Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.263
Filter
1.
Front Immunol ; 15: 1362404, 2024.
Article in English | MEDLINE | ID: mdl-38745671

ABSTRACT

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Subject(s)
Asthma , Epithelial Cells , Matrix Metalloproteinase 9 , Oxidative Stress , Plant Extracts , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Animals , Oxidative Stress/drug effects , Mice , Humans , Plant Extracts/pharmacology , Matrix Metalloproteinase 9/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Disease Models, Animal , Tea/chemistry , Female , Signal Transduction/drug effects , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Cytokines/metabolism , Ovalbumin/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
COPD ; 21(1): 2342797, 2024 12.
Article in English | MEDLINE | ID: mdl-38712759

ABSTRACT

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Subject(s)
AMP-Activated Protein Kinases , Epithelial Cells , F-Box Proteins , Protein Serine-Threonine Kinases , Pulmonary Disease, Chronic Obstructive , Smoke , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Mice , Smoke/adverse effects , F-Box Proteins/metabolism , F-Box Proteins/genetics , AMP-Activated Protein Kinase Kinases , Cell Line , Proteolysis/drug effects , Leupeptins/pharmacology , Male , Cycloheximide/pharmacology , RNA, Small Interfering , Mice, Inbred C57BL , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Cigarette Smoking/adverse effects
3.
Daru ; 32(1): 215-235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652363

ABSTRACT

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drug Repositioning , Protein Interaction Maps , SARS-CoV-2 , Systems Biology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/drug effects , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Nucleophosmin , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , Gene Regulatory Networks/drug effects , COVID-19
4.
Toxicol Sci ; 199(2): 301-315, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38539046

ABSTRACT

Inhalation exposure to plastic incineration emissions (PIEs) is a problem of increasing human relevance, as plastic production and waste creation have drastically increased since mainstream integration during the 20th century. We investigated the effects of PIEs on human nasal epithelial cells (HNECs) to understand if such exposures cause damage and dysfunction to respiratory epithelia. Primary HNECs from male and female donors were cultured at air-liquid interface (ALI), and 16HBE cells were cultured on coverslips. Smoke condensates were generated from incineration of plastic at flaming (640°C) and smoldering (500°C) temperatures, and cells were subsequently exposed to these materials at 5-50 µg/cm2 concentrations. HNECs were assessed for mitochondrial dysfunction and 16HBE cells for glutathione oxidation in real-time analyses. HNEC culture supernatants and total RNA were collected at 4-h postexposure for cytokine and gene expression analysis, and results show that PIEs can acutely induce inflammation, oxidative stress, and mitochondrial dysfunction in HNECs, and that incineration temperature modifies biological responses. Specifically, condensates from flaming and smoldering PIEs significantly increased HNEC secretion of cytokines IL-8, IL-1ß, and IL-13, as well as expression of xenobiotic metabolism pathways and genes such as CYP1A1 and CYP1B1 at 5 and 20 µg/cm2 concentrations. Only 50 µg/cm2 flaming PIEs significantly increased glutathione oxidation in 16HBEs, and decreased respiration and ATP production in HNEC mitochondria. Impact Statement: Our data reveal the impact of incineration temperatures on biological outcomes associated with PIE exposures, emphasizing the importance of temperature as a factor when evaluating respiratory disease associated with PIEs exposure.


Subject(s)
Air Pollutants , Epithelial Cells , Incineration , Inflammation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Female , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Air Pollutants/toxicity , Inflammation/chemically induced , Inflammation/metabolism , Plastics/toxicity , Energy Metabolism/drug effects , Cells, Cultured , Cytokines/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Glutathione/metabolism , Smoke/adverse effects , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Inhalation Exposure/adverse effects
5.
Pediatr Pulmonol ; 59(5): 1266-1273, 2024 May.
Article in English | MEDLINE | ID: mdl-38353361

