving SDB screening with unobtrusive sensors also for subjects with low sleep efficiency without adding additional sensors for sleep-wake detection.


Subject(s)
Respiration , Signal Processing, Computer-Assisted , Sleep Apnea Syndromes , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/diagnosis , Humans , Male , Middle Aged , Polysomnography , Female , Machine Learning , Adult , Neural Networks, Computer , Electrocardiography , Aged , Wakefulness/physiology , Sleep
6.
Sci Rep ; 14(1): 10781, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734781

ABSTRACT

Magnetic resonance (MR) acquisitions of the torso are frequently affected by respiratory motion with detrimental effects on signal quality. The motion of organs inside the body is typically decoupled from surface motion and is best captured using rapid MR imaging (MRI). We propose a pipeline for prospective motion correction of the target organ using MR image navigators providing absolute motion estimates in millimeters. Our method is designed to feature multi-nuclear interleaving for non-proton MR acquisitions and to tolerate local transmit coils with inhomogeneous field and sensitivity distributions. OpenCV object tracking was introduced for rapid estimation of in-plane displacements in 2D MR images. A full three-dimensional translation vector was derived by combining displacements from slices of multiple and arbitrary orientations. The pipeline was implemented on 3 T and 7 T MR scanners and tested in phantoms and volunteers. Fast motion handling was achieved with low-resolution 2D MR image navigators and direct implementation of OpenCV into the MR scanner's reconstruction pipeline. Motion-phantom measurements demonstrate high tracking precision and accuracy with minor processing latency. The feasibility of the pipeline for reliable in-vivo motion extraction was shown on heart and kidney data. Organ motion was manually assessed by independent operators to quantify tracking performance. Object tracking performed convincingly on 7774 navigator images from phantom scans and different organs in volunteers. In particular the kernelized correlation filter (KCF) achieved similar accuracy (74%) as scored from inter-operator comparison (82%) while processing at a rate of over 100 frames per second. We conclude that fast 2D MR navigator images and computer vision object tracking can be used for accurate and rapid prospective motion correction. This and the modular structure of the pipeline allows for the proposed method to be used in imaging of moving organs and in challenging applications like cardiac magnetic resonance spectroscopy (MRS) or magnetic resonance imaging (MRI) guided radiotherapy.


Subject(s)
Phantoms, Imaging , Humans , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Respiration , Image Processing, Computer-Assisted/methods , Motion , Movement , Algorithms
7.
PLoS One ; 19(5): e0302758, 2024.
Article in English | MEDLINE | ID: mdl-38748652

ABSTRACT

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Subject(s)
Diving , Oxygen Consumption , Respiratory Rate , Whale, Killer , Animals , Whale, Killer/physiology , Whale, Killer/metabolism , Male , Respiratory Rate/physiology , Female , Oxygen Consumption/physiology , Diving/physiology , Energy Metabolism/physiology , Respiration , Feeding Behavior/physiology
8.
Cancer Med ; 13(10): e7322, 2024 May.
Article in English | MEDLINE | ID: mdl-38785309

ABSTRACT

BACKGROUND AND PURPOSE: Respiratory movement has an important impact on the radiotherapy for lung tumor. Respiratory gating technology is helpful to improve the accuracy of target delineation. This study investigated the value of prospective and retrospective respiratory gating simulations in target delineation and radiotherapy plan design for solitary pulmonary tumors (SPTs) in radiotherapy. METHODS: The enrolled patients underwent CT simulation with three-dimensional (3D) CT non gating, prospective respiratory gating, and retrospective respiratory gating simulation. The target volumes were delineated on three sets of CT images, and radiotherapy plans were prepared accordingly. Tumor displacements and movement information obtained using the two respiratory gating approaches, as well as the target volumes and dosimetry parameters in the radiotherapy plan were compared. RESULTS: No significant difference was observed in tumor displacement measured using the two gating methods (p > 0.05). However, the internal gross tumor volumes (IGTVs), internal target volumes (ITVs), and planning target volumes (PTVs) based on the retrospective respiratory gating simulation were larger than those obtained using prospective gating (group A: pIGTV = 0.041, pITV = 0.003, pPTV = 0.008; group B: pIGTV = 0.025, pITV = 0.039, pPTV = 0.004). The two-gating PTVs were both smaller than those delineated on 3D non gating images (p < 0.001). V5Gy, V10Gy, V20Gy, V30Gy, and mean lung dose in the two gated radiotherapy plans were lower than those in the 3D non gating plan (p < 0.001); however, no significant difference was observed between the two gating plans (p > 0.05). CONCLUSIONS: The application of respiratory gating could reduce the target volume and the radiation dose that the normal lung tissue received. Compared to prospective respiratory gating, the retrospective gating provides more information about tumor movement in PTV.


Subject(s)
Lung Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Male , Female , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Respiratory-Gated Imaging Techniques/methods , Radiotherapy Dosage , Tumor Burden , Adult , Retrospective Studies , Solitary Pulmonary Nodule/radiotherapy , Solitary Pulmonary Nodule/diagnostic imaging , Prospective Studies , Respiration
9.
Auton Neurosci ; 253: 103181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696917

ABSTRACT

Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.


Subject(s)
Interoception , Humans , Interoception/physiology , Animals , Respiration , Afferent Pathways/physiology
10.
Proc Natl Acad Sci U S A ; 121(19): e2318757121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38691591

ABSTRACT

How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "preinspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.


Subject(s)
Action Potentials , Animals , Action Potentials/physiology , Models, Neurological , Neurons/physiology , Respiration , Nerve Net/physiology , Respiratory Center/physiology , Computer Simulation , Sodium/metabolism
11.
Nat Commun ; 15(1): 4475, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796568

ABSTRACT

About half of the neurons in the parabrachial nucleus (PB) that are activated by CO2 are located in the external lateral (el) subnucleus, express calcitonin gene-related peptide (CGRP), and cause forebrain arousal. We report here, in male mice, that most of the remaining CO2-responsive neurons in the adjacent central lateral (PBcl) and Kölliker-Fuse (KF) PB subnuclei express the transcription factor FoxP2 and many of these neurons project to respiratory sites in the medulla. PBclFoxP2 neurons show increased intracellular calcium during wakefulness and REM sleep and in response to elevated CO2 during NREM sleep. Photo-activation of the PBclFoxP2 neurons increases respiration, whereas either photo-inhibition of PBclFoxP2 or genetic deletion of PB/KFFoxP2 neurons reduces the respiratory response to CO2 stimulation without preventing awakening. Thus, augmenting the PBcl/KFFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.


Subject(s)
Carbon Dioxide , Forkhead Transcription Factors , Hypercapnia , Neurons , Parabrachial Nucleus , Wakefulness , Animals , Hypercapnia/physiopathology , Hypercapnia/metabolism , Neurons/metabolism , Neurons/physiology , Male , Parabrachial Nucleus/physiology , Parabrachial Nucleus/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Carbon Dioxide/metabolism , Wakefulness/physiology , Respiration , Mice, Inbred C57BL , Calcitonin Gene-Related Peptide/metabolism , Sleep, REM/physiology , Repressor Proteins
12.
Commun Biol ; 7(1): 665, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816547

ABSTRACT

The evolution and development of vertebrate lungs have been widely studied due to their significance in terrestrial adaptation. Amphibians possess the most primitive lungs among tetrapods, underscoring their evolutionary importance in bridging the transition from aquatic to terrestrial life. However, the intricate process of cell differentiation during amphibian lung development remains poorly understood. Using single-cell RNA sequencing, we identify 13 cell types in the developing lungs of a land-dwelling frog (Microhyla fissipes). We elucidate the differentiation trajectories and mechanisms of mesenchymal cells, identifying five cell fates and their respective driver genes. Using temporal dynamics analyses, we reveal the gene expression switches of epithelial cells, which facilitate air breathing during metamorphosis. Furthermore, by integrating the published data from another amphibian and two terrestrial mammals, we illuminate both conserved and divergent cellular repertoires during the evolution of tetrapod lungs. These findings uncover the frog lung cell differentiation trajectories and functionalization for breathing in air and provide valuable insights into the cell-type evolution of vertebrate lungs.