ABSTRACT

BACKGROUND: While the widespread initiation of elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic clinical improvements among persons with cystic fibrosis (pwCF), little is known about how ETI affects the respiratory mucosal inflammatory and physiochemical environment, or how these changes relate to lung function. METHODS: We performed a prospective, longitudinal study of adults with CF and chronic rhinosinusitis (CF-CRS) followed at our CF center (n = 18). Endoscopic upper respiratory tract (paranasal sinus) aspirates from multiple visit dates, both pre- and post-ETI initiation, were collected and tested for cytokines, metals, pH, and lactate levels. Generalized estimating equations were used to identify relationships between ETI and upper respiratory tract (URT) biomarker levels, and between URT biomarkers and lung function or clinical sinus parameters. RESULTS: ETI was associated with decreased upper respiratory mucosal cytokines B-cell activating factor (BAFF), IL-12p40, IL-32, IL-8, IL-22 and soluble tumor necrosis factor-1 (sTNFR1), and an increase in a proliferation-inducing ligand (APRIL) and IL-19. ETI was also associated with decreased URT levels of copper, manganese, and zinc. In turn, lower URT levels of BAFF, IL-8, lactate, and potassium were each associated with ~1.5% to 4.3% improved forced expiratory volume in 1 s (FEV1), while higher levels of IFNγ, iron, and selenium were associated with ~2% to 10% higher FEV1. CONCLUSIONS: Our observations suggest a dampening of inflammatory signals and restriction in microbial nutrients in the upper respiratory tract with ETI. These findings improve our understanding of how ETI impacts the mucosal environment in the respiratory tract, and may give insight into the improved infectious and inflammatory status and the resulting clinical improvements seen in pwCF.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis , Quinolones , Respiratory Mucosa , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/physiopathology , Cystic Fibrosis/complications , Female , Male , Prospective Studies , Adult , Aminophenols/therapeutic use , Quinolones/therapeutic use , Respiratory Mucosa/drug effects , Longitudinal Studies , Benzodioxoles/therapeutic use , Young Adult , Cytokines , Sinusitis/drug therapy , Rhinitis/drug therapy , Indoles/therapeutic use , Drug Combinations , Chronic Disease , Pyridines/therapeutic use , Biomarkers/analysis , Inflammation/drug therapy
6.
Allergol. immunopatol ; 51(1): 116-125, ene. 2023. ilus, graf
Article in English | IBECS | ID: ibc-214027

ABSTRACT

Background: Asthma is a chronic inflammatory airway disease that causes damage to and exfoliation of the airway epithelium. The continuous damage to the airway epithelium in asthma cannot be repaired quickly and generates irreversible damage, repeated attacks, and aggravation. Vitamin A (VA) has multifarious biological functions that include maintaining membrane stability and integrity of the structure and function of epithelial cells. Our research explored the role of VA in repairing the airway epithelium and provided a novel treatment strategy for asthma. Methods: A mouse asthma model was established by house dust mite (HDM) and treated with VA by gavage. Human bronchial epithelial (16HBE) cells were treated with HDM and all-trans retinoic acid (ATRA) in vitro. We analyzed the mRNA and protein expression of characteristic markers, such as acetyl-α-tubulin (Ac-TUB) and FOXJ1 in ciliated cells and MUC5AC in secretory cells, mucus secretion, airway inflammation, the morphology of cilia, and the integrity of the airway epithelium. Results: Findings showed destruction of airway epithelial integrity, damaged cilia, high mucus secretion, increased MUC5AC expression, and decreased Ac-TUB and FOXJ1 expression in asthmatic mice. The VA intervention reversed the effect on Ac-TUB and FOXJ1 and promoted ciliated cells to repair the damage and maintain airway epithelial integrity. In 16HBE cells, we could confirm that ATRA promoted the expression of Ac-TUB and FOXJ1. Conclusion: These results demonstrated that VA-regulated ciliated cells to repair the damaged airway epithelium caused by asthma and maintain airway epithelial integrity. VA intervention is a potential adjunct to conventional treatment for asthma (AU)


Subject(s)
Animals , Female , Mice , Asthma/drug therapy , Respiratory Mucosa/immunology , Vitamin A/administration & dosage , Glucocorticoids/administration & dosage , Disease Models, Animal , Respiratory Mucosa/drug effects
7.
Cell Mol Life Sci ; 79(5): 257, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35462606

ABSTRACT

The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients' treatment by epigenetic targeting.


Subject(s)
Cystic Fibrosis , Curcumin/pharmacology , Curcumin/therapeutic use , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Down-Regulation/genetics , Epigenesis, Genetic , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Humans , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/physiopathology
8.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35110354

ABSTRACT

BACKGROUND: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS: We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS: We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION: These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.