Subject(s)
Anura , Cell Differentiation , Lung , Single-Cell Analysis , Animals , Lung/cytology , Lung/physiology , Single-Cell Analysis/methods , Anura/physiology , Respiration , Metamorphosis, Biological , Gene Expression Regulation, Developmental , Sequence Analysis, RNA/methods
13.
BMC Pulm Med ; 24(1): 263, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816810

ABSTRACT

BACKGROUNDS: Increased respiratory drive has been demonstrated to correlate with weaning failure, which could be quantified by electrical activity of the diaphragm (EAdi). We described the physiological process of EAdi-based parameters during the spontaneous breathing trial (SBT) and evaluated the change of EAdi-based parameters as potential predictors of weaning failure. METHODS: We conducted a prospective study in 35 mechanically ventilated patients who underwent a 2-hour SBT. EAdi and ventilatory parameters were continuously measured during the SBT. Diaphragm ultrasound was performed before the SBT and at the 30 min of the SBT. Three EAdi-based parameters were calculated: neuro-ventilatory efficiency, neuro-excursion efficiency and neuro-discharge per min. RESULTS: Of the thirty 35 patients studied, 25 patients were defined as SBT success, including 22 patients weaning successfully and 3 patients reintubated. Before the SBT, neuro-excursion efficiency differed significantly between two groups and had the highest predictive value for SBT failure (AUROC 0.875, p < 0.01). Early increases in EAdi were observed in SBT, which are more prominent in SBT failure group. One minute, changes in EAdi and neuro-discharge per min also predicted weaning outcome (AUROCs 0.944 and 0.918, respectively). CONCLUSIONS: EAdi-based parameters, especially neuro-excursion efficiency and changes in neuro-discharge per min, may detect impending weaning failure earlier than conventional indices. EAdi monitoring provides physiological insights and a more tailored approach to facilitate successful weaning. Further research should validate these findings and explore the utility of combined EAdi and diaphragm ultrasound assessment in weaning ICU patients from mechanical ventilation. TRIAL REGISTRATION: Registered at ClinicalTrials.gov on 20 September 2022 (Identifier: NCT05632822).


Subject(s)
Diaphragm , Respiration, Artificial , Ultrasonography , Ventilator Weaning , Humans , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Male , Ventilator Weaning/methods , Female , Prospective Studies , Aged , Middle Aged , Respiration, Artificial/methods , Respiration , Aged, 80 and over
14.
Saudi Med J ; 45(5): 525-530, 2024 May.
Article in English | MEDLINE | ID: mdl-38734441

ABSTRACT

OBJECTIVES: To compare vascular scanning parameters (vessel diameter, peak systolic velocity, end-diastolic velocity, and resistive index) and scanning time before and after breathing control training program for selected abdominal vessels. METHODS: This study was pre and post quasi-experimental. The researchers designed a breathing training program that gives participants instructions through a video describing breathing maneuvers. Data were collected at the ultrasound laboratory/College of Health and Rehabilitation Sciences in Princess Nourah bint Abdul Rahman University, Riyadh, Saudi Arabia from January 2023 to November 2023. About 49 volunteers at the university participated in the study. Scanning was performed two times for the right renal artery, upper abdominal aorta, inferior vena cava, and superior mesenteric artery. Scanning time was measured before and after the program as well. A paired sample t-test was used to compare the parameters means and time before and after the program. RESULTS: The program had a significant effect on the following parameters: right renal artery peak systolic velocity (p=0.042), upper abdominal aortic peak systolic velocity, and resistive index (p=0.014, p=0.014 respectively), superior mesenteric artery and inferior vena cava diameters (p=0.010 and p=0.020). The scanning time was reduced significantly (p<0.001). CONCLUSION: The breathing training program saves time and improves ultrasound measurement quality. Hospitals and health centers should consider the importance of breathing control training programs before abdominal scanning.


Subject(s)
Aorta, Abdominal , Renal Artery , Ultrasonography , Vena Cava, Inferior , Humans , Male , Ultrasonography/methods , Female , Adult , Aorta, Abdominal/diagnostic imaging , Vena Cava, Inferior/diagnostic imaging , Renal Artery/diagnostic imaging , Abdomen/diagnostic imaging , Abdomen/blood supply , Mesenteric Artery, Superior/diagnostic imaging , Young Adult , Breathing Exercises/methods , Blood Flow Velocity , Saudi Arabia , Respiration
15.
Sci Rep ; 14(1): 12262, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806563

ABSTRACT

Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.