Subject(s)
Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/administration & dosage , Administration, Topical , Androgens/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Epithelial Cells , Esters/pharmacology , Gene Expression , Goblet Cells/immunology , Goblet Cells/metabolism , Guanidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Serine Endopeptidases/genetics , Signal Transduction , Virus Internalization/drug effects , Virus Replication/drug effects
9.
Nat Commun ; 13(1): 719, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169114

ABSTRACT

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Subject(s)
COVID-19 Drug Treatment , Disease Models, Animal , Lactams/administration & dosage , Leucine/administration & dosage , Nitriles/administration & dosage , Proline/administration & dosage , SARS-CoV-2/drug effects , Viral Protease Inhibitors/administration & dosage , A549 Cells , Administration, Oral , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cricetinae , Humans , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mesocricetus , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
10.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163010

ABSTRACT

Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.


Subject(s)
Niclosamide/administration & dosage , Pneumonia/drug therapy , Respiratory System/drug effects , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , COVID-19/complications , Cells, Cultured , Disease Models, Animal , Drug Carriers/chemistry , Drug Compounding , Humans , Hydrogels/chemistry , Instillation, Drug , Mice , Microspheres , Mucus/drug effects , Mucus/metabolism , Nanospheres/administration & dosage , Nanospheres/chemistry , Niclosamide/chemistry , Niclosamide/pharmacokinetics , Pneumonia/pathology , Polyethylene Glycols/chemistry , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory System/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Trachea , COVID-19 Drug Treatment
11.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35062352

ABSTRACT

Respiratory disease in horses is caused by a multifactorial complex of infectious agents and environmental factors. An important pathogen in horses is equine herpesvirus type 1 (EHV-1). During co-evolution with this ancient alphaherpesvirus, the horse's respiratory tract has developed multiple antiviral barriers. However, these barriers can become compromised by environmental threats. Pollens and mycotoxins enhance mucosal susceptibility to EHV-1 by interrupting cell junctions, allowing the virus to reach its basolateral receptor. Whether bacterial toxins also play a role in this impairment has not been studied yet. Here, we evaluated the role of α-hemolysin (Hla) and adenylate cyclase (ACT), toxins derived from the facultative pathogenic bacterium Staphylococcus aureus (S. aureus) and the primary pathogen Bordetella bronchiseptica (B. bronchiseptica), respectively. Equine respiratory mucosal explants were cultured at an air-liquid interface and pretreated with these toxins, prior to EHV-1 inoculation. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed a decreased epithelial thickness upon treatment with both toxins. Additionally, the Hla toxin induced detachment of epithelial cells and a partial loss of cilia. These morphological changes were correlated with increased EHV-1 replication in the epithelium, as assessed by immunofluorescent stainings and confocal microscopy. In view of these results, we argue that the ACT and Hla toxins increase the susceptibility of the epithelium to EHV-1 by disrupting the epithelial barrier function. In conclusion, this study is the first to report that bacterial exotoxins increase the horse's sensitivity to EHV-1 infection. Therefore, we propose that horses suffering from infection by S. aureus or B. bronchiseptica may be more susceptible to EHV-1 infection.


Subject(s)
Bacterial Toxins/pharmacology , Bordetella bronchiseptica/metabolism , Herpesviridae Infections/drug therapy , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/drug effects , Horse Diseases/virology , Respiratory Tract Diseases/virology , Staphylococcus aureus/metabolism , Animals , Epithelial Cells/virology , Hemolysin Proteins , Horses , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , Virus Replication/drug effects
12.
Bioengineered ; 13(2): 3137-3147, 2022 02.
Article in English | MEDLINE | ID: mdl-35037821

ABSTRACT

Asthma is a respiratory disease with complex pathogenesis. Sterol-responsive element-binding proteins 2 (SREBP2) was found to bind to promoter sequences of ABCA1 to suppress ABCA1 promoter activity. This study aimed to explore the expression level of SREBP2 and ATP-binding cassette transporter A1 (ABCA1), and their effects on the development of airway smooth muscle cells (ASMCs) in asthma. ASMCs were treated with different concentrations of TGF-ß1 (0, 0.5, 1, 5 and 10 ng/mL). Short hairpin SREBP2 (shSREBP2), SREBP2, shABCA1 or ABCA1 were transfected into ASMCs. Cell viability, proliferation, apoptosis, migration, and the expression of SREBP2, ABCA1 and related pathway proteins were detected by MTT assay, Brdu staining, flow cytometer, Transwell assay, qRT-PCR, and Western blotting, respectively. The results showed that TGF-ß1 increased the viability, proliferation, migration and inhibited apoptosis in ASMCs. Moreover, TGF-ß1 also decreased the expression of ABCA1, cleaved caspase-3, cleaved PARP, E-cadherin, and increased the expression of vimentin, TLR2, p-p65 and NFATc1. SREBP2 knockdown alleviated these TGF-ß1-induced changes. SREBP2 overexpression inhibited ABCA1 expression and apoptosis, and promoted cell migration and the expression of TLR2, p-p65, NFATc1 in ASMCs. ABCA1 overexpression alleviated these SREBP2-induced promoting and inhibition effects. In conclusion, SREBP2 activates TLR2/NF-κB/NFATc1 regulatory network and promotes TGF-ß1-induced cell movement through inhibiting ABCA1 expression.


Subject(s)
Myocytes, Smooth Muscle , Sterol Regulatory Element Binding Protein 2/physiology , Transforming Growth Factor beta1/pharmacology , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory System/cytology , Respiratory System/drug effects , Respiratory System/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism
13.
Am J Pathol ; 192(1): 104-111, 2022 01.
Article in English | MEDLINE | ID: mdl-34756873

ABSTRACT

The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. Following TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in cultured primary mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels were observed in mouse tracheas. In conclusion, this study shows that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.


Subject(s)
Muscle Contraction , Muscle, Smooth/physiology , Trachea/physiology , Tumor Necrosis Factor-alpha/pharmacology , Animals , Calcium Channels, L-Type/metabolism , Carbachol/pharmacology , Male , Mice , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Phosphotyrosine/metabolism , Protein Kinase C/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/physiology , Signal Transduction/drug effects , Trachea/drug effects , Up-Regulation/drug effects , src-Family Kinases/metabolism
14.
Lung ; 200(1): 119-128, 2022 02.
Article in English | MEDLINE | ID: mdl-34825965

ABSTRACT

PURPOSE: Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). METHODS: Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. RESULTS: Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. CONCLUSION: Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.


Subject(s)
Immunoglobulin A, Secretory , Receptors, Polymeric Immunoglobulin , Respiratory Mucosa , Animals , Anti-Bacterial Agents/immunology , Anti-Bacterial Agents/pharmacology , Immunoglobulin A, Secretory/immunology , Immunoglobulin A, Secretory/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Mice , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Receptors, Polymeric Immunoglobulin/immunology , Receptors, Polymeric Immunoglobulin/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism
15.
Front Immunol ; 12: 743890, 2021.
Article in English | MEDLINE | ID: mdl-34950134

ABSTRACT

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Asthma , COVID-19 , Imiquimod/pharmacology , Interferon-beta/drug effects , Respiratory Mucosa/drug effects , Adjuvants, Immunologic/pharmacology , Adult , Aged , Bronchi/drug effects , Bronchi/immunology , Bronchi/virology , Cells, Cultured , Female , Humans , Interferon-beta/immunology , Male , Middle Aged , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2
16.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830344

ABSTRACT

Electronic cigarettes are frequently viewed as a safer alternative to conventional cigarettes; however, evidence to support this perspective has not materialized. Indeed, the current literature reports that electronic cigarette use is associated with both acute lung injury and subclinical dysfunction to the lung and vasculature that may result in pathology following chronic use. E-cigarettes can alter vascular dynamics, polarize innate immune populations towards a proinflammatory state, compromise barrier function in the pulmonary endothelium and epithelium, and promote pre-oncogenic phenomena. This review will summarize the variety of e-cigarette products available to users, discuss current challenges in e-cigarette study design, outline the range of pathologies occurring in cases of e-cigarette associated acute lung injury, highlight disease supporting tissue- and cellular-level changes resulting from e-cigarette exposure, and briefly examine how these changes may promote tumorigenesis. Continued research of the mechanisms by which e-cigarettes induce pathology benefit users and clinicians by resulting in increased regulation of vaping devices, informing treatments for emerging diseases e-cigarettes produce, and increasing public awareness to reduce e-cigarette use and the onset of preventable disease.