Subject(s)
Fibronectins , Physical Conditioning, Animal , Animals , Male , Rats , Fibronectins/metabolism , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Heart Rate , Sleep/physiology , Wakefulness/physiology , Oxygen Consumption , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Respiration , Myokines
16.
Aerosp Med Hum Perform ; 95(6): 297-304, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38790119

ABSTRACT

INTRODUCTION: Negative pressure breathing is breathing with decreased pressure in the respiratory tract without lowering pressure acting on the torso. We lowered air pressure only during inspiration (NPBin). NPBin, used to increase venous return to the heart, is considered a countermeasure against redistribution of body fluids toward the head during spaceflight. We studied NPBin effects on circulation in healthy humans with an emphasis on NPBin-induced oscillations of hemodynamic parameters synchronous with breathing. We propose an approach to analyze the oscillations based on coherent averaging.METHODS: Eight men ages 24-42 yr participated in the NPBin and control series. During the series, to reproduce fluids shift observed under microgravity, subjects were supine and head down (-8°). Duration of NPBin was 20 min, rarefaction -20 cm H2O. Hemodynamic parameters were measured by Finometer. Electrical impedance measurements were used to estimate changes in blood filling of cerebral vessels.RESULTS: Mean values of hemodynamic parameters virtually did not change under NPBin, but NPBin induced oscillations of the parameters synchronous with respiration. Peak-to-peak amplitude under NPBin were: mean arterial pressure, 4 ± 1 (mmHg); stroke volume, 7 ± 3 (mL); and heart rate, 4 ± 1 (bpm). Electrical impedance of the head increased during inspiration. The increase under NPBin was three times greater than under normal breathing.DISCUSSION: Analysis of oscillations gives more information than analysis of mean values. NPBin induces short-term decrease in left ventricle stroke volume and arterial blood pressure during each inspiration; the decrease is compensated by increase after inspiration. NPBin facilitates redistribution of body fluids away from the head.Semenov YS, Melnikov IS, Luzhnov PV, Dyachenko AI. Oscillations of hemodynamic parameters induced by negative pressure breathing in healthy humans. Aerosp Med Hum Perform. 2024; 95(6):297-304.


Subject(s)
Hemodynamics , Humans , Male , Adult , Hemodynamics/physiology , Young Adult , Heart Rate/physiology , Stroke Volume/physiology , Fluid Shifts/physiology , Weightlessness , Healthy Volunteers , Respiration , Head-Down Tilt/physiology , Inhalation/physiology
17.
Sci Rep ; 14(1): 12161, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38802510

ABSTRACT

To study the characteristics of nasal airflow in the presence of nasal cycle by computational fluid dynamics. CT scan data of a healthy Chinese individual was used to construct a three-dimensional model of the nasal cavity to be used as simulation domain. A sinusoidal airflow velocity is set at the nasal cavity entrance to reproduce the breathing pattern of a healthy human. There was a significant difference in the cross-sectional area between the two sides of the nasal cavity. Particularly, the decongested side is characterized by a larger cross-section area, and consequently, by a larger volume with respect to the congested side. The airflow velocity, pressure, and nasal resistance were higher on the congested narrow side. The temperature regulation ability on the congested narrow side was stronger than that on the decongested wider side. During the nasal cycle, there are differences in the nasal cavity function between the congested and decongested sides. Therefore, when evaluating the impact of various factors on nasal cavity function, the nasal cycle should be considered.


Subject(s)
Nasal Cavity , Humans , Nasal Cavity/physiology , Nasal Cavity/diagnostic imaging , Computer Simulation , Hydrodynamics , Tomography, X-Ray Computed , Male , Adult , Respiration , Airway Resistance/physiology
18.
Physiol Meas ; 45(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38749433