Subject(s)
Acute Lung Injury/pathology , Cardiovascular Diseases/pathology , Electronic Nicotine Delivery Systems , Lung Neoplasms/pathology , Vaping/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Animals , Blood Platelets/drug effects , Blood Platelets/immunology , Blood Platelets/pathology , Carcinogenesis/immunology , Carcinogenesis/pathology , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/immunology , Cytokines/biosynthesis , Cytokines/immunology , Humans , Immunity, Innate/drug effects , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/pathology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Rodentia , Vaping/immunology
17.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768968

ABSTRACT

Tissue remodeling contributes to ongoing inflammation and refractoriness of chronic rhinosinusitis (CRS). During this process, epithelial-mesenchymal transition (EMT) plays an important role in dysregulated remodeling and both microRNA (miR)-29b and heat shock protein 47 (HSP47) may be engaged in the pathophysiology of CRS. This study aimed to determine the role of miR-29b and HSP47 in modulating transforming growth factor (TGF)-ß1-induced EMT and migration in airway epithelial cells. Expression levels of miR-29b, HSP47, E-cadherin, α-smooth muscle actin (α-SMA), vimentin and fibronectin were assessed through real-time PCR, Western blotting, and immunofluorescence staining. Small interfering RNA (siRNA) targeted against miR-29b and HSP47 were transfected to regulate the expression of EMT-related markers. Cell migration was evaluated with wound scratch and transwell migration assay. miR-29b mimic significantly inhibited the expression of HSP47 and TGF-ß1-induced EMT-related markers in A549 cells. However, the miR-29b inhibitor more greatly induced the expression of them. HSP47 knockout suppressed TGF-ß1-induced EMT marker levels. Functional studies indicated that TGF-ß1-induced EMT was regulated by miR-29b and HSP47 in A549 cells. These findings were further verified in primary nasal epithelial cells. miR-29b modulated TGF-ß1-induced EMT-related markers and migration via HSP47 expression modulation in A549 and primary nasal epithelial cells. These results suggested the importance of miR-29b and HSP47 in pathologic tissue remodeling progression in CRS.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , HSP47 Heat-Shock Proteins/antagonists & inhibitors , HSP47 Heat-Shock Proteins/genetics , Transforming Growth Factor beta1/metabolism , A549 Cells , Cell Movement/drug effects , Cell Movement/genetics , Cell Movement/physiology , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation , Gene Knockout Techniques , Humans , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Rhinitis/genetics , Rhinitis/metabolism , Sinusitis/genetics , Sinusitis/metabolism , Sinusitis/pathology , Transforming Growth Factor beta1/administration & dosage , Transforming Growth Factor beta1/genetics
18.
Int Immunopharmacol ; 101(Pt A): 108308, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34741870

ABSTRACT

BACKGROUND: Aim of this study is investigates the influence of spiperone on hydrolase activity pathway in chronic obstructive pulmonary disease (COPD). PATIENTS AND METHODS: Differentially expressed genes (DEGs) were calculated by the limma package from microarray data GSE20257, and analysed via gene set enrichment analysis (GSEA) for identifying COPD related pathways. The regulation of hydrolase activity pathway related drugs was predicted by connectivity Map analysis (CMap). Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to investigate the effect of spiperone on regulation of hydrolase activity pathway in vitro experiment. RESULTS: A total of 378 DEGs were identified by the limma package. GSEA suggested that the regulation of hydrolase activity pathway was involved in the development of COPD. CMap of hub genes of regulation of hydrolase activity pathwayshown the most significant compound was spiperone. Results of vitro experiment verify that cigarette smoke extract (CSE) can increase the expression of fibronectin 1 (FN1) and epidermal growth factor (EGF), coinsided with decrease the expression of chemokine (C-X3-C motif) ligand 1 (CX3CL1), chemokoine (C-C motif) ligand 20 (CCL20), complement component 3 (C3) and slithomolog 2 (SLIT2) in BESA-2B cells and U937 cells. Spiperone can reverse the effect of CSE in BESA-2B cells and U937 cells. CONCLUSION: Regulation of hydrolase activity pathway was involved in the occurrence of COPD, spiperone was a potential drug for the treatment of COPD by affecting the regulation of hydrolase activity pathway. This study had provided new insights into the potential pathogenesis and treatment of COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive/drug therapy , Spiperone/therapeutic use , Adult , Blotting, Western , Female , Humans , Hydrolases/drug effects , Hydrolases/metabolism , Male , Metabolic Networks and Pathways/drug effects , Middle Aged , Oligonucleotide Array Sequence Analysis , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome , U937 Cells
19.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681784

ABSTRACT

Mitochondria regulate a myriad of cellular functions. Dysregulation of mitochondrial control within airway epithelial cells has been implicated in the pro-inflammatory response to allergens in asthma patients. Because of their multifaceted nature, mitochondrial structure must be tightly regulated through fission and fusion. Dynamin Related Protein 1 (DRP1) is a key driver of mitochondrial fission. During allergic asthma, airway epithelial mitochondria appear smaller and structurally altered. The role of DRP1-mediated mitochondrial fission, however, has not been fully elucidated in epithelial response to allergens. We used a Human Bronchial Epithelial Cell line (HBECs), primary Mouse Tracheal Epithelial Cells (MTECs), and conditional DRP1 ablation in lung epithelial cells to investigate the impact of mitochondrial fission on the pro-inflammatory response to house dust mite (HDM) in vitro and in vivo. Our data suggest that, following HDM challenge, mitochondrial fission is rapidly upregulated in airway epithelial cells and precedes production of pro-inflammatory cytokines and chemokines. Further, deletion of Drp1 in lung epithelial cells leads to decreased fission and enhanced pro-inflammatory signaling in response to HDM in vitro, as well as enhanced airway hyper-responsiveness (AHR), inflammation, differential mucin transcription, and epithelial cell death in vivo. Mitochondrial fission, therefore, regulates the lung epithelial pro-inflammatory response to HDM.


Subject(s)
Allergens/pharmacology , Dynamins/physiology , Mitochondrial Dynamics/genetics , Respiratory Hypersensitivity/genetics , Respiratory Mucosa/drug effects , Animals , Bronchi/drug effects , Bronchi/physiology , Cells, Cultured , Dynamins/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism
20.
Immunopharmacol Immunotoxicol ; 43(6): 813-824, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34694946

ABSTRACT

CONTEXT: The airway epithelial barrier can be disrupted by house dust mite (HDM) allergens leading to allergic airway inflammation. Zerumbone, a natural monocyclic sesquiterpene, was previously found to possess anti-asthmatic effect by modulating Th1/Th2 cytokines. However, the protective role of zerumbone on epithelial barrier function remains to be fully explored. OBJECTIVE: To investigate the effect of zerumbone on HDM extract-induced airway epithelial barrier dysfunction. MATERIALS AND METHODS: Human bronchial epithelial cells 16HBE14o- were incubated with 100 µg/mL HDM extract and treated with non-cytotoxic concentrations of zerumbone (6.25 µM, 12.5 µM, and 25 µM) for 24 h. The epithelial junctional integrity and permeability were evaluated through transepithelial electrical resistance (TEER) and fluorescein isothiocynate (FITC)-Dextran permeability assays, respectively. The localization of junctional proteins, occludin and zona occludens (ZO)-1, was studied using immunofluorescence (IF) while the protein expression was measured by western blot. RESULTS: Zerumbone inhibited changes in junctional integrity (6.25 µM, p ≤ .05; 12.5 µM, p ≤ .001; 25 µM, p ≤ .001) and permeability (6.25 µM, p ≤ .05; 12.5 µM, p ≤ .01; 25 µM, p ≤ .001) triggered by HDM extract in a concentration-dependent manner. This protective effect could be explained by the preservation of occludin (12.5 µM, p ≤ .01 and 25 µM, p ≤ .001) and ZO-1 (12.5 µM, p ≤ .05 and 25 µM, p ≤ .001) localization, rather than the prevention of their cleavage. DISCUSSION AND CONCLUSION: Zerumbone attenuates HDM extract-induced epithelial barrier dysfunction which supports its potential application for the treatment of inflammation-driven airway diseases such as asthma.


Subject(s)
Cell Survival/drug effects , Pyroglyphidae/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Sesquiterpenes/pharmacology , Animals , Cell Line , Cell Line, Transformed , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Infant , Male , Pyroglyphidae/immunology , Respiratory Mucosa/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...