ABSTRACT

Objective.Intra-esophageal pressure (Pes) measurement is the recommended gold standard to quantify respiratory effort during sleep, but used to limited extent in clinical practice due to multiple practical drawbacks. Respiratory inductance plethysmography belts (RIP) in conjunction with oronasal airflow are the accepted substitute in polysomnographic systems (PSG) thanks to a better usability, although they are partial views on tidal volume and flow rather than true respiratory effort and are often used without calibration. In their place, the pressure variations measured non-invasively at the suprasternal notch (SSP) may provide a better measure of effort. However, this type of sensor has been validated only for respiratory events in the context of obstructive sleep apnea syndrome (OSA). We aim to provide an extensive verification of the suprasternal pressure signal against RIP belts and Pes, covering both normal breathing and respiratory events.Approach.We simultaneously acquired suprasternal (207) and esophageal pressure (20) signals along with RIP belts during a clinical PSG of 207 participants. In each signal, we detected breaths with a custom algorithm, and evaluated the SSP in terms of detection quality, breathing rate estimation, and similarity of breathing patterns against RIP and Pes. Additionally, we examined how the SSP signal may diverge from RIP and Pes in presence of respiratory events scored by a sleep technician.Main results.The SSP signal proved to be a reliable substitute for both esophageal pressure (Pes) and respiratory inductance plethysmography (RIP) in terms of breath detection, with sensitivity and positive predictive value exceeding 75%, and low error in breathing rate estimation. The SSP was also consistent with Pes (correlation of 0.72, similarity 80.8%) in patterns of increasing pressure amplitude that are common in OSA.Significance.This work provides a quantitative analysis of suprasternal pressure sensors for respiratory effort measurements.


Subject(s)
Pressure , Sleep , Humans , Male , Sleep/physiology , Female , Adult , Plethysmography , Signal Processing, Computer-Assisted , Respiration , Sternum/physiology , Middle Aged , Polysomnography , Young Adult
19.
Int J Med Robot ; 20(3): e2647, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804195

ABSTRACT

BACKGROUND: This study presents the development of a backpropagation neural network-based respiratory motion modelling method (BP-RMM) for precisely tracking arbitrary points within lung tissue throughout free respiration, encompassing deep inspiration and expiration phases. METHODS: Internal and external respiratory data from four-dimensional computed tomography (4DCT) are processed using various artificial intelligence algorithms. Data augmentation through polynomial interpolation is employed to enhance dataset robustness. A BP neural network is then constructed to comprehensively track lung tissue movement. RESULTS: The BP-RMM demonstrates promising accuracy. In cases from the public 4DCT dataset, the average target registration error (TRE) between authentic deep respiration phases and those forecasted by BP-RMM for 75 marked points is 1.819 mm. Notably, TRE for normal respiration phases is significantly lower, with a minimum error of 0.511 mm. CONCLUSIONS: The proposed method is validated for its high accuracy and robustness, establishing it as a promising tool for surgical navigation within the lung.


Subject(s)
Algorithms , Four-Dimensional Computed Tomography , Lung , Neural Networks, Computer , Respiration , Humans , Lung/diagnostic imaging , Lung/physiology , Four-Dimensional Computed Tomography/methods , Movement , Reproducibility of Results , Artificial Intelligence , Image Processing, Computer-Assisted/methods , Motion
20.
J Biomech Eng ; 146(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38557592

ABSTRACT

Development of respiratory tissue constructs is challenging due to the complex structure of native respiratory tissue and the unique biomechanical conditions induced by breathing. While studies have shown that the inclusion of biomechanical stimulus mimicking physiological conditions greatly benefits the development of engineered tissues, to our knowledge no studies investigating the influence of biomechanical stimulus on the development of respiratory tissue models produced through three-dimensional (3D) bioprinting have been reported. This paper presents a study on the utilization of a novel breath-mimicking ventilated incubator to impart biomechanical stimulus during the culture of 3D respiratory bioprinted constructs. Constructs were bioprinted using an alginate/collagen hydrogel containing human primary pulmonary fibroblasts with further seeding of human primary bronchial epithelial cells. Biomechanical stimulus was then applied via a novel ventilated incubator capable of mimicking the pressure and airflow conditions of multiple breathing conditions: standard incubation, shallow breathing, normal breathing, and heavy breathing, over a two-week time period. At time points between 1 and 14 days, constructs were characterized in terms of mechanical properties, cell proliferation, and morphology. The results illustrated that incubation conditions mimicking normal and heavy breathing led to greater and more continuous cell proliferation and further indicated a more physiologically relevant respiratory tissue model.


Subject(s)
Bioprinting , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Respiration , Printing, Three-Dimensional , Bioprinting/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